mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 19:50:17 +00:00
Quantization imrovements for k_quants (#2707)
* Improve LLaMA-2 2-, 3- and 4-bit quantization * Q3_K_S: use Q5_K for 1st 2 layers of attention.wv and feed_forward.w2 * Q4_K_S: use Q6_K for 1st 2 layers of attention.wv and feed_forward.w2 * Q2_K and Q3_K_M: use Q5_K instead of Q4_K for 1st 2 layers of attention.wv and feed_forward.w2 This leads to a slight model sized increase as follows: Q2_K : 2.684G vs 2.670G Q3_K_S: 2.775G vs 2.745G Q3_K_M: 3.071G vs 3.057G Q4_K_S: 3.592G vs 3.563G LLaMA-2 PPL for context 512 changes as follows: Q2_K : 6.6691 vs 6.8201 Q3_K_S: 6.2129 vs 6.2584 Q3_K_M: 6.0387 vs 6.1371 Q4_K_S: 5.9138 vs 6.0041 There are improvements for LLaMA-1 as well, but they are way smaller than the above. * Minor 4-bit quantization improvement For the same model size as previus commit, we get PPL = 5.9069 vs 5.9138. * Some more fine tuning * Adding make_qkx2_quants With it, we get PPL = 5.8828 for L2-7B Q4_K_S. * Another minor improvement * Q2_K improvement Smaller model, lower perplexity. 7B: file size = 2.632G, PPL = 6.3772 vs original 2.670G PPL = 6.8201 12B: file size = 5.056G, PPL = 5.4577 vs original 5.130G PPL = 5.7178 It is mostly Q3_K except for tok_embeddings, attention.wq, attention.wk, which are Q2_K * Iterating * Revert Q5_K back to make_qkx1_quants * Better Q6_K * make_qkx2_quants is better for Q5_K after all * Fix after rebasing on master * Fix for changed tensor names --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
parent
519c981f8b
commit
bac66994cf
164
k_quants.c
164
k_quants.c
@ -77,6 +77,11 @@ static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t *
|
||||
}
|
||||
return 1/iscale;
|
||||
}
|
||||
bool return_early = false;
|
||||
if (rmse_type < 0) {
|
||||
rmse_type = -rmse_type;
|
||||
return_early = true;
|
||||
}
|
||||
int weight_type = rmse_type%2;
|
||||
float sumlx = 0;
|
||||
float suml2 = 0;
|
||||
@ -89,56 +94,9 @@ static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t *
|
||||
suml2 += w*l*l;
|
||||
}
|
||||
float scale = sumlx/suml2;
|
||||
if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale;
|
||||
float best = scale * sumlx;
|
||||
for (int itry = 0; itry < 3; ++itry) {
|
||||
iscale = 1/scale;
|
||||
float slx = 0;
|
||||
float sl2 = 0;
|
||||
bool changed = false;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
int l = nearest_int(iscale * x[i]);
|
||||
l = MAX(-nmax, MIN(nmax-1, l));
|
||||
if (l + nmax != L[i]) { changed = true; }
|
||||
float w = weight_type == 1 ? x[i] * x[i] : 1.f;
|
||||
slx += w*x[i]*l;
|
||||
sl2 += w*l*l;
|
||||
}
|
||||
if (!changed || sl2 == 0 || slx*slx <= best*sl2) { break; }
|
||||
for (int i = 0; i < n; ++i) {
|
||||
int l = nearest_int(iscale * x[i]);
|
||||
L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
|
||||
}
|
||||
sumlx = slx; suml2 = sl2;
|
||||
scale = sumlx/suml2;
|
||||
best = scale * sumlx;
|
||||
}
|
||||
for (int itry = 0; itry < 5; ++itry) {
|
||||
int n_changed = 0;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
float w = weight_type == 1 ? x[i]*x[i] : 1;
|
||||
int l = L[i] - nmax;
|
||||
float slx = sumlx - w*x[i]*l;
|
||||
if (slx > 0) {
|
||||
float sl2 = suml2 - w*l*l;
|
||||
int new_l = nearest_int(x[i] * sl2 / slx);
|
||||
new_l = MAX(-nmax, MIN(nmax-1, new_l));
|
||||
if (new_l != l) {
|
||||
slx += w*x[i]*new_l;
|
||||
sl2 += w*new_l*new_l;
|
||||
if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
|
||||
L[i] = nmax + new_l; sumlx = slx; suml2 = sl2;
|
||||
scale = sumlx / suml2; best = scale * sumlx;
|
||||
++n_changed;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!n_changed) { break; }
|
||||
}
|
||||
if (rmse_type < 3) {
|
||||
return scale;
|
||||
}
|
||||
for (int is = -4; is <= 4; ++is) {
|
||||
for (int is = -9; is <= 9; ++is) {
|
||||
if (is == 0) {
|
||||
continue;
|
||||
}
|
||||
@ -221,12 +179,17 @@ static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t *
|
||||
return 1/iscale;
|
||||
}
|
||||
|
||||
static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min, int ntry) {
|
||||
static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min,
|
||||
int ntry, float alpha) {
|
||||
float min = x[0];
|
||||
float max = x[0];
|
||||
float sum_x = 0;
|
||||
float sum_x2 = 0;
|
||||
for (int i = 1; i < n; ++i) {
|
||||
if (x[i] < min) min = x[i];
|
||||
if (x[i] > max) max = x[i];
|
||||
sum_x += x[i];
|
||||
sum_x2 += x[i]*x[i];
|
||||
}
|
||||
if (max == min) {
|
||||
for (int i = 0; i < n; ++i) L[i] = 0;
|
||||
@ -254,7 +217,7 @@ static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t
|
||||
for (int i = 0; i < n; ++i) {
|
||||
sum += x[i] - scale*L[i];
|
||||
}
|
||||
min = sum/n;
|
||||
min = alpha*min + (1 - alpha)*sum/n;
|
||||
if (min > 0) min = 0;
|
||||
iscale = 1/scale;
|
||||
if (!did_change) break;
|
||||
@ -263,6 +226,82 @@ static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t
|
||||
return scale;
|
||||
}
|
||||
|
||||
static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
|
||||
uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
|
||||
float rmin, float rdelta, int nstep, bool use_mad) {
|
||||
float min = x[0];
|
||||
float max = x[0];
|
||||
float sum_w = weights[0];
|
||||
float sum_x = sum_w * x[0];
|
||||
for (int i = 1; i < n; ++i) {
|
||||
if (x[i] < min) min = x[i];
|
||||
if (x[i] > max) max = x[i];
|
||||
float w = weights[i];
|
||||
sum_w += w;
|
||||
sum_x += w * x[i];
|
||||
}
|
||||
if (min > 0) min = 0;
|
||||
if (max == min) {
|
||||
for (int i = 0; i < n; ++i) L[i] = 0;
|
||||
*the_min = -min;
|
||||
return 0.f;
|
||||
}
|
||||
float iscale = nmax/(max - min);
|
||||
float scale = 1/iscale;
|
||||
float best_mad = 0;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
int l = nearest_int(iscale*(x[i] - min));
|
||||
L[i] = MAX(0, MIN(nmax, l));
|
||||
float diff = scale * L[i] + min - x[i];
|
||||
diff = use_mad ? fabsf(diff) : diff * diff;
|
||||
float w = weights[i];
|
||||
best_mad += w * diff;
|
||||
}
|
||||
if (nstep < 1) {
|
||||
*the_min = -min;
|
||||
return scale;
|
||||
}
|
||||
for (int is = 0; is <= nstep; ++is) {
|
||||
iscale = (rmin + rdelta*is + nmax)/(max - min);
|
||||
float sum_l = 0, sum_l2 = 0, sum_xl = 0;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
int l = nearest_int(iscale*(x[i] - min));
|
||||
l = MAX(0, MIN(nmax, l));
|
||||
Laux[i] = l;
|
||||
float w = weights[i];
|
||||
sum_l += w*l;
|
||||
sum_l2 += w*l*l;
|
||||
sum_xl += w*l*x[i];
|
||||
}
|
||||
float D = sum_w * sum_l2 - sum_l * sum_l;
|
||||
if (D > 0) {
|
||||
float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
|
||||
float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
|
||||
if (this_min > 0) {
|
||||
this_min = 0;
|
||||
this_scale = sum_xl / sum_l2;
|
||||
}
|
||||
float mad = 0;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
float diff = this_scale * Laux[i] + this_min - x[i];
|
||||
diff = use_mad ? fabsf(diff) : diff * diff;
|
||||
float w = weights[i];
|
||||
mad += w * diff;
|
||||
}
|
||||
if (mad < best_mad) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
L[i] = Laux[i];
|
||||
}
|
||||
best_mad = mad;
|
||||
scale = this_scale;
|
||||
min = this_min;
|
||||
}
|
||||
}
|
||||
}
|
||||
*the_min = -min;
|
||||
return scale;
|
||||
}
|
||||
|
||||
#if QK_K == 256
|
||||
static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
|
||||
if (j < 4) {
|
||||
@ -281,6 +320,8 @@ void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict
|
||||
const int nb = k / QK_K;
|
||||
|
||||
uint8_t L[QK_K];
|
||||
uint8_t Laux[16];
|
||||
float weights[16];
|
||||
float mins[QK_K/16];
|
||||
float scales[QK_K/16];
|
||||
|
||||
@ -291,7 +332,8 @@ void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict
|
||||
float max_scale = 0; // as we are deducting the min, scales are always positive
|
||||
float max_min = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) {
|
||||
scales[j] = make_qkx1_quants(16, 3, x + 16*j, L + 16*j, &mins[j], 5);
|
||||
for (int l = 0; l < 16; ++l) weights[l] = fabsf(x[16*j + l]);
|
||||
scales[j] = make_qkx2_quants(16, 3, x + 16*j, weights, L + 16*j, &mins[j], Laux, -0.5f, 0.1f, 15, true);
|
||||
float scale = scales[j];
|
||||
if (scale > max_scale) {
|
||||
max_scale = scale;
|
||||
@ -637,6 +679,8 @@ void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict
|
||||
const int nb = k / QK_K;
|
||||
|
||||
uint8_t L[QK_K];
|
||||
uint8_t Laux[32];
|
||||
float weights[32];
|
||||
float mins[QK_K/32];
|
||||
float scales[QK_K/32];
|
||||
|
||||
@ -645,7 +689,12 @@ void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict
|
||||
float max_scale = 0; // as we are deducting the min, scales are always positive
|
||||
float max_min = 0;
|
||||
for (int j = 0; j < QK_K/32; ++j) {
|
||||
scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 5);
|
||||
//scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
|
||||
float sum_x2 = 0;
|
||||
for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
|
||||
float av_x = sqrtf(sum_x2/32);
|
||||
for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
|
||||
scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false);
|
||||
float scale = scales[j];
|
||||
if (scale > max_scale) {
|
||||
max_scale = scale;
|
||||
@ -798,6 +847,8 @@ void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict
|
||||
uint8_t L[QK_K];
|
||||
float mins[QK_K/32];
|
||||
float scales[QK_K/32];
|
||||
float weights[32];
|
||||
uint8_t Laux[32];
|
||||
#else
|
||||
int8_t L[QK_K];
|
||||
float scales[QK_K/16];
|
||||
@ -810,7 +861,12 @@ void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict
|
||||
float max_scale = 0; // as we are deducting the min, scales are always positive
|
||||
float max_min = 0;
|
||||
for (int j = 0; j < QK_K/32; ++j) {
|
||||
scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 5);
|
||||
//scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
|
||||
float sum_x2 = 0;
|
||||
for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
|
||||
float av_x = sqrtf(sum_x2/32);
|
||||
for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
|
||||
scales[j] = make_qkx2_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.5f, 0.1f, 15, false);
|
||||
float scale = scales[j];
|
||||
if (scale > max_scale) {
|
||||
max_scale = scale;
|
||||
|
24
llama.cpp
24
llama.cpp
@ -3547,24 +3547,40 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
new_type = GGML_TYPE_Q6_K;
|
||||
}
|
||||
} else if (name.find("attn_v.weight") != std::string::npos) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
||||
new_type = i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
||||
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
|
||||
use_more_bits(i_attention_wv, n_attention_wv)) new_type = GGML_TYPE_Q6_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
|
||||
else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
|
||||
(i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
|
||||
++i_attention_wv;
|
||||
} else if (name.find("ffn_down.weight") != std::string::npos) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
||||
new_type = i_feed_forward_w2 < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
||||
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
|
||||
use_more_bits(i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
|
||||
//else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && i_feed_forward_w2 < n_feed_forward_w2/8) new_type = GGML_TYPE_Q6_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && i_feed_forward_w2 < 4) new_type = GGML_TYPE_Q5_K;
|
||||
++i_feed_forward_w2;
|
||||
} else if (name.find("attn_output.weight") != std::string::npos) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
else if (name.find("ffn_gate.weight") != std::string::npos || name.find("ffn_up.weight") != std::string::npos) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
|
||||
}
|
||||
// This can be used to reduce the size of the Q5_K_S model.
|
||||
// The associated PPL increase is fully in line with the size reduction
|
||||
//else {
|
||||
// if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
|
||||
//}
|
||||
bool convert_incompatible_tensor = false;
|
||||
if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
|
||||
new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) {
|
||||
|
Loading…
Reference in New Issue
Block a user