From b957b8f5f6abc8221fb38923a638b90ebb966044 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Thu, 1 Feb 2024 19:47:11 +0200 Subject: [PATCH] cuda : add flash_attn kernel (wip) --- ggml-cuda.cu | 735 ++++++++++++++++++++++++++++++++++++++++++++++++++- llama.cpp | 3 +- 2 files changed, 735 insertions(+), 3 deletions(-) diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 15fc6154f..60d228a61 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -108,6 +108,7 @@ #include #include #include +#include #if CUDART_VERSION < 11020 #define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED @@ -655,6 +656,19 @@ static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) { #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL } +static __device__ __forceinline__ half warp_reduce_sum(half x) { +#if __CUDA_ARCH__ >= CC_VOLTA +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + x = __hadd(__shfl_xor_sync(0xffffffff, x, mask, 32), x); + } + return x; +#else + (void) x; + NO_DEVICE_CODE; +#endif +} + static __device__ __forceinline__ float warp_reduce_max(float x) { #pragma unroll for (int mask = 16; mask > 0; mask >>= 1) { @@ -676,6 +690,18 @@ static __device__ __forceinline__ half2 warp_reduce_max(half2 x) { #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX } +static __device__ __forceinline__ half warp_reduce_max(half x) { +#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + x = __hmax(x, __shfl_xor_sync(0xffffffff, x, mask, 32)); + } + return x; +#else + (void) x; +#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX +} + static __device__ __forceinline__ float op_repeat(const float a, const float b) { return b; GGML_UNUSED(a); @@ -989,6 +1015,7 @@ static __global__ void group_norm_f32(const float * x, float * dst, const int gr if (lane_id == 0) { s_sum[warp_id] = tmp; } + __syncthreads(); tmp = s_sum[lane_id]; tmp = warp_reduce_sum(tmp); @@ -6249,6 +6276,528 @@ static __global__ void pool2d_nchw_kernel( o_ptr[cur_oh * ow + cur_ow] = res; } +#define CUDA_FLASH_ATTENTION_BLOCK_SIZE 256 + +template +static __global__ void flash_attn_f32( + const float* __restrict__ q, + const float* __restrict__ k, + const float* __restrict__ v, + float* __restrict__ kqv, + float kq_scale, + int head_dim, int seq_len, int num_heads) { + const int head = blockIdx.x / seq_len; + const int head_size = head_dim * seq_len; + const int s = blockIdx.x % seq_len; + + extern __shared__ char flash_attn_shmem_f32[]; + float* S = (float*)flash_attn_shmem_f32; + float* warp_data = (float*)(flash_attn_shmem_f32 + seq_len * sizeof(float)); + + // QK^T + #pragma unroll + for(int is0 = 0; is0 < k_seq_len; is0 += block_size) { + const int is = threadIdx.x + is0; + if(is >= seq_len) { + break; + } + + const int key_offset = is * head_dim + head * head_size; + const int query_offset = s * head_dim + head * head_size; + + float tmp = 0.0f; + for(int d = 0; d < head_dim; d++) { + tmp += k[key_offset + d] * q[query_offset + d]; + } + S[is] = tmp * kq_scale; + } + __syncthreads(); + + float max_val = -INFINITY; + // get the max + #pragma unroll + for(int is0 = 0; is0 < k_seq_len; is0 += block_size) { + const int is = threadIdx.x + is0; + if(is >= seq_len) { + break; + } + + max_val = fmaxf(max_val , S[is]); + } + + max_val = warp_reduce_max(max_val); + + { // get max from all threads + int warp_id = threadIdx.x / WARP_SIZE; + int lane_id = threadIdx.x % WARP_SIZE; + if (lane_id == 0) { + warp_data[warp_id] = max_val; + } + __syncthreads(); + max_val = warp_data[lane_id]; + max_val = warp_reduce_max(max_val); + } + + // softmax(QK^T) + float sum = 0.0f; + #pragma unroll + for(int is0 = 0; is0 < k_seq_len; is0 += block_size) { + const int is = threadIdx.x + is0; + if(is >= seq_len) { + break; + } + float tmp = expf(S[is] - max_val); + sum += tmp; + S[is] = tmp; + } + __syncthreads(); + + sum = warp_reduce_sum(sum); + { // softmax sum partials + int warp_id = threadIdx.x / WARP_SIZE; + int lane_id = threadIdx.x % WARP_SIZE; + if (lane_id == 0) { + warp_data[warp_id] = sum; + } + __syncthreads(); + sum = warp_data[lane_id]; + sum = warp_reduce_sum(sum); + } + + float inv_sum = 1.0f / sum; + #pragma unroll + for(int is0 = 0; is0 < k_seq_len; is0 += block_size) { + const int is = threadIdx.x + is0; + if(is >= seq_len) { + break; + } + + S[is] *= inv_sum; + } + __syncthreads(); + + // softmax(QK^T)V + #pragma unroll + for (int d0 = threadIdx.x; d0 < k_head_dim; d0 += block_size) { + const int d = threadIdx.x + d0; + if(d >= head_dim) { + break; + } + const int dst_index = d + s * head_dim + head * head_size; + const int value_offset = d * seq_len + head * head_size; + + float temp = 0.0f; + #pragma unroll + for(int ic = 0; ic < k_seq_len;ic++) { + if(ic >= seq_len) { + break; + } + temp += v[value_offset + ic] * S[ic]; + } + kqv[dst_index] = temp; + } +} + +#if __CUDA_ARCH__ >= CC_VOLTA +typedef nvcuda::wmma::fragment half16x16_a; +typedef nvcuda::wmma::fragment half16x16_b; +typedef nvcuda::wmma::fragment half16x16_bT; +typedef nvcuda::wmma::fragment half16x16_acc; +#endif + +// based on metal version +template // D head size, Q queries per block, C cache items per block +static __global__ void flash_attn_ext_f16( + const char* __restrict__ q, + const char* __restrict__ k, + const char* __restrict__ v, + const char* __restrict__ mask, + float* __restrict__ dst, + float scale, + int ne00, + int ne01, + int ne02, + int ne03, + int ne10, + int ne11, + int ne12, + int ne13, + int ne31, + int nb31, + int nb01, + int nb02, + int nb03, + int nb11, + int nb12, + int nb13, + int ne0, + int ne1, + int ne2, + int ne3) { +#if __CUDA_ARCH__ >= CC_VOLTA + const int warp_id = threadIdx.y; + const int lane_id = threadIdx.x; + + const int num_warps = blockDim.y; // number of warps + const int iq3 = blockIdx.z; + const int iq2 = blockIdx.y; + const int iq1 = blockIdx.x * Q; + + const int D2 = D/2; + const int D16 = D/16; + const int Q16 = Q/16; + const int NW = WARP_SIZE; + const int SH = (C + Q); // shared memory per simdgroup in (half) + + const int T = D + num_warps*SH; // shared memory size per query in (half) + const int T2 = T/2; // shared memory size per query in (half2) + + extern __shared__ half __flash_attn_f16_shmem[]; + // pq + half * sq = (half *) (__flash_attn_f16_shmem + 0*D); // holds the query data + half2 * sq2 = (half2 *) (__flash_attn_f16_shmem + 0*D); // same as above but in half2 + half * ss = (half *) (__flash_attn_f16_shmem + warp_id*SH + 1*D); // scratch buffer for attention and diagonal matrix + + half16x16_acc zr; + half16x16_acc lo[Q16][D16]; + + // load heads from Q to shared memory + for (int64_t j = warp_id; j < Q; j += num_warps) { + const float2 * q2 = (const float2 *) (q + ((iq1 + j)*nb01 + iq2*nb02 + iq3*nb03)); + + for (int64_t i = lane_id; i < D2; i += NW) { + if (iq1 + j < ne01) { + sq2[j*T2 + i] = __float22half2_rn(q2[i]); + } else { + sq2[j*T2 + i] = make_half2(0.0, 0.0); + } + } + } + + nvcuda::wmma::fill_fragment(zr, 0.0); + + // zero out lo + for (int64_t j = 0; j < Q16; ++j) { + for (int64_t i = 0; i < D16; ++i) { + nvcuda::wmma::fill_fragment(lo[j][i], 0.0); + } + } + + // zero out shared memory SH + for (int64_t j = 0; j < Q; ++j) { + for (int64_t i = lane_id; i < SH; i += NW) { + ss[j*T + i] = 0.0; + } + } + + __syncthreads(); + + { + half S[Q]; + half M[Q]; + + for(int i = 0; i < Q; i++) { + S[i] = __float2half(0.0f); + M[i] = __float2half(-INFINITY); + } + + // assume K and V are same shape + const int ne22 = ne12; + const int ne23 = ne13; + + const int nb21 = nb11; + const int nb22 = nb12; + const int nb23 = nb13; + + // broadcast + const int rk2 = ne02/ne12; + const int rk3 = ne03/ne13; + + const int rv2 = ne02/ne22; + const int rv3 = ne03/ne23; + + // k indices + const int ik2 = iq2 / rk2; + const int ik3 = iq3 / rk3; + + // v indices + const int iv2 = iq2 / rv2; + const int iv3 = iq3 / rv3; + + // load the queries from shared memory into local memory + half16x16_a mq[Q16][D16]; + for (int64_t j = 0; j < Q16; ++j) { + for (int64_t i = 0; i < D16; ++i) { + nvcuda::wmma::load_matrix_sync(mq[j][i], sq + 16*j*T + i*16, T); + } + } + + // pointer to the mask + const half * mp = mask ? (const half *) (mask + iq1*nb31) : nullptr; + + // prepare diagonal scale matrix + half16x16_b mscale; + for (int i = 0; i < 16; ++i) { + ss[i*T + i] = __float2half(scale); + } + nvcuda::wmma::load_matrix_sync(mscale, ss, T); + + // loop over the KV cache + // each simdgroup handles blocks of Q rows and C columns + for (int64_t ic = C*warp_id; ic < ne11; ic += C*num_warps) { + // Q*K^T + { + for (int cc = 0; cc < C/16; ++cc) { + half16x16_acc mqk[Q16]; + for (int64_t j = 0; j < Q16; ++j) { + nvcuda::wmma::fill_fragment(mqk[j], 0); + } + + const half * pk = (const half *) ((const char *) k + ((ic + 16*cc)*nb11 + ik2*nb12 + ik3*nb13)); + + for (int64_t i = 0; i < D16; ++i) { + half16x16_bT mk; // transposed key + nvcuda::wmma::load_matrix_sync(mk, pk + i*16, nb11/sizeof(half)); + + for (int64_t j = 0; j < Q16; ++j) { + nvcuda::wmma::mma_sync(mqk[j], mq[j][i], mk, mqk[j]); + } + } + + // mqk = mqk*scale + mask + for (int64_t j = 0; j < Q16; ++j) { + half16x16_a mqka; + half16x16_acc mm; + if(mp) { + nvcuda::wmma::load_matrix_sync(mm, mp + 16*j*(nb31/sizeof(half)) + ic + 16*cc, nb31/sizeof(half), nvcuda::wmma::mem_row_major); + } + + // convert accumulator to matrix_a + nvcuda::wmma::store_matrix_sync( ss + 16*j*T + 16*cc, mqk[j], T, nvcuda::wmma::mem_row_major); + nvcuda::wmma::load_matrix_sync (mqka, ss + 16*j*T + 16*cc, T); + + nvcuda::wmma::mma_sync(mqk[j], mqka, mscale, mp ? mm : zr); + nvcuda::wmma::store_matrix_sync(ss + 16*j*T + 16*cc, mqk[j], T, nvcuda::wmma::mem_row_major); + } + } + } + + // used to detect blocks full of -INF + half smax = __float2half(-INFINITY); + + // online softmax + if (C == 32) { + for (int64_t j = 0; j < Q; ++j) { + const int64_t p = lane_id; + + const half m = M[j]; + const half s = ss[j*T + p]; + + smax = warp_reduce_max(__hmax(smax, s)); + M[j] = warp_reduce_max(__hmax(M[j], s)); + + const half ms = __hisinf(m) ? __float2half(0.0f) : hexp(m - M[j]); + const half vs = __hisinf(s) ? __float2half(0.0f) : hexp(s - M[j]); + + S[j] = S[j]*ms + warp_reduce_sum(vs); + + // create a QxQ diagonal matrix for rescaling the output + if (p == j) { + ss[j*T + C + j] = ms; + } + + // the P matrix from the paper (Q rows, C columns) + ss[j*T + p] = vs; + } + } else { + for (int64_t j = 0; j < Q; ++j) { + const half m = M[j]; + + for (int64_t p = lane_id; p < C; p += NW) { + const half s = ss[j*T + p]; + + smax = __hmax(smax, s); + M[j] = __hmax(M[j], s); + } + + smax = warp_reduce_max(smax); + M[j] = warp_reduce_max(M[j]); + + const half ms = __hisinf(m) ? __float2half(0.0f) : hexp(m - M[j]); + + // create a QxQ diagonal matrix for rescaling the output + if (lane_id == j) { + ss[j*T + C + j] = ms; + } + + // local sum + half ls = 0.0f; + + for (int64_t p = lane_id; p < C; p += NW) { + const half s = ss[j*T + p]; + + const half vs = __hisinf(s) ? __float2half(0.0f) : hexp(s - M[j]); + + ls += vs; + + // the P matrix from the paper (Q rows, C columns) + ss[j*T + p] = vs; + } + + S[j] = S[j]*ms + warp_reduce_sum(ls); + } + } + + // skip -INF blocks + if (__hisinf(smax)) { + continue; + } + + // O = diag(ms)*O + for (int64_t j = 0; j < Q16; ++j) { + half16x16_a mm; + half16x16_b lob; + + nvcuda::wmma::load_matrix_sync(mm, ss + 16*j*T + C + 16*j, T); + + for (int64_t i = 0; i < D16; ++i) { + // convert accumulator to matrix_b + nvcuda::wmma::store_matrix_sync( ss + 16*j*T + C + 16*j, lo[j][i], T, nvcuda::wmma::mem_row_major); + nvcuda::wmma::load_matrix_sync (lob, ss + 16*j*T + C + 16*j, T); + + nvcuda::wmma::fill_fragment(lo[j][i], 0.0); + nvcuda::wmma::mma_sync(lo[j][i], mm, lob, lo[j][i]); + } + + // restore zeros + nvcuda::wmma::store_matrix_sync(ss + 16*j*T + C + 16*j, zr, T, nvcuda::wmma::mem_row_major); + } + + // O = O + (Q*K^T)*V + { + for (int cc = 0; cc < C/16; ++cc) { + const half * pv = (const half *) ((const char *) v + ((ic + 16*cc)*nb21 + iv2*nb22 + iv3*nb23)); + + half16x16_b mk[D16]; + for (int64_t i = 0; i < D16; ++i) { + nvcuda::wmma::load_matrix_sync(mk[i], pv + i*16, nb21/sizeof(half)); + } + + half16x16_a mv[Q16]; + for (int64_t j = 0; j < Q16; ++j) { + nvcuda::wmma::load_matrix_sync(mv[j], ss + 16*j*T + 16*cc, T); + } + + for (int64_t j = 0; j < Q16; ++j) { + for (int64_t i = 0; i < D16; ++i) { + nvcuda::wmma::mma_sync(lo[j][i], mv[j], mk[i], lo[j][i]); + } + } + } + } + } + + // these are needed for reducing the results from the simdgroups (reuse the ss buffer) + for (int64_t j = 0; j < Q; ++j) { + if (lane_id == 0) { + ss[j*T + 0] = S[j]; + ss[j*T + 1] = M[j]; + } + } + } + + // reduce the warps sequentially + for (int64_t sg = 1; sg < num_warps; ++sg) { + half S = __float2half(0.0f); + half M = __float2half(-INFINITY); + + __syncthreads(); + + // each simdgroup stores its output to shared memory, reusing sq + if (warp_id == sg) { + for (int64_t j = 0; j < Q16; ++j) { + for (int64_t i = 0; i < D16; ++i) { + nvcuda::wmma::store_matrix_sync(sq + 16*j*T + i*16, lo[j][i], T, nvcuda::wmma::mem_row_major); + } + } + } + + __syncthreads(); + + // the first simdgroup accumulates the results from the other simdgroups + if (warp_id == 0) { + for (int64_t j = 0; j < Q; ++j) { + const half S0 = ss[j*T + 0]; + const half S1 = ss[j*T + sg*SH + 0]; + + const half M0 = ss[j*T + 1]; + const half M1 = ss[j*T + sg*SH + 1]; + + M = __hmax(M0, M1); + + const half ms0 = __hisinf(M0) ? __float2half(0.0f) : hexp(M0 - M); + const half ms1 = __hisinf(M1) ? __float2half(0.0f) : hexp(M1 - M); + + S = S0*ms0 + S1*ms1; + + if (lane_id == 0) { + ss[j*T + 0] = S; + ss[j*T + 1] = M; + + ss[j*T + C + j ] = ms0; + ss[j*T + C + j + sg*SH] = ms1; + } + } + + // O_0 = diag(ms0)*O_0 + diag(ms1)*O_1 + for (int64_t j = 0; j < Q16; ++j) { + half16x16_a ms0; + half16x16_a ms1; + half16x16_b t; + half16x16_acc t2; + + nvcuda::wmma::load_matrix_sync(ms0, ss + 16*j*T + C + 16*j, T); + nvcuda::wmma::load_matrix_sync(ms1, ss + 16*j*T + C + 16*j + sg*SH, T); + + for (int64_t i = 0; i < D16; ++i) { + nvcuda::wmma::fill_fragment(t2, 0.0); + nvcuda::wmma::load_matrix_sync(t, sq + 16*j*T + i*16, T); + nvcuda::wmma::mma_sync(t2, ms1, t, t2); + + // convert accumulator to matrix_b + nvcuda::wmma::store_matrix_sync( sq + 16*j*T + i*16, lo[j][i], T, nvcuda::wmma::mem_row_major); + nvcuda::wmma::load_matrix_sync (t, sq + 16*j*T + i*16, T); + + nvcuda::wmma::mma_sync(lo[j][i], ms0, t, t2); + } + } + } + } + + // store result to shared memory (reuse sq) + if (warp_id == 0) { + for (int64_t j = 0; j < Q16; ++j) { + for (int64_t i = 0; i < D16; ++i) { + nvcuda::wmma::store_matrix_sync(sq + 16*j*T + i*16, lo[j][i], T, nvcuda::wmma::mem_row_major); + } + } + } + + // final rescale with 1/S and store to global memory + if (warp_id == 0) { + for (int64_t j = 0; j < Q && iq1 + j < ne01; ++j) { + const half S = ss[j*T + 0]; + + for (int64_t i = lane_id; i < D; i += NW) { + dst[(iq3*ne2*ne1 + iq2 + (iq1 + j)*ne1)*D + i] = __half2float(sq[j*T + i] / S); + } + } + } +#else + NO_DEVICE_CODE; +#endif +} + template static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) { @@ -7682,6 +8231,13 @@ static void im2col_cuda(const float* x, T* dst, im2col_kernel<<>>(x, dst, batch_offset, offset_delta, IC, IW, IH, OH, OW, KW, KH, parallel_elements, (IC * KH * KW), s0, s1, p0, p1, d0, d1); } +static void flash_attn_f32_cuda(const float* q, const float* k,const float* v, float* dst, float kq_scale, const int d_head, const int seq_len, const int num_heads, cudaStream_t stream) { + int sram_memory_size = seq_len*sizeof(float) + WARP_SIZE * sizeof(float); + int num_blocks = num_heads * seq_len; + flash_attn_f32<<>>( + q, k, v, dst, kq_scale, d_head, seq_len, num_heads); +} + // buffer pool for cuda #define MAX_CUDA_BUFFERS 256 @@ -8659,7 +9215,7 @@ static void ggml_cuda_op_dequantize_mul_mat_vec( src1_dfloat = src1_dfloat_a.alloc(ne00); ggml_cpy_f32_f16_cuda((const char *) src1_ddf_i, (char *) src1_dfloat, ne00, ne00, 1, sizeof(float), 0, 0, - ne00, 1, sizeof(half), 0, 0, stream); + ne00, 1, sizeof(half), 0, 0, 0, 0, 0, 0, stream); } #else const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion @@ -10284,6 +10840,170 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s } } +inline void ggml_cuda_flash_attn(const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV) { + GGML_ASSERT(Q->type == GGML_TYPE_F32); + GGML_ASSERT(K->type == GGML_TYPE_F32); + GGML_ASSERT(V->type == GGML_TYPE_F32); + GGML_ASSERT(KQV->type == GGML_TYPE_F32); + + GGML_ASSERT(Q->backend == GGML_BACKEND_GPU); + GGML_ASSERT(K->backend == GGML_BACKEND_GPU); + GGML_ASSERT(V->backend == GGML_BACKEND_GPU); + GGML_ASSERT(KQV->backend == GGML_BACKEND_GPU); + + ggml_cuda_set_device(g_main_device); + const cudaStream_t main_stream = g_cudaStreams[g_main_device][0]; + + ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) Q->extra; + ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) K->extra; + ggml_tensor_extra_gpu * src2_extra = (ggml_tensor_extra_gpu *) V->extra; + ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) KQV->extra; + + const int64_t d_head = Q->ne[0]; + const int64_t sequence_length = Q->ne[1]; + const int64_t num_heads = Q->ne[2]; + + GGML_ASSERT(Q->ne[0] == d_head); + GGML_ASSERT(K->ne[0] == d_head); + GGML_ASSERT(V->ne[1] == d_head); + + GGML_ASSERT(Q->ne[1] == sequence_length); + GGML_ASSERT(K->ne[1] == sequence_length); + GGML_ASSERT(V->ne[0] == sequence_length); + + GGML_ASSERT(Q->ne[2] == num_heads); + GGML_ASSERT(K->ne[2] == num_heads); + GGML_ASSERT(V->ne[2] == num_heads); + + float KQ_scale = 1.0f / sqrtf((float)d_head); + + flash_attn_f32_cuda( + (float *) src0_extra->data_device[g_main_device], // Query + (float *) src1_extra->data_device[g_main_device], // Key + (float *) src2_extra->data_device[g_main_device], // Value + (float *) dst_extra->data_device[g_main_device], // dst + KQ_scale, d_head, sequence_length, num_heads, main_stream); +} + + +inline void ggml_cuda_flash_attn_ext(const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, const ggml_tensor * mask, ggml_tensor * KQV) { + GGML_ASSERT(Q->type == GGML_TYPE_F32); + GGML_ASSERT(K->type == GGML_TYPE_F16); + GGML_ASSERT(V->type == GGML_TYPE_F16); + GGML_ASSERT(KQV->type == GGML_TYPE_F32); + + GGML_ASSERT(Q->backend == GGML_BACKEND_GPU); + GGML_ASSERT(K->backend == GGML_BACKEND_GPU); + GGML_ASSERT(V->backend == GGML_BACKEND_GPU); + GGML_ASSERT(KQV->backend == GGML_BACKEND_GPU); + + GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16); + GGML_ASSERT(!mask || mask->backend == GGML_BACKEND_GPU); + GGML_ASSERT(!mask || mask->ne[1] >= GGML_PAD(Q->ne[1], 16) && + "the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big"); + + ggml_cuda_set_device(g_main_device); + const cudaStream_t main_stream = g_cudaStreams[g_main_device][0]; + + ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) Q->extra; + ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) K->extra; + ggml_tensor_extra_gpu * src2_extra = (ggml_tensor_extra_gpu *) V->extra; + ggml_tensor_extra_gpu * src3_extra = mask ? (ggml_tensor_extra_gpu *) mask->extra : nullptr; + ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) KQV->extra; + + float scale; + memcpy(&scale, KQV->op_params, sizeof(float)); + +#define NQPB 16 +#define NCPW 128 + + const int nqpb = NQPB; // queries per block + const int ncpw = NCPW; // cache values per warp (does not work for other values) + + const int nwarps_max = 8; // TODO: we don't want to launch too much warps. how much is too much? + // TODO: produces wrong results for nwarps > 8 (RTX 2060) - not sure why + const int nwarps = Q->ne[1] <= nqpb ? std::max(2, std::min((int) K->ne[1]/ncpw, nwarps_max)) : 2; + + dim3 blocks_num((Q->ne[1] + nqpb - 1) / nqpb, Q->ne[2], Q->ne[3]); + dim3 block_dim(32, nwarps, 1); + + const size_t shmem = nqpb*(Q->ne[0] + nwarps*(ncpw + nqpb))*(sizeof(float)/2); + + switch (Q->ne[0]) + { + case 16: + flash_attn_ext_f16<16, NQPB, NCPW> + <<>> ( + (const char *) src0_extra->data_device[g_main_device], // Query + (const char *) src1_extra->data_device[g_main_device], // Key + (const char *) src2_extra->data_device[g_main_device], // Value + mask ? ((const char *) src3_extra->data_device[g_main_device]) : nullptr, // Mask + (float *) dst_extra->data_device[g_main_device], // dst + scale, + Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3], + K->ne[0], K->ne[1], K->ne[2], K->ne[3], + mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0, + Q->nb[1], Q->nb[2], Q->nb[3], + K->nb[1], K->nb[2], K->nb[3], + KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3] + ); + break; + case 64: + flash_attn_ext_f16<64, NQPB, NCPW> + <<>> ( + (const char *) src0_extra->data_device[g_main_device], // Query + (const char *) src1_extra->data_device[g_main_device], // Key + (const char *) src2_extra->data_device[g_main_device], // Value + mask ? ((const char *) src3_extra->data_device[g_main_device]) : nullptr, // Mask + (float *) dst_extra->data_device[g_main_device], // dst + scale, + Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3], + K->ne[0], K->ne[1], K->ne[2], K->ne[3], + mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0, + Q->nb[1], Q->nb[2], Q->nb[3], + K->nb[1], K->nb[2], K->nb[3], + KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3] + ); + break; + case 80: + flash_attn_ext_f16<80, NQPB, NCPW> + <<>> ( + (const char *) src0_extra->data_device[g_main_device], // Query + (const char *) src1_extra->data_device[g_main_device], // Key + (const char *) src2_extra->data_device[g_main_device], // Value + mask ? ((const char *) src3_extra->data_device[g_main_device]) : nullptr, // Mask + (float *) dst_extra->data_device[g_main_device], // dst + scale, + Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3], + K->ne[0], K->ne[1], K->ne[2], K->ne[3], + mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0, + Q->nb[1], Q->nb[2], Q->nb[3], + K->nb[1], K->nb[2], K->nb[3], + KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3] + ); + break; + case 128: + flash_attn_ext_f16<128, NQPB, NCPW> + <<>> ( + (const char *) src0_extra->data_device[g_main_device], // Query + (const char *) src1_extra->data_device[g_main_device], // Key + (const char *) src2_extra->data_device[g_main_device], // Value + mask ? ((const char *) src3_extra->data_device[g_main_device]) : nullptr, // Mask + (float *) dst_extra->data_device[g_main_device], // dst + scale, + Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3], + K->ne[0], K->ne[1], K->ne[2], K->ne[3], + mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0, + Q->nb[1], Q->nb[2], Q->nb[3], + K->nb[1], K->nb[2], K->nb[3], + KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3] + ); + break; + default: + break; + } +} + static void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_scale); } @@ -10573,6 +11293,10 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st case GGML_OP_ARGSORT: func = ggml_cuda_argsort; break; + case GGML_OP_FLASH_ATTN: + break; + case GGML_OP_FLASH_ATTN_EXT: + break; default: return false; } @@ -10587,7 +11311,13 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return true; } - func(tensor->src[0], tensor->src[1], tensor); + if(tensor->op == GGML_OP_FLASH_ATTN) { + ggml_cuda_flash_attn(tensor->src[0], tensor->src[1], tensor->src[2], tensor); + } else if(tensor->op == GGML_OP_FLASH_ATTN_EXT) { + ggml_cuda_flash_attn_ext(tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor); + } else { + func(tensor->src[0], tensor->src[1], tensor); + } return true; } @@ -11403,6 +12133,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons case GGML_OP_UPSCALE: case GGML_OP_PAD: case GGML_OP_LEAKY_RELU: + case GGML_OP_FLASH_ATTN_EXT: return true; default: return false; diff --git a/llama.cpp b/llama.cpp index fe2583966..2330efff5 100644 --- a/llama.cpp +++ b/llama.cpp @@ -6881,7 +6881,8 @@ static int llama_decode_internal( // a heuristic, to avoid attending the full cache if it is not yet utilized // after enough generations, the benefit from this heuristic disappears // if we start defragmenting the cache, the benefit from this will be more important - kv_self.n = std::min((int32_t) cparams.n_ctx, std::max(32, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32))); + // note: we pad the n_kv because certain GPU kernels require it (e.g. ggml_flash_attn_ext) + kv_self.n = std::min((int32_t) cparams.n_ctx, std::max(128, GGML_PAD(llama_kv_cache_cell_max(kv_self), 128))); //kv_self.n = llama_kv_cache_cell_max(kv_self); //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);