mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 03:31:46 +00:00
server : allow to generate multimodal embeddings (#4681)
This commit is contained in:
parent
82d6eab224
commit
b93edd22f5
@ -166,7 +166,7 @@ node index.js
|
|||||||
|
|
||||||
`n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token (default: 0)
|
`n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token (default: 0)
|
||||||
|
|
||||||
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `prompt`. You can determine the place of the image in the prompt as in the following: `USER:[img-12]Describe the image in detail.\nASSISTANT:` In this case, `[img-12]` will be replaced by the embeddings of the image id 12 in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 12}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
|
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `prompt`. You can determine the place of the image in the prompt as in the following: `USER:[img-12]Describe the image in detail.\nASSISTANT:`. In this case, `[img-12]` will be replaced by the embeddings of the image with id `12` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 12}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
|
||||||
|
|
||||||
*Result JSON:*
|
*Result JSON:*
|
||||||
|
|
||||||
@ -224,6 +224,8 @@ node index.js
|
|||||||
|
|
||||||
`content`: Set the text to process.
|
`content`: Set the text to process.
|
||||||
|
|
||||||
|
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `content`. You can determine the place of the image in the content as in the following: `Image: [img-21].\nCaption: This is a picture of a house`. In this case, `[img-21]` will be replaced by the embeddings of the image with id `21` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 21}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
|
||||||
|
|
||||||
- **POST** `/infill`: For code infilling. Takes a prefix and a suffix and returns the predicted completion as stream.
|
- **POST** `/infill`: For code infilling. Takes a prefix and a suffix and returns the predicted completion as stream.
|
||||||
|
|
||||||
*Options:*
|
*Options:*
|
||||||
|
@ -3077,7 +3077,17 @@ int main(int argc, char **argv)
|
|||||||
{
|
{
|
||||||
prompt = "";
|
prompt = "";
|
||||||
}
|
}
|
||||||
const int task_id = llama.request_completion({ {"prompt", prompt}, { "n_predict", 0} }, false, true, -1);
|
|
||||||
|
json image_data;
|
||||||
|
if (body.count("image_data") != 0) {
|
||||||
|
image_data = body["image_data"];
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
image_data = "";
|
||||||
|
}
|
||||||
|
|
||||||
|
const int task_id = llama.request_completion({ {"prompt", prompt}, { "n_predict", 0}, {"image_data", image_data} }, false, true, -1);
|
||||||
task_result result = llama.next_result(task_id);
|
task_result result = llama.next_result(task_id);
|
||||||
return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
|
return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
|
||||||
});
|
});
|
||||||
|
Loading…
Reference in New Issue
Block a user