mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 19:21:46 +00:00
Introduction of CUDA Graphs to LLama.cpp (#6766)
* DRAFT: Introduction of CUDA Graphs to LLama.cpp
* FIx issues raised in comments
* Tidied to now only use CUDA runtime (not mixed with driver calls)
* disable for multi-gpu and batch size > 1
* Disable CUDA graphs for old GPU arch and with env var
* added missing CUDA_CHECKs
* Addressed comments
* further addressed comments
* limit to GGML_ALLOW_CUDA_GRAPHS defined in llama.cpp cmake
* Added more comprehensive graph node checking
* With mechanism to fall back if graph capture fails
* Revert "With mechanism to fall back if graph capture fails"
This reverts commit eb9f15fb6f
.
* Fall back if graph capture fails and address other comments
* - renamed GGML_ALLOW_CUDA_GRAPHS to GGML_CUDA_USE_GRAPHS
- rename env variable to disable CUDA graphs to GGML_CUDA_DISABLE_GRAPHS
- updated Makefile build to enable CUDA graphs
- removed graph capture failure checking in ggml_cuda_error
using a global variable to track this is not thread safe, but I am also not safistied with checking an error by string
if this is necessary to workaround some issues with graph capture with eg. cuBLAS, we can pass the ggml_backend_cuda_context to the error checking macro and store the result in the context
- fixed several resource leaks
- fixed issue with zero node graphs
- changed fixed size arrays to vectors
- removed the count of number of evaluations before start capturing, and instead changed the capture mode to relaxed
- removed the check for multiple devices so that it is still possible to use a single device, instead checks for split buffers to disable cuda graphs with -sm row
- changed the op for checking batch size to GGML_OP_ADD, should be more reliable than GGML_OP_SOFT_MAX
- code style fixes
- things to look into
- VRAM usage of the cudaGraphExec_t, if it is significant we may need to make it optional
- possibility of using cudaStreamBeginCaptureToGraph to keep track of which ggml graph nodes correspond to which cuda graph nodes
* fix build without cuda graphs
* remove outdated comment
* replace minimum cc value with a constant
---------
Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
parent
c12452c7ae
commit
bc4bba364f
@ -405,6 +405,7 @@ if (LLAMA_CUDA)
|
|||||||
list(APPEND GGML_SOURCES_CUDA "ggml-cuda.cu")
|
list(APPEND GGML_SOURCES_CUDA "ggml-cuda.cu")
|
||||||
|
|
||||||
add_compile_definitions(GGML_USE_CUDA)
|
add_compile_definitions(GGML_USE_CUDA)
|
||||||
|
add_compile_definitions(GGML_CUDA_USE_GRAPHS)
|
||||||
if (LLAMA_CUDA_FORCE_DMMV)
|
if (LLAMA_CUDA_FORCE_DMMV)
|
||||||
add_compile_definitions(GGML_CUDA_FORCE_DMMV)
|
add_compile_definitions(GGML_CUDA_FORCE_DMMV)
|
||||||
endif()
|
endif()
|
||||||
|
2
Makefile
2
Makefile
@ -433,7 +433,7 @@ ifdef LLAMA_CUDA
|
|||||||
else
|
else
|
||||||
CUDA_PATH ?= /usr/local/cuda
|
CUDA_PATH ?= /usr/local/cuda
|
||||||
endif
|
endif
|
||||||
MK_CPPFLAGS += -DGGML_USE_CUDA -I$(CUDA_PATH)/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
|
MK_CPPFLAGS += -DGGML_USE_CUDA -I$(CUDA_PATH)/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include -DGGML_CUDA_USE_GRAPHS
|
||||||
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib
|
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib
|
||||||
OBJS += ggml-cuda.o
|
OBJS += ggml-cuda.o
|
||||||
OBJS += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
|
OBJS += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
|
||||||
|
300
ggml-cuda.cu
300
ggml-cuda.cu
@ -1647,7 +1647,7 @@ static void ggml_cuda_op_mul_mat(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_cuda_mul_mat_vec_p021(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
|
static void ggml_cuda_mul_mat_vec_p021(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
|
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
|
||||||
GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
|
GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
|
||||||
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
|
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
|
||||||
@ -1670,7 +1670,7 @@ static void ggml_cuda_mul_mat_vec_p021(ggml_backend_cuda_context & ctx, const gg
|
|||||||
ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
|
ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_cuda_mul_mat_vec_nc(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
|
static void ggml_cuda_mul_mat_vec_nc(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
GGML_ASSERT(!ggml_is_transposed(src0));
|
GGML_ASSERT(!ggml_is_transposed(src0));
|
||||||
GGML_ASSERT(!ggml_is_transposed(src1));
|
GGML_ASSERT(!ggml_is_transposed(src1));
|
||||||
GGML_ASSERT(!ggml_is_permuted(src0));
|
GGML_ASSERT(!ggml_is_permuted(src0));
|
||||||
@ -2410,32 +2410,304 @@ GGML_CALL static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
|
|||||||
GGML_UNUSED(backend);
|
GGML_UNUSED(backend);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void set_ggml_graph_node_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
|
||||||
|
graph_node_properties->node_address = node->data;
|
||||||
|
graph_node_properties->node_op = node->op;
|
||||||
|
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||||
|
graph_node_properties->ne[i] = node->ne[i];
|
||||||
|
graph_node_properties->nb[i] = node->nb[i];
|
||||||
|
}
|
||||||
|
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||||
|
graph_node_properties->src_address[i] = node->src[i] ? node->src[i]->data : nullptr;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
|
||||||
|
if (node->data != graph_node_properties->node_address &&
|
||||||
|
node->op != GGML_OP_CPY &&
|
||||||
|
node->op != GGML_OP_VIEW) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (node->op != graph_node_properties->node_op) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||||
|
if (node->ne[i] != graph_node_properties->ne[i]) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
if (node->nb[i] != graph_node_properties->nb[i]) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||||
|
if (node->src[i] &&
|
||||||
|
node->src[i]->data != graph_node_properties->src_address[i] &&
|
||||||
|
node->op != GGML_OP_CPY &&
|
||||||
|
node->op != GGML_OP_VIEW
|
||||||
|
) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
||||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||||
|
|
||||||
ggml_cuda_set_device(cuda_ctx->device);
|
ggml_cuda_set_device(cuda_ctx->device);
|
||||||
|
|
||||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
#ifdef USE_CUDA_GRAPH
|
||||||
ggml_tensor * node = cgraph->nodes[i];
|
static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr);
|
||||||
|
|
||||||
if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
|
// Objects required for CUDA Graph
|
||||||
continue;
|
if (cuda_ctx->cuda_graph == nullptr) {
|
||||||
|
cuda_ctx->cuda_graph.reset(new ggml_cuda_graph());
|
||||||
|
}
|
||||||
|
|
||||||
|
bool use_cuda_graph = true;
|
||||||
|
bool cuda_graph_update_required = false;
|
||||||
|
// pointer to CUDA cpy kernel, which is required to identify
|
||||||
|
// kernel parameters which need updated in the graph for each token
|
||||||
|
void * ggml_cuda_cpy_fn_ptr = nullptr;
|
||||||
|
|
||||||
|
if (cuda_ctx->cuda_graph->graph == nullptr) {
|
||||||
|
if (ggml_cuda_info().devices[cuda_ctx->device].cc < CC_AMPERE) {
|
||||||
|
cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true;
|
||||||
|
#ifndef NDEBUG
|
||||||
|
fprintf(stderr, "%s: disabling CUDA graphs due to GPU architecture\n", __func__);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Disable CUDA graphs in presence of env var, old GPU, use-case which is changing too rapidly,
|
||||||
|
// or previous graph capture failure.
|
||||||
|
// Also disable for multi-gpu for now. TO DO investigate
|
||||||
|
if (disable_cuda_graphs_due_to_env
|
||||||
|
|| cuda_ctx->cuda_graph->disable_due_to_gpu_arch
|
||||||
|
|| cuda_ctx->cuda_graph->disable_due_to_too_many_updates
|
||||||
|
|| cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture) {
|
||||||
|
use_cuda_graph = false;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (use_cuda_graph) {
|
||||||
|
if (cuda_ctx->cuda_graph->instance == nullptr) {
|
||||||
|
cuda_graph_update_required = true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Check if the graph size has changed
|
||||||
|
if (cuda_ctx->cuda_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) {
|
||||||
|
cuda_graph_update_required = true;
|
||||||
|
cuda_ctx->cuda_graph->ggml_graph_properties.resize(cgraph->n_nodes);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Loop over nodes in GGML graph to determine if CUDA graph update is required
|
||||||
|
// and store properties to allow this comparison for the next token
|
||||||
|
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||||
|
bool has_matching_properties = true;
|
||||||
|
if (!cuda_graph_update_required) {
|
||||||
|
has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
|
||||||
|
}
|
||||||
|
if (!has_matching_properties) {
|
||||||
|
cuda_graph_update_required = true;
|
||||||
|
}
|
||||||
|
set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Loop over nodes in GGML graph to obtain info needed for CUDA graph
|
||||||
|
cuda_ctx->cuda_graph->updated_kernel_arg.clear();
|
||||||
|
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||||
|
ggml_tensor * node = cgraph->nodes[i];
|
||||||
|
|
||||||
|
if (node->src[0] && ggml_backend_buffer_is_cuda_split(node->src[0]->buffer)) {
|
||||||
|
use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture
|
||||||
#ifndef NDEBUG
|
#ifndef NDEBUG
|
||||||
assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
|
fprintf(stderr, "%s: disabling CUDA graphs due to split buffer\n", __func__);
|
||||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
#endif
|
||||||
if (node->src[j] != nullptr) {
|
}
|
||||||
assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || ggml_backend_buffer_is_cuda_split(node->src[j]->buffer));
|
|
||||||
|
if (node->op == GGML_OP_MUL_MAT_ID) {
|
||||||
|
use_cuda_graph = false; // This node type is not supported by CUDA graph capture
|
||||||
|
#ifndef NDEBUG
|
||||||
|
fprintf(stderr, "%s: disabling CUDA graphs due to mul_mat_id\n", __func__);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
if (node->op == GGML_OP_ADD && node->src[1] && node->src[1]->ne[1] > 1) {
|
||||||
|
// disable CUDA graphs for batch size > 1 for now.
|
||||||
|
// Changes in batch size or context size can cause changes to the grid size of some kernels.
|
||||||
|
use_cuda_graph = false;
|
||||||
|
#ifndef NDEBUG
|
||||||
|
fprintf(stderr, "%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
if (node->op == GGML_OP_CPY) {
|
||||||
|
// store the copy op parameter which changes with each token.
|
||||||
|
cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data));
|
||||||
|
if (ggml_cuda_cpy_fn_ptr == nullptr) {
|
||||||
|
// store a pointer to the copy op CUDA kernel to identify it later
|
||||||
|
ggml_cuda_cpy_fn_ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!use_cuda_graph) {
|
||||||
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates.
|
||||||
|
if (cuda_graph_update_required) {
|
||||||
|
cuda_ctx->cuda_graph->number_consecutive_updates++;
|
||||||
|
} else {
|
||||||
|
cuda_ctx->cuda_graph->number_consecutive_updates = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) {
|
||||||
|
cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true;
|
||||||
|
#ifndef NDEBUG
|
||||||
|
fprintf(stderr, "%s: disabling CUDA graphs due to too many consecutive updates\n", __func__);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (use_cuda_graph && cuda_graph_update_required) { // Start CUDA graph capture
|
||||||
|
CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
|
||||||
|
}
|
||||||
|
|
||||||
|
#else
|
||||||
|
bool use_cuda_graph = false;
|
||||||
|
bool cuda_graph_update_required = false;
|
||||||
|
#endif // USE_CUDA_GRAPH
|
||||||
|
|
||||||
|
bool graph_evaluated_or_captured = false;
|
||||||
|
|
||||||
|
while (!graph_evaluated_or_captured) {
|
||||||
|
// Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph.
|
||||||
|
// With the use of CUDA graphs, the execution will be performed by the graph launch.
|
||||||
|
if (!use_cuda_graph || cuda_graph_update_required) {
|
||||||
|
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||||
|
ggml_tensor * node = cgraph->nodes[i];
|
||||||
|
|
||||||
|
if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifndef NDEBUG
|
||||||
|
assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
|
||||||
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||||
|
if (node->src[j] != nullptr) {
|
||||||
|
assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || ggml_backend_buffer_is_cuda_split(node->src[j]->buffer));
|
||||||
|
}
|
||||||
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
bool ok = ggml_cuda_compute_forward(*cuda_ctx, node);
|
bool ok = ggml_cuda_compute_forward(*cuda_ctx, node);
|
||||||
if (!ok) {
|
if (!ok) {
|
||||||
fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
|
fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
|
||||||
|
}
|
||||||
|
GGML_ASSERT(ok);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
GGML_ASSERT(ok);
|
|
||||||
|
#ifdef USE_CUDA_GRAPH
|
||||||
|
if (use_cuda_graph && cuda_graph_update_required) { // End CUDA graph capture
|
||||||
|
if (cuda_ctx->cuda_graph->graph != nullptr) {
|
||||||
|
CUDA_CHECK(cudaGraphDestroy(cuda_ctx->cuda_graph->graph));
|
||||||
|
cuda_ctx->cuda_graph->graph = nullptr;
|
||||||
|
}
|
||||||
|
CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &cuda_ctx->cuda_graph->graph));
|
||||||
|
|
||||||
|
#if 0
|
||||||
|
if (disable_cuda_graphs_due_to_failed_capture) {
|
||||||
|
use_cuda_graph = false;
|
||||||
|
cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture = true;
|
||||||
|
#ifndef NDEBUG
|
||||||
|
fprintf(stderr, "%s: disabling CUDA graphs due to failed graph capture\n", __func__);
|
||||||
|
#endif
|
||||||
|
} else {
|
||||||
|
graph_evaluated_or_captured = true; // CUDA graph has been captured
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
graph_evaluated_or_captured = true; // CUDA graph has been captured
|
||||||
|
} else {
|
||||||
|
graph_evaluated_or_captured = true; // ggml graph has been directly evaluated
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (use_cuda_graph) {
|
||||||
|
if (cuda_ctx->cuda_graph->instance == nullptr) { // Create executable graph from captured graph.
|
||||||
|
CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Perform update to graph (if required for this token), and change copy parameter (required for every token)
|
||||||
|
|
||||||
|
if (cuda_graph_update_required) {
|
||||||
|
// Extract nodes from graph
|
||||||
|
if (cuda_ctx->cuda_graph->num_nodes == 0) {
|
||||||
|
// First call with null argument gets number of nodes in graph
|
||||||
|
CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes));
|
||||||
|
}
|
||||||
|
// Subsequent call with non-null argument gets nodes
|
||||||
|
cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes);
|
||||||
|
cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes);
|
||||||
|
if (cuda_ctx->cuda_graph->num_nodes > 0) {
|
||||||
|
CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, cuda_ctx->cuda_graph->nodes.data(), &cuda_ctx->cuda_graph->num_nodes));
|
||||||
|
|
||||||
|
// Loop over nodes, and extract kernel parameters from each node
|
||||||
|
for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
|
||||||
|
cudaGraphNodeType node_type;
|
||||||
|
CUDA_CHECK(cudaGraphNodeGetType(cuda_ctx->cuda_graph->nodes[i], &node_type));
|
||||||
|
if (node_type == cudaGraphNodeTypeKernel) {
|
||||||
|
cudaError_t stat = cudaGraphKernelNodeGetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]); // Get params using runtime
|
||||||
|
if (stat == cudaErrorInvalidDeviceFunction) {
|
||||||
|
// Fails due to incorrect handling by CUDA runtime of CUDA BLAS node.
|
||||||
|
// We don't need to update blas nodes, so clear error and move on.
|
||||||
|
cudaGetLastError();
|
||||||
|
} else {
|
||||||
|
GGML_ASSERT(stat == cudaSuccess);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// One of the arguments to the copy kernel is updated for each token, hence we need to
|
||||||
|
// replace that argument with the updated value in the CUDA graph
|
||||||
|
if (!cuda_graph_update_required) { // on update steps, the live parameters will already be captured
|
||||||
|
int k = 0;
|
||||||
|
for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
|
||||||
|
if (cuda_ctx->cuda_graph->params[i].func == ggml_cuda_cpy_fn_ptr) {
|
||||||
|
char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++);
|
||||||
|
cuda_ctx->cuda_graph->params[i].kernelParams[1] = updated_kernel_arg_ptr;
|
||||||
|
CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Update graph executable
|
||||||
|
cudaGraphExecUpdateResultInfo result_info;
|
||||||
|
cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info);
|
||||||
|
if (stat == cudaErrorGraphExecUpdateFailure) {
|
||||||
|
#ifndef NDEBUG
|
||||||
|
fprintf(stderr, "%s: CUDA graph update failed\n", __func__);
|
||||||
|
#endif
|
||||||
|
// The pre-existing graph exec cannot be updated due to violated constraints
|
||||||
|
// so instead clear error and re-instantiate
|
||||||
|
cudaGetLastError();
|
||||||
|
CUDA_CHECK(cudaGraphExecDestroy(cuda_ctx->cuda_graph->instance));
|
||||||
|
cuda_ctx->cuda_graph->instance = nullptr;
|
||||||
|
CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
|
||||||
|
} else {
|
||||||
|
GGML_ASSERT(stat == cudaSuccess);
|
||||||
|
}
|
||||||
|
// Launch graph
|
||||||
|
CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream()));
|
||||||
|
#else
|
||||||
|
graph_evaluated_or_captured = true;
|
||||||
|
#endif // USE_CUDA_GRAPH
|
||||||
}
|
}
|
||||||
|
|
||||||
return GGML_STATUS_SUCCESS;
|
return GGML_STATUS_SUCCESS;
|
||||||
|
@ -31,5 +31,4 @@ void ggml_cuda_op_clamp(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|||||||
memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
|
memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
|
||||||
|
|
||||||
clamp_f32_cuda(src0_d, dst_d, min, max, ggml_nelements(src0), stream);
|
clamp_f32_cuda(src0_d, dst_d, min, max, ggml_nelements(src0), stream);
|
||||||
CUDA_CHECK(cudaGetLastError());
|
|
||||||
}
|
}
|
||||||
|
@ -19,6 +19,7 @@
|
|||||||
#include <cassert>
|
#include <cassert>
|
||||||
#include <cfloat>
|
#include <cfloat>
|
||||||
#include <string>
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
#if defined(GGML_USE_HIPBLAS)
|
#if defined(GGML_USE_HIPBLAS)
|
||||||
#include <hip/hip_runtime.h>
|
#include <hip/hip_runtime.h>
|
||||||
@ -526,6 +527,43 @@ struct ggml_tensor_extra_gpu {
|
|||||||
cudaEvent_t events[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS]; // events for synchronizing multiple GPUs
|
cudaEvent_t events[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS]; // events for synchronizing multiple GPUs
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
|
#if (CUDART_VERSION >= 12000) && defined(GGML_CUDA_USE_GRAPHS)
|
||||||
|
#define USE_CUDA_GRAPH
|
||||||
|
#endif
|
||||||
|
|
||||||
|
struct ggml_graph_node_properties {
|
||||||
|
void * node_address;
|
||||||
|
ggml_op node_op;
|
||||||
|
int64_t ne[GGML_MAX_DIMS];
|
||||||
|
size_t nb[GGML_MAX_DIMS];
|
||||||
|
void * src_address[GGML_MAX_SRC];
|
||||||
|
};
|
||||||
|
|
||||||
|
struct ggml_cuda_graph {
|
||||||
|
#ifdef USE_CUDA_GRAPH
|
||||||
|
~ggml_cuda_graph() {
|
||||||
|
if (instance != nullptr) {
|
||||||
|
CUDA_CHECK(cudaGraphExecDestroy(instance));
|
||||||
|
}
|
||||||
|
if (graph != nullptr) {
|
||||||
|
CUDA_CHECK(cudaGraphDestroy(graph));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
cudaGraph_t graph = nullptr;
|
||||||
|
cudaGraphExec_t instance = nullptr;
|
||||||
|
size_t num_nodes = 0;
|
||||||
|
std::vector<cudaGraphNode_t> nodes;
|
||||||
|
std::vector<cudaKernelNodeParams> params;
|
||||||
|
bool disable_due_to_gpu_arch = false;
|
||||||
|
bool disable_due_to_too_many_updates = false;
|
||||||
|
bool disable_due_to_failed_graph_capture = false;
|
||||||
|
int number_consecutive_updates = 0;
|
||||||
|
std::vector<ggml_graph_node_properties> ggml_graph_properties;
|
||||||
|
std::vector<char **> updated_kernel_arg;
|
||||||
|
#endif
|
||||||
|
};
|
||||||
|
|
||||||
struct ggml_backend_cuda_context {
|
struct ggml_backend_cuda_context {
|
||||||
int device;
|
int device;
|
||||||
std::string name;
|
std::string name;
|
||||||
@ -534,6 +572,8 @@ struct ggml_backend_cuda_context {
|
|||||||
cudaStream_t streams[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { { nullptr } };
|
cudaStream_t streams[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { { nullptr } };
|
||||||
cublasHandle_t cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
|
cublasHandle_t cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
|
||||||
|
|
||||||
|
std::unique_ptr<ggml_cuda_graph> cuda_graph;
|
||||||
|
|
||||||
explicit ggml_backend_cuda_context(int device) :
|
explicit ggml_backend_cuda_context(int device) :
|
||||||
device(device),
|
device(device),
|
||||||
name(GGML_CUDA_NAME + std::to_string(device)) {
|
name(GGML_CUDA_NAME + std::to_string(device)) {
|
||||||
|
@ -727,7 +727,6 @@ static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict_
|
|||||||
}
|
}
|
||||||
|
|
||||||
to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
|
to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
|
||||||
int id;
|
|
||||||
switch (type) {
|
switch (type) {
|
||||||
case GGML_TYPE_Q4_0:
|
case GGML_TYPE_Q4_0:
|
||||||
return dequantize_row_q4_0_cuda;
|
return dequantize_row_q4_0_cuda;
|
||||||
@ -738,8 +737,7 @@ to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
|
|||||||
case GGML_TYPE_Q5_1:
|
case GGML_TYPE_Q5_1:
|
||||||
return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
|
return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
|
||||||
case GGML_TYPE_Q8_0:
|
case GGML_TYPE_Q8_0:
|
||||||
CUDA_CHECK(cudaGetDevice(&id));
|
if (ggml_cuda_info().devices[ggml_cuda_get_device()].cc >= CC_PASCAL) {
|
||||||
if (ggml_cuda_info().devices[id].cc >= CC_PASCAL) {
|
|
||||||
return dequantize_block_q8_0_f16_cuda;
|
return dequantize_block_q8_0_f16_cuda;
|
||||||
}
|
}
|
||||||
return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
|
return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
|
||||||
|
@ -459,3 +459,32 @@ void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|||||||
const ggml_tensor * src0 = dst->src[0];
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
ggml_cuda_cpy(ctx, src0, dst);
|
ggml_cuda_cpy(ctx, src0, dst);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {
|
||||||
|
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
|
||||||
|
return (void*) cpy_f32_f16<cpy_1_f32_f32>;
|
||||||
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
|
||||||
|
return (void*) cpy_f32_f16<cpy_1_f32_f16>;
|
||||||
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
|
||||||
|
return (void*) cpy_f32_q<cpy_blck_f32_q8_0, QK8_0>;
|
||||||
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
|
||||||
|
return (void*) cpy_f32_q<cpy_blck_f32_q4_0, QK4_0>;
|
||||||
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
|
||||||
|
return (void*) cpy_f32_q<cpy_blck_f32_q4_1, QK4_1>;
|
||||||
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_0) {
|
||||||
|
return (void*) cpy_f32_q<cpy_blck_f32_q5_0, QK5_0>;
|
||||||
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_IQ4_NL) {
|
||||||
|
return (void*) cpy_f32_q<cpy_blck_f32_iq4_nl, QK4_NL>;
|
||||||
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_1) {
|
||||||
|
return (void*) cpy_f32_q<cpy_blck_f32_q5_1, QK5_1>;
|
||||||
|
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
|
||||||
|
return (void*) cpy_f32_f16<cpy_1_f32_f16>;
|
||||||
|
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
|
||||||
|
return (void*) cpy_f32_f16<cpy_1_f16_f32>;
|
||||||
|
} else {
|
||||||
|
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
|
||||||
|
ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
@ -5,3 +5,5 @@
|
|||||||
void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1);
|
void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1);
|
||||||
|
|
||||||
void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||||
|
|
||||||
|
void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1);
|
||||||
|
@ -1735,8 +1735,7 @@ static void ggml_mul_mat_q4_0_q8_1_cuda(
|
|||||||
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
||||||
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
int id;
|
int id = ggml_cuda_get_device();
|
||||||
CUDA_CHECK(cudaGetDevice(&id));
|
|
||||||
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
||||||
|
|
||||||
int mmq_x, mmq_y, nwarps;
|
int mmq_x, mmq_y, nwarps;
|
||||||
@ -1780,8 +1779,7 @@ static void ggml_mul_mat_q4_1_q8_1_cuda(
|
|||||||
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
||||||
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
int id;
|
int id = ggml_cuda_get_device();
|
||||||
CUDA_CHECK(cudaGetDevice(&id));
|
|
||||||
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
||||||
|
|
||||||
int mmq_x, mmq_y, nwarps;
|
int mmq_x, mmq_y, nwarps;
|
||||||
@ -1825,8 +1823,7 @@ static void ggml_mul_mat_q5_0_q8_1_cuda(
|
|||||||
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
||||||
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
int id;
|
int id = ggml_cuda_get_device();
|
||||||
CUDA_CHECK(cudaGetDevice(&id));
|
|
||||||
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
||||||
|
|
||||||
int mmq_x, mmq_y, nwarps;
|
int mmq_x, mmq_y, nwarps;
|
||||||
@ -1870,8 +1867,7 @@ static void ggml_mul_mat_q5_1_q8_1_cuda(
|
|||||||
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
||||||
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
int id;
|
int id = ggml_cuda_get_device();
|
||||||
CUDA_CHECK(cudaGetDevice(&id));
|
|
||||||
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
||||||
|
|
||||||
int mmq_x, mmq_y, nwarps;
|
int mmq_x, mmq_y, nwarps;
|
||||||
@ -1915,8 +1911,7 @@ static void ggml_mul_mat_q8_0_q8_1_cuda(
|
|||||||
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
||||||
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
int id;
|
int id = ggml_cuda_get_device();
|
||||||
CUDA_CHECK(cudaGetDevice(&id));
|
|
||||||
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
||||||
|
|
||||||
int mmq_x, mmq_y, nwarps;
|
int mmq_x, mmq_y, nwarps;
|
||||||
@ -1960,8 +1955,7 @@ static void ggml_mul_mat_q2_K_q8_1_cuda(
|
|||||||
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
||||||
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
int id;
|
int id = ggml_cuda_get_device();
|
||||||
CUDA_CHECK(cudaGetDevice(&id));
|
|
||||||
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
||||||
|
|
||||||
int mmq_x, mmq_y, nwarps;
|
int mmq_x, mmq_y, nwarps;
|
||||||
@ -2007,8 +2001,7 @@ static void ggml_mul_mat_q3_K_q8_1_cuda(
|
|||||||
|
|
||||||
#if QK_K == 256
|
#if QK_K == 256
|
||||||
|
|
||||||
int id;
|
int id = ggml_cuda_get_device();
|
||||||
CUDA_CHECK(cudaGetDevice(&id));
|
|
||||||
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
||||||
|
|
||||||
int mmq_x, mmq_y, nwarps;
|
int mmq_x, mmq_y, nwarps;
|
||||||
@ -2053,8 +2046,7 @@ static void ggml_mul_mat_q4_K_q8_1_cuda(
|
|||||||
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
||||||
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
int id;
|
int id = ggml_cuda_get_device();
|
||||||
CUDA_CHECK(cudaGetDevice(&id));
|
|
||||||
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
||||||
|
|
||||||
int mmq_x, mmq_y, nwarps;
|
int mmq_x, mmq_y, nwarps;
|
||||||
@ -2098,8 +2090,7 @@ static void ggml_mul_mat_q5_K_q8_1_cuda(
|
|||||||
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
||||||
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
int id;
|
int id = ggml_cuda_get_device();
|
||||||
CUDA_CHECK(cudaGetDevice(&id));
|
|
||||||
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
||||||
|
|
||||||
int mmq_x, mmq_y, nwarps;
|
int mmq_x, mmq_y, nwarps;
|
||||||
@ -2143,8 +2134,7 @@ static void ggml_mul_mat_q6_K_q8_1_cuda(
|
|||||||
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
||||||
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
||||||
|
|
||||||
int id;
|
int id = ggml_cuda_get_device();
|
||||||
CUDA_CHECK(cudaGetDevice(&id));
|
|
||||||
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
||||||
|
|
||||||
int mmq_x, mmq_y, nwarps;
|
int mmq_x, mmq_y, nwarps;
|
||||||
|
@ -89,8 +89,7 @@ static void mul_mat_vec_q_cuda(
|
|||||||
GGML_ASSERT(ncols_x % qk == 0);
|
GGML_ASSERT(ncols_x % qk == 0);
|
||||||
GGML_ASSERT(ncols_y <= MMVQ_MAX_BATCH_SIZE);
|
GGML_ASSERT(ncols_y <= MMVQ_MAX_BATCH_SIZE);
|
||||||
|
|
||||||
int id;
|
int id = ggml_cuda_get_device();
|
||||||
CUDA_CHECK(cudaGetDevice(&id));
|
|
||||||
|
|
||||||
int64_t nwarps = 1;
|
int64_t nwarps = 1;
|
||||||
int64_t rows_per_cuda_block = 1;
|
int64_t rows_per_cuda_block = 1;
|
||||||
@ -328,8 +327,7 @@ void ggml_cuda_op_mul_mat_vec_q(
|
|||||||
|
|
||||||
const int64_t ne0 = dst->ne[0];
|
const int64_t ne0 = dst->ne[0];
|
||||||
|
|
||||||
int id;
|
int id = ggml_cuda_get_device();
|
||||||
CUDA_CHECK(cudaGetDevice(&id));
|
|
||||||
|
|
||||||
// the main device has a larger memory buffer to hold the results from all GPUs
|
// the main device has a larger memory buffer to hold the results from all GPUs
|
||||||
// nrows_dst == nrows of the matrix that the kernel writes into
|
// nrows_dst == nrows of the matrix that the kernel writes into
|
||||||
|
@ -28,5 +28,4 @@ void ggml_cuda_op_scale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|||||||
memcpy(&scale, dst->op_params, sizeof(float));
|
memcpy(&scale, dst->op_params, sizeof(float));
|
||||||
|
|
||||||
scale_f32_cuda(src0_d, dst_d, scale, ggml_nelements(src0), stream);
|
scale_f32_cuda(src0_d, dst_d, scale, ggml_nelements(src0), stream);
|
||||||
CUDA_CHECK(cudaGetLastError());
|
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user