diff --git a/.devops/tools.sh b/.devops/tools.sh index b0196b60d..ece9e4efa 100755 --- a/.devops/tools.sh +++ b/.devops/tools.sh @@ -23,7 +23,7 @@ elif [[ $arg1 == '--all-in-one' || $arg1 == '-a' ]]; then echo "Skip model quantization, it already exists: ${i/f16/q4_0}" else echo "Converting PTH to GGML: $i into ${i/f16/q4_0}..." - ./quantize "$i" "${i/f16/q4_0}" 2 + ./quantize "$i" "${i/f16/q4_0}" q4_0 fi done else diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index 7e8a29b1e..179080576 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -12,17 +12,15 @@ on: - master paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.c', '**/*.cpp'] pull_request: - types: [opened, synchronize, edited, reopened, review_requested, ready_for_review] + types: [opened, synchronize, reopened] paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.c', '**/*.cpp'] env: BRANCH_NAME: ${{ github.head_ref || github.ref_name }} jobs: - ubuntu-latest-make: - if: github.event.pull_request.draft == false - - runs-on: ubuntu-latest + ubuntu-focal-make: + runs-on: ubuntu-20.04 steps: - name: Clone @@ -33,16 +31,14 @@ jobs: id: depends run: | sudo apt-get update - sudo apt-get install build-essential + sudo apt-get install build-essential gcc-8 - name: Build id: make_build run: | - make + CC=gcc-8 make ubuntu-latest-cmake: - if: github.event.pull_request.draft == false - runs-on: ubuntu-latest steps: @@ -71,8 +67,6 @@ jobs: ctest --verbose ubuntu-latest-cmake-sanitizer: - if: github.event.pull_request.draft == false - runs-on: ubuntu-latest continue-on-error: true @@ -108,8 +102,6 @@ jobs: ctest --verbose macOS-latest-make: - if: github.event.pull_request.draft == false - runs-on: macos-latest steps: @@ -128,8 +120,6 @@ jobs: make macOS-latest-cmake: - if: github.event.pull_request.draft == false - runs-on: macOS-latest steps: @@ -157,8 +147,6 @@ jobs: ctest --verbose windows-latest-cmake: - if: github.event.pull_request.draft == false - runs-on: windows-latest strategy: @@ -169,7 +157,7 @@ jobs: - build: 'avx' defines: '-DLLAMA_AVX2=OFF' - build: 'avx512' - defines: '-DLLAMA_AVX512=ON' + defines: '-DLLAMA_AVX512=ON -DBUILD_SHARED_LIBS=ON' steps: - name: Clone @@ -228,7 +216,7 @@ jobs: runs-on: ubuntu-latest needs: - - ubuntu-latest-make + - ubuntu-focal-make - ubuntu-latest-cmake - macOS-latest-make - macOS-latest-cmake diff --git a/.gitignore b/.gitignore index e52d479ee..e479c6180 100644 --- a/.gitignore +++ b/.gitignore @@ -15,6 +15,7 @@ build-em/ build-debug/ build-release/ build-static/ +build-cublas/ build-no-accel/ build-sanitize-addr/ build-sanitize-thread/ @@ -27,10 +28,11 @@ models/* /result /perplexity /embedding -/benchmark-q4_0-matmult +/benchmark-matmult /vdot /Pipfile +build-info.h arm_neon.h compile_commands.json @@ -40,3 +42,5 @@ zig-out/ zig-cache/ ppl-*.txt + +examples/jeopardy/results.txt diff --git a/CMakeLists.txt b/CMakeLists.txt index 2c3c60167..f6a66daa3 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -67,10 +67,46 @@ endif() option(LLAMA_ACCELERATE "llama: enable Accelerate framework" ON) option(LLAMA_OPENBLAS "llama: use OpenBLAS" OFF) option(LLAMA_CUBLAS "llama: use cuBLAS" OFF) +option(LLAMA_CLBLAST "llama: use CLBlast" OFF) option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE}) option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE}) +# +# Build info header +# + +# Write header template to binary dir to keep source directory clean +file(WRITE "${CMAKE_BINARY_DIR}/BUILD_INFO.h.in" "\ +#ifndef BUILD_INFO_H\n\ +#define BUILD_INFO_H\n\ +\n\ +#define BUILD_NUMBER @BUILD_NUMBER@\n\ +#define BUILD_COMMIT \"@BUILD_COMMIT@\"\n\ +\n\ +#endif // BUILD_INFO_H\n\ +") + +# Generate initial build-info.h +include(${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake) + +if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/.git") + # Add a custom target for build-info.h + add_custom_target(BUILD_INFO ALL DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/build-info.h") + + # Add a custom command to rebuild build-info.h when .git/index changes + add_custom_command( + OUTPUT "${CMAKE_CURRENT_SOURCE_DIR}/build-info.h" + COMMENT "Generating build details from Git" + COMMAND ${CMAKE_COMMAND} -P "${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake" + WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR} + DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/.git/index" + VERBATIM + ) +else() + message(WARNING "Git repository not found; to enable automatic generation of build info, make sure Git is installed and the project is a Git repository.") +endif() + # # Compile flags # @@ -168,6 +204,21 @@ if (LLAMA_CUBLAS) endif() endif() +if (LLAMA_CLBLAST) + find_package(CLBlast) + if (CLBlast_FOUND) + message(STATUS "CLBlast found") + + set(GGML_OPENCL_SOURCES ggml-opencl.c ggml-opencl.h) + + add_compile_definitions(GGML_USE_CLBLAST) + + set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} clblast) + else() + message(WARNING "CLBlast not found") + endif() +endif() + if (LLAMA_ALL_WARNINGS) if (NOT MSVC) set(c_flags @@ -201,6 +252,10 @@ endif() if (MSVC) add_compile_definitions(_CRT_SECURE_NO_WARNINGS) + + if (BUILD_SHARED_LIBS) + set(CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS ON) + endif() endif() if (LLAMA_LTO) @@ -238,9 +293,22 @@ if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES # TODO: arm msvc? else() if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64") + # Apple M1, M2, etc. + # Raspberry Pi 3, 4, Zero 2 (64-bit) add_compile_options(-mcpu=native) endif() - # TODO: armv6,7,8 version specific flags + if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv6") + # Raspberry Pi 1, Zero + add_compile_options(-mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access) + endif() + if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv7") + # Raspberry Pi 2 + add_compile_options(-mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations) + endif() + if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv8") + # Raspberry Pi 3, 4, Zero 2 (32-bit) + add_compile_options(-mfp16-format=ieee -mno-unaligned-access) + endif() endif() elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$") message(STATUS "x86 detected") @@ -303,11 +371,13 @@ endif() add_library(ggml OBJECT ggml.c ggml.h - ${GGML_CUDA_SOURCES}) + ${GGML_CUDA_SOURCES} + ${GGML_OPENCL_SOURCES}) target_include_directories(ggml PUBLIC .) target_compile_features(ggml PUBLIC c_std_11) # don't bump target_link_libraries(ggml PUBLIC Threads::Threads ${LLAMA_EXTRA_LIBS}) + if (BUILD_SHARED_LIBS) set_target_properties(ggml PROPERTIES POSITION_INDEPENDENT_CODE ON) endif() @@ -315,11 +385,12 @@ endif() add_library(llama llama.cpp llama.h - llama_util.h) + llama-util.h) target_include_directories(llama PUBLIC .) target_compile_features(llama PUBLIC cxx_std_11) # don't bump target_link_libraries(llama PRIVATE ggml ${LLAMA_EXTRA_LIBS}) + if (BUILD_SHARED_LIBS) set_target_properties(llama PROPERTIES POSITION_INDEPENDENT_CODE ON) target_compile_definitions(llama PRIVATE LLAMA_SHARED LLAMA_BUILD) diff --git a/Makefile b/Makefile index 3b48eec99..6ebc3c5b9 100644 --- a/Makefile +++ b/Makefile @@ -34,10 +34,15 @@ endif # # keep standard at C11 and C++11 -CFLAGS = -I. -O3 -DNDEBUG -std=c11 -fPIC -CXXFLAGS = -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC +CFLAGS = -I. -O3 -std=c11 -fPIC +CXXFLAGS = -I. -I./examples -O3 -std=c++11 -fPIC LDFLAGS = +ifndef LLAMA_DEBUG + CFLAGS += -DNDEBUG + CXXFLAGS += -DNDEBUG +endif + # warnings CFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar @@ -74,13 +79,17 @@ endif # feel free to update the Makefile for your architecture and send a pull request or issue ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686)) # Use all CPU extensions that are available: - CFLAGS += -march=native -mtune=native + CFLAGS += -march=native -mtune=native CXXFLAGS += -march=native -mtune=native + + # Usage AVX-only + #CFLAGS += -mfma -mf16c -mavx + #CXXFLAGS += -mfma -mf16c -mavx endif ifneq ($(filter ppc64%,$(UNAME_M)),) POWER9_M := $(shell grep "POWER9" /proc/cpuinfo) ifneq (,$(findstring POWER9,$(POWER9_M))) - CFLAGS += -mcpu=power9 + CFLAGS += -mcpu=power9 CXXFLAGS += -mcpu=power9 endif # Require c++23's std::byteswap for big-endian support. @@ -101,32 +110,46 @@ ifdef LLAMA_OPENBLAS LDFLAGS += -lopenblas endif ifdef LLAMA_CUBLAS - CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include - LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 + CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include + CXXFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include + LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib OBJS += ggml-cuda.o NVCC = nvcc - NVCCFLAGS = --forward-unknown-to-host-linker -arch=native + NVCCFLAGS = --forward-unknown-to-host-compiler -arch=native ggml-cuda.o: ggml-cuda.cu ggml-cuda.h - $(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -c $< -o $@ + $(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -Wno-pedantic -c $< -o $@ +endif +ifdef LLAMA_CLBLAST + CFLAGS += -DGGML_USE_CLBLAST + LDFLAGS += -lclblast -lOpenCL + OBJS += ggml-opencl.o +ggml-opencl.o: ggml-opencl.c ggml-opencl.h + $(CC) $(CFLAGS) -c $< -o $@ endif ifdef LLAMA_GPROF CFLAGS += -pg CXXFLAGS += -pg endif +ifdef LLAMA_PERF + CFLAGS += -DGGML_PERF + CXXFLAGS += -DGGML_PERF +endif ifneq ($(filter aarch64%,$(UNAME_M)),) - CFLAGS += -mcpu=native + # Apple M1, M2, etc. + # Raspberry Pi 3, 4, Zero 2 (64-bit) + CFLAGS += -mcpu=native CXXFLAGS += -mcpu=native endif ifneq ($(filter armv6%,$(UNAME_M)),) - # Raspberry Pi 1, 2, 3 + # Raspberry Pi 1, Zero CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access endif ifneq ($(filter armv7%,$(UNAME_M)),) - # Raspberry Pi 4 + # Raspberry Pi 2 CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations endif ifneq ($(filter armv8%,$(UNAME_M)),) - # Raspberry Pi 4 + # Raspberry Pi 3, 4, Zero 2 (32-bit) CFLAGS += -mfp16-format=ieee -mno-unaligned-access endif @@ -149,49 +172,64 @@ $(info ) # Build library # -ggml.o: ggml.c ggml.h +ggml.o: ggml.c ggml.h ggml-cuda.h $(CC) $(CFLAGS) -c $< -o $@ -llama.o: llama.cpp ggml.h llama.h llama_util.h +llama.o: llama.cpp ggml.h ggml-cuda.h llama.h llama-util.h $(CXX) $(CXXFLAGS) -c $< -o $@ common.o: examples/common.cpp examples/common.h $(CXX) $(CXXFLAGS) -c $< -o $@ -clean: - rm -vf *.o main quantize quantize-stats perplexity embedding benchmark-q4_0-matmult +libllama.so: llama.o ggml.o $(OBJS) + $(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS) -main: examples/main/main.cpp ggml.o llama.o common.o $(OBJS) - $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) +clean: + rm -vf *.o main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state build-info.h + +# +# Examples +# + +main: examples/main/main.cpp build-info.h ggml.o llama.o common.o $(OBJS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) @echo @echo '==== Run ./main -h for help. ====' @echo -quantize: examples/quantize/quantize.cpp ggml.o llama.o $(OBJS) - $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) +quantize: examples/quantize/quantize.cpp build-info.h ggml.o llama.o $(OBJS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -quantize-stats: examples/quantize-stats/quantize-stats.cpp ggml.o llama.o $(OBJS) - $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) +quantize-stats: examples/quantize-stats/quantize-stats.cpp build-info.h ggml.o llama.o $(OBJS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -perplexity: examples/perplexity/perplexity.cpp ggml.o llama.o common.o $(OBJS) - $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) +perplexity: examples/perplexity/perplexity.cpp build-info.h ggml.o llama.o common.o $(OBJS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -embedding: examples/embedding/embedding.cpp ggml.o llama.o common.o $(OBJS) - $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) +embedding: examples/embedding/embedding.cpp build-info.h ggml.o llama.o common.o $(OBJS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS) - $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) +save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.o llama.o common.o $(OBJS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -libllama.so: llama.o ggml.o $(OBJS) - $(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS) +build-info.h: $(wildcard .git/index) scripts/build-info.sh + @scripts/build-info.sh > $@.tmp + @if ! cmp -s $@.tmp $@; then \ + mv $@.tmp $@; \ + else \ + rm $@.tmp; \ + fi # # Tests # -benchmark: examples/benchmark/benchmark-q4_0-matmult.c ggml.o $(OBJS) - $(CXX) $(CXXFLAGS) $^ -o benchmark-q4_0-matmult $(LDFLAGS) - ./benchmark-q4_0-matmult +benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.h ggml.o $(OBJS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) + ./$@ + +vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS) + $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) .PHONY: tests tests: diff --git a/README.md b/README.md index 324d49f07..f55c576ab 100644 --- a/README.md +++ b/README.md @@ -7,31 +7,25 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++ -**Warnings** - -- `Q4_2` and `Q4_3` are still in development. Do not expect any kind of backward compatibility until they are finalized - **Hot topics:** -- [Added LoRA support](https://github.com/ggerganov/llama.cpp/pull/820) -- [Add GPU support to ggml](https://github.com/ggerganov/llama.cpp/discussions/915) -- [Roadmap Apr 2023](https://github.com/ggerganov/llama.cpp/discussions/784) +- [Roadmap May 2023](https://github.com/ggerganov/llama.cpp/discussions/1220) +- [New quantization methods](https://github.com/ggerganov/llama.cpp#quantization) ## Description -The main goal of llama.cpp is to run the llama model using 4-bit quantization on a MacBook. +The main goal of `llama.cpp` is to run the LLaMA model using 4-bit integer quantization on a MacBook - Plain C/C++ implementation without dependencies - Apple silicon first-class citizen - optimized via ARM NEON and Accelerate framework - AVX2 support for x86 architectures - Mixed F16 / F32 precision -- 4-bit quantization support +- 4-bit integer quantization support - Runs on the CPU -This was [hacked in an evening](https://github.com/ggerganov/llama.cpp/issues/33#issuecomment-1465108022) - I have no idea if it works correctly. -Please do not make conclusions about the models based on the results from this implementation. -For all I know, it can be completely wrong. This project is for educational purposes. -New features will probably be added mostly through community contributions. +The original implementation of `llama.cpp` was [hacked in an evening](https://github.com/ggerganov/llama.cpp/issues/33#issuecomment-1465108022). +Since then, the project has improved significantly thanks to many contributions. This project is for educational purposes and serves +as the main playground for developing new features for the [ggml](https://github.com/ggerganov/ggml) library. **Supported platforms:** @@ -167,15 +161,27 @@ cd llama.cpp ### Build -Note: For Windows, CMake or Zig can be used. +In order to build llama.cpp you have three different options. -1. Use `make` +- Using `make`: + - On Linux or MacOS: - ```bash - make - ``` + ```bash + make + ``` -1. Use CMake + - On Windows: + + 1. Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases). + 2. Extract `w64devkit` on your pc. + 3. Run `w64devkit.exe`. + 4. Use the `cd` command to reach the `llama.cpp` folder. + 5. From here you can run: + ```bash + make + ``` + +- Using `CMake`: ```bash mkdir build @@ -184,12 +190,71 @@ Note: For Windows, CMake or Zig can be used. cmake --build . --config Release ``` -1. Use Zig +- Using `Zig`: ```bash zig build -Drelease-fast ``` +### BLAS Build + +Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). BLAS doesn't affect the normal generation performance. There are currently three different implementations of it: + +- Accelerate Framework: + + This is only available on Mac PCs and it's enabled by default. You can just build using the normal instructions. + +- OpenBLAS: + + This provides BLAS acceleration using only the CPU. Make sure to have OpenBLAS installed on your machine. + + - Using `make`: + - On Linux: + ```bash + make LLAMA_OPENBLAS=1 + ``` + Note: In order to build on Arch Linux with OpenBLAS support enabled you must edit the Makefile adding at the end of the line 105: `-lcblas` + + - On Windows: + + 1. Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases). + 2. Download the latest version of [OpenBLAS for Windows](https://github.com/xianyi/OpenBLAS/releases). + 3. Extract `w64devkit` on your pc. + 4. From the OpenBLAS zip that you just downloaded copy `libopenblas.a`, located inside the `lib` folder, inside `w64devkit\x86_64-w64-mingw32\lib`. + 5. From the same OpenBLAS zip copy the content of the `include` folder inside `w64devkit\x86_64-w64-mingw32\include`. + 6. Run `w64devkit.exe`. + 7. Use the `cd` command to reach the `llama.cpp` folder. + 8. From here you can run: + + ```bash + make LLAMA_OPENBLAS=1 + ``` + + - Using `CMake` on Linux: + + ```bash + mkdir build + cd build + cmake .. -DLLAMA_OPENBLAS=ON + cmake --build . --config Release + ``` + +- cuBLAS + + This provides BLAS acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads). + - Using `make`: + ```bash + make LLAMA_CUBLAS=1 + ``` + - Using `CMake`: + + ```bash + mkdir build + cd build + cmake .. -DLLAMA_CUBLAS=ON + cmake --build . --config Release + ``` + ### Prepare Data & Run ```bash @@ -203,8 +268,8 @@ python3 -m pip install -r requirements.txt # convert the 7B model to ggml FP16 format python3 convert.py models/7B/ -# quantize the model to 4-bits (using method 2 = q4_0) -./quantize ./models/7B/ggml-model-f16.bin ./models/7B/ggml-model-q4_0.bin 2 +# quantize the model to 4-bits (using q4_0 method) +./quantize ./models/7B/ggml-model-f16.bin ./models/7B/ggml-model-q4_0.bin q4_0 # run the inference ./main -m ./models/7B/ggml-model-q4_0.bin -n 128 @@ -216,12 +281,29 @@ When running the larger models, make sure you have enough disk space to store al As the models are currently fully loaded into memory, you will need adequate disk space to save them and sufficient RAM to load them. At the moment, memory and disk requirements are the same. -| model | original size | quantized size (4-bit) | -|-------|---------------|------------------------| -| 7B | 13 GB | 3.9 GB | -| 13B | 24 GB | 7.8 GB | -| 30B | 60 GB | 19.5 GB | -| 65B | 120 GB | 38.5 GB | +| Model | Original size | Quantized size (4-bit) | +|------:|--------------:|-----------------------:| +| 7B | 13 GB | 3.9 GB | +| 13B | 24 GB | 7.8 GB | +| 30B | 60 GB | 19.5 GB | +| 65B | 120 GB | 38.5 GB | + +### Quantization + +Several quantization methods are supported. They differ in the resulting model disk size and inference speed. + +| Model | Measure | F16 | Q4_0 | Q4_1 | Q4_2 | Q5_0 | Q5_1 | Q8_0 | +|------:|--------------|-------:|-------:|-------:|-------:|-------:|-------:|-------:| +| 7B | perplexity | 5.9565 | 6.2103 | 6.1286 | 6.1698 | 6.0139 | 5.9934 | 5.9571 | +| 7B | file size | 13.0G | 4.0G | 4.8G | 4.0G | 4.4G | 4.8G | 7.1G | +| 7B | ms/tok @ 4th | 128 | 56 | 61 | 84 | 91 | 95 | 75 | +| 7B | ms/tok @ 8th | 128 | 47 | 55 | 48 | 53 | 59 | 75 | +| 7B | bits/weight | 16.0 | 5.0 | 6.0 | 5.0 | 5.5 | 6.0 | 9.0 | +| 13B | perplexity | 5.2455 | 5.3748 | 5.3471 | 5.3433 | 5.2768 | 5.2582 | 5.2458 | +| 13B | file size | 25.0G | 7.6G | 9.1G | 7.6G | 8.4G | 9.1G | 14G | +| 13B | ms/tok @ 4th | 239 | 104 | 113 | 160 | 176 | 185 | 141 | +| 13B | ms/tok @ 8th | 240 | 85 | 99 | 97 | 108 | 117 | 147 | +| 13B | bits/weight | 16.0 | 5.0 | 6.0 | 5.0 | 5.5 | 6.0 | 9.0 | ### Interactive mode @@ -241,7 +323,7 @@ Here is an example of a few-shot interaction, invoked with the command ./main -m ./models/13B/ggml-model-q4_0.bin -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt ``` -Note the use of `--color` to distinguish between user input and generated text. +Note the use of `--color` to distinguish between user input and generated text. Other parameters are explained in more detail in the [README](examples/main/README.md) for the `main` example program. ![image](https://user-images.githubusercontent.com/1991296/224575029-2af3c7dc-5a65-4f64-a6bb-517a532aea38.png) @@ -275,18 +357,19 @@ cadaver, cauliflower, cabbage (vegetable), catalpa (tree) and Cailleach. ### Using [GPT4All](https://github.com/nomic-ai/gpt4all) -- Obtain the `gpt4all-lora-quantized.bin` model -- It is distributed in the old `ggml` format, which is now obsoleted -- You have to convert it to the new format using [./convert-gpt4all-to-ggml.py](./convert-gpt4all-to-ggml.py). You may also need to -convert the model from the old format to the new format with [./migrate-ggml-2023-03-30-pr613.py](./migrate-ggml-2023-03-30-pr613.py): +- Obtain the `tokenizer.model` file from LLaMA model and put it to `models` +- Obtain the `added_tokens.json` file from Alpaca model and put it to `models` +- Obtain the `gpt4all-lora-quantized.bin` file from GPT4All model and put it to `models/gpt4all-7B` +- It is distributed in the old `ggml` format which is now obsoleted +- You have to convert it to the new format using `convert.py`: - ```bash - python3 convert-gpt4all-to-ggml.py models/gpt4all-7B/gpt4all-lora-quantized.bin ./models/tokenizer.model - python3 migrate-ggml-2023-03-30-pr613.py models/gpt4all-7B/gpt4all-lora-quantized.bin models/gpt4all-7B/gpt4all-lora-quantized-new.bin - ``` +```bash +python3 convert.py models/gpt4all-7B/gpt4all-lora-quantized.bin +``` -- You can now use the newly generated `gpt4all-lora-quantized-new.bin` model in exactly the same way as all other models -- The original model is saved in the same folder with a suffix `.orig` +- You can now use the newly generated `models/gpt4all-7B/ggml-model-q4_0.bin` model in exactly the same way as all other models + +- The newer GPT4All-J model is not yet supported! ### Obtaining and verifying the Facebook LLaMA original model and Stanford Alpaca model data diff --git a/SHA256SUMS b/SHA256SUMS index 1d034b371..e487bdca6 100644 --- a/SHA256SUMS +++ b/SHA256SUMS @@ -1,27 +1,24 @@ 700df0d3013b703a806d2ae7f1bfb8e59814e3d06ae78be0c66368a50059f33d models/7B/consolidated.00.pth 666a4bb533b303bdaf89e1b6a3b6f93535d868de31d903afdc20983dc526c847 models/7B/ggml-model-f16.bin -fcb7664c2e69776920b526362a243e912f73c36b1ec892eb354bab940f5edb5a models/7B/ggml-model-q4_0.bin +99aeb35f26b577fa2732716cca4d8b5ada39a78ea9b2dca2651fc632b5d101b6 models/7B/ggml-model-q4_0.bin cc061458339a3eb8bcecbf0a825e9924fb7d1a8150f63cd5d091caa99215aafe models/7B/ggml-model-q4_1.bin -1bc7484c24a87612726d756f1761890e7acf5f412e23378577ce50fbe789b5b8 models/7B/ggml-model-q4_2.bin -3429bf198ec771886cf81a574df45245f3ebf04f0ce0956b73ef5d0ab01ff48b models/7B/ggml-model-q4_3.bin +25b050337a87344da687a7f2adddc03bd99b7f6c140450e836649f3585fb6496 models/7B/ggml-model-q4_2.bin 7e89e242ddc0dd6f060b43ca219ce8b3e8f08959a72cb3c0855df8bb04d46265 models/7B/params.json 745bf4e29a4dd6f411e72976d92b452da1b49168a4f41c951cfcc8051823cf08 models/13B/consolidated.00.pth d5ccbcc465c71c0de439a5aeffebe8344c68a519bce70bc7f9f92654ee567085 models/13B/consolidated.01.pth 2b206e9b21fb1076f11cafc624e2af97c9e48ea09312a0962153acc20d45f808 models/13B/ggml-model-f16.bin -4b69e4d6b6e3275230955997b90407fceca7e5ab3daf2e63a2c9e7270a8e1e3e models/13B/ggml-model-q4_0.bin +eecb575d325d935157761172e2bf05984dad216eb2b06777b73463cf9b818bab models/13B/ggml-model-q4_0.bin d9581b5b88e5622532fe897c9f9b0e67a317d22dd27a6f90fa4ab8c6d23ccdbb models/13B/ggml-model-q4_1.bin -8d55a2077317ec9a928c7851d6a43e08e51f7e9e08360f2a7a7e1deefea3134f models/13B/ggml-model-q4_2.bin -4208cdec9788ffa48dc1a17af2c36a0299f5bf3eb0e2b87889dda7fad591fca3 models/13B/ggml-model-q4_3.bin +75a218a47df03f5f96354656329864613abcb67779412b9bc2282b28c1c3cbaa models/13B/ggml-model-q4_2.bin 4ab77bec4d4405ccb66a97b282574c89a94417e3c32e5f68f37e2876fc21322f models/13B/params.json e23294a58552d8cdec5b7e8abb87993b97ea6eced4178ff2697c02472539d067 models/30B/consolidated.00.pth 4e077b7136c7ae2302e954860cf64930458d3076fcde9443f4d0e939e95903ff models/30B/consolidated.01.pth 24a87f01028cbd3a12de551dcedb712346c0b5cbdeff1454e0ddf2df9b675378 models/30B/consolidated.02.pth 1adfcef71420886119544949767f6a56cb6339b4d5fcde755d80fe68b49de93b models/30B/consolidated.03.pth 7e1b524061a9f4b27c22a12d6d2a5bf13b8ebbea73e99f218809351ed9cf7d37 models/30B/ggml-model-f16.bin -7a679908ce31c9d6ae2e38d6059bcd4d0ad3a870cd58cc1c8f7b36f2b2f51c73 models/30B/ggml-model-q4_0.bin +517b9e525742c42b5478a6280a4b41ec66f46298c57aba7f0453d491682fe42d models/30B/ggml-model-q4_0.bin 7b75ac615fa369ee593493a7e6ef87542bf0350255db928b22c5a24f6d598bcd models/30B/ggml-model-q4_1.bin -2c82b4954a94a6a284f452f6011c1e4f0d20362c194a0b1eb5737f5fd8a20fb3 models/30B/ggml-model-q4_2.bin -a6188660199dbcb8d5658abe7d89169869e50423494385830d9e6b330ea7fc33 models/30B/ggml-model-q4_3.bin +aadbc9cf806313a55be570f62884eed289d30c313fac3b7838717e01bd553204 models/30B/ggml-model-q4_2.bin 2c07118ea98d69dbe7810d88520e30288fa994751b337f8fca02b171955f44cb models/30B/params.json 135c563f6b3938114458183afb01adc9a63bef3d8ff7cccc3977e5d3664ecafe models/65B/consolidated.00.pth 9a600b37b19d38c7e43809485f70d17d1dc12206c07efa83bc72bb498a568bde models/65B/consolidated.01.pth @@ -32,9 +29,8 @@ a287c0dfe49081626567c7fe87f74cce5831f58e459b427b5e05567641f47b78 models/65B/con 72b4eba67a1a3b18cb67a85b70f8f1640caae9b40033ea943fb166bd80a7b36b models/65B/consolidated.06.pth d27f5b0677d7ff129ceacd73fd461c4d06910ad7787cf217b249948c3f3bc638 models/65B/consolidated.07.pth 60758f2384d74e423dffddfd020ffed9d3bb186ebc54506f9c4a787d0f5367b0 models/65B/ggml-model-f16.bin -c671fe1bce71499ac732ec999770ebe53ac486623a7891e42c9dfdb6962d2c64 models/65B/ggml-model-q4_0.bin +01672072136f8be6ca9d7cebe5f86ed316e8b85851b9fe3de951809233cea4f2 models/65B/ggml-model-q4_0.bin 4743a28aac3e5f32a6e838a815f51d3779de44fbbe251d745251e66c23c5950f models/65B/ggml-model-q4_1.bin -4a145a210c56982389b1ed34387e0590c3e0d7325fa9be4f2284fe4d244a3633 models/65B/ggml-model-q4_2.bin -305e91a4608b4f627b9b8ad5b4af75187d2684254bfd76dcb9db571618ef293c models/65B/ggml-model-q4_3.bin +1b6f6588d0e2ecfe6c4d849088e48e5e3083466b962daa32e3261363e21fc5e9 models/65B/ggml-model-q4_2.bin 999ed1659b469ccc2a941714c0a9656fa571d17c9f7c8c7589817ca90edef51b models/65B/params.json 9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347 models/tokenizer.model diff --git a/convert-lora-to-ggml.py b/convert-lora-to-ggml.py index 8a2085c25..9090e8d6d 100644 --- a/convert-lora-to-ggml.py +++ b/convert-lora-to-ggml.py @@ -49,7 +49,12 @@ def translate_tensor_name(t: str) -> str: def write_file_header(fout: TextIO, params: Dict[str, Any]) -> None: fout.write(b"ggla"[::-1]) # magic (ggml lora) fout.write(struct.pack("i", 1)) # file version - fout.write(struct.pack("ii", params["r"], params["lora_alpha"])) + fout.write(struct.pack("i", params["r"])) + # https://opendelta.readthedocs.io/en/latest/modules/deltas.html says that `lora_alpha` is an int + # but some models ship a float value instead + # let's convert to int, but fail if lossless conversion is not possible + assert int(params["lora_alpha"]) == params["lora_alpha"], "cannot convert float to int losslessly" + fout.write(struct.pack("i", int(params["lora_alpha"]))) def write_tensor_header( @@ -89,7 +94,7 @@ if params["peft_type"] != "LORA": print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA") sys.exit(1) -if params["fan_in_fan_out"] == True: +if params["fan_in_fan_out"] is True: print("Error: param fan_in_fan_out is not supported") sys.exit(1) diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt index 67a7cea54..0973a3fa1 100644 --- a/examples/CMakeLists.txt +++ b/examples/CMakeLists.txt @@ -34,4 +34,6 @@ else() add_subdirectory(quantize-stats) add_subdirectory(perplexity) add_subdirectory(embedding) + add_subdirectory(save-load-state) + add_subdirectory(benchmark) endif() diff --git a/examples/alpaca.sh b/examples/alpaca.sh index 8d6261730..aef207f36 100755 --- a/examples/alpaca.sh +++ b/examples/alpaca.sh @@ -7,4 +7,13 @@ cd `dirname $0` cd .. -./main -m ./models/ggml-alpaca-7b-q4.bin --color -f ./prompts/alpaca.txt --ctx_size 2048 -n -1 -ins -b 256 --top_k 10000 --temp 0.2 --repeat_penalty 1 -t 7 +./main -m ./models/ggml-alpaca-7b-q4.bin \ + --color \ + -f ./prompts/alpaca.txt \ + --ctx_size 2048 \ + -n -1 \ + -ins -b 256 \ + --top_k 10000 \ + --temp 0.2 \ + --repeat_penalty 1.1 \ + -t 7 diff --git a/examples/benchmark/CMakeLists.txt b/examples/benchmark/CMakeLists.txt new file mode 100644 index 000000000..037696194 --- /dev/null +++ b/examples/benchmark/CMakeLists.txt @@ -0,0 +1,7 @@ +set(TARGET benchmark) +add_executable(${TARGET} benchmark-matmult.cpp) +target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) +target_compile_features(${TARGET} PRIVATE cxx_std_11) +if(TARGET BUILD_INFO) + add_dependencies(${TARGET} BUILD_INFO) +endif() diff --git a/examples/benchmark/benchmark-q4_0-matmult.c b/examples/benchmark/benchmark-matmult.cpp similarity index 91% rename from examples/benchmark/benchmark-q4_0-matmult.c rename to examples/benchmark/benchmark-matmult.cpp index 84b06766c..2cc1a1477 100644 --- a/examples/benchmark/benchmark-q4_0-matmult.c +++ b/examples/benchmark/benchmark-matmult.cpp @@ -1,13 +1,6 @@ -/* - License: MIT License - - Changelog: - - 2023-03-31 Initial version by Sebastian Apel (https://github.com/SebastianApel) - -*/ - #include #include "ggml.h" +#include "build-info.h" #include #include #include @@ -45,7 +38,7 @@ float tensor_sum_elements(struct ggml_tensor * tensor) { #define TENSOR_TYPE_AS_STR(TYPE) TYPE == GGML_TYPE_F32 ? "FP32" : TYPE == GGML_TYPE_F16 ? "FP16" : TYPE == GGML_TYPE_Q4_0 ? "Q4_0" : TYPE == GGML_TYPE_Q4_1 ? "Q4_1" : "UNKNOWN" -#define TENSOR_DUMP(TENSOR) printf("%15s: type = %i (%5s) ne = %5d x %5d x %5d, nb = (%5li, %5li, %5li) - ", #TENSOR, \ +#define TENSOR_DUMP(TENSOR) printf("%15s: type = %i (%5s) ne = %5ld x %5ld x %5ld, nb = (%5li, %5li, %5li) - ", #TENSOR, \ TENSOR->type,TENSOR_TYPE_AS_STR(TENSOR->type),\ TENSOR->ne[0], TENSOR->ne[1], TENSOR->ne[2], TENSOR->nb[0], TENSOR->nb[1], TENSOR->nb[2]); \ { float sum = tensor_sum_elements(TENSOR); printf("Sum of tensor %s is %6.2f\n",#TENSOR, sum); } @@ -98,12 +91,10 @@ int main(int argc, char ** argv) { } } - - // create the ggml context + fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); printf("Starting Test\n"); - - + // create the ggml context struct ggml_context * ctx; //const int sizex = 4096; //const int sizey = 11008; @@ -125,16 +116,18 @@ int main(int argc, char ** argv) { #endif //printf("Memsize required = %i\n", sizex*sizex); - ggml_type wtype = GGML_TYPE_F32; size_t ctx_size = 0; - ctx_size += sizex*sizey*ggml_type_sizef(wtype); - ctx_size += sizex*sizey*ggml_type_sizef(wtype); ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); - ctx_size += sizex*sizeof(float); - ctx_size += 1024*1024*100; + ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); + ctx_size += sizex*sizez*ggml_type_sizef(GGML_TYPE_F32); + ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_Q4_0); + ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_Q4_0); + ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); // BLAS + ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); // BLAS + ctx_size += 1024*1024*16; - printf("Allocating Memory of size %li byes, %li MB\n",ctx_size, (ctx_size/1024/1024)); + printf("Allocating Memory of size %li bytes, %li MB\n",ctx_size, (ctx_size/1024/1024)); struct ggml_init_params params = { /*.mem_size =*/ ctx_size, @@ -217,7 +210,7 @@ int main(int argc, char ** argv) { const int dimz = sizez; long long int flops_per_dot_product = dimy + dimy; long long int flops_per_matrix = flops_per_dot_product * dimx * dimz; ; - printf("Matrix Multiplication of (%i,%i,%i) x (%i,%i,%i) - aboout %6.2f gFLOPS\n\n", sizex, sizey, 1, sizex, sizez, 1, 1.0f*flops_per_matrix / 1000 / 1000 / 1000); + printf("Matrix Multiplication of (%i,%i,%i) x (%i,%i,%i) - about %6.2f gFLOPS\n\n", sizex, sizey, 1, sizex, sizez, 1, 1.0f*flops_per_matrix / 1000 / 1000 / 1000); // Let's use the F32 result from above as a reference for the q4_0 multiplication @@ -234,7 +227,6 @@ int main(int argc, char ** argv) { ggml_graph_compute(ctx, &gf31); long long int stop = ggml_time_us(); long long int usec = stop-start; - float sec = usec/1000000; float flops_per_usec = (1.0f*flops_per_matrix)/usec; printf("%9i;%8i;%6i;%6i;%6i;%15lli;%18lli;%19.2f\n", i, diff --git a/examples/chat-13B.sh b/examples/chat-13B.sh index 4265d7b66..2fac37784 100755 --- a/examples/chat-13B.sh +++ b/examples/chat-13B.sh @@ -31,8 +31,6 @@ The transcript only includes text, it does not include markup like HTML and Mark $USER_NAME: Hello, $AI_NAME! $AI_NAME: Hello $USER_NAME! How may I help you today? -$USER_NAME: What time is it? -$AI_NAME: It is $(date +%H:%M). $USER_NAME: What year is it? $AI_NAME: We are in $(date +%Y). $USER_NAME: Please tell me the largest city in Europe. @@ -50,4 +48,6 @@ $AI_NAME: The arguments are stored in process.argv. argv[3] is the second argument passed to the script and so on. $USER_NAME: Name a color. $AI_NAME: Blue +$USER_NAME: What time is it? +$AI_NAME: It is $(date +%H:%M). $USER_NAME:" "$@" diff --git a/examples/common.cpp b/examples/common.cpp index ab353835c..077df8dcc 100644 --- a/examples/common.cpp +++ b/examples/common.cpp @@ -1,11 +1,18 @@ #include "common.h" #include +#include #include #include #include #include #include +#include + +#if defined(__APPLE__) && defined(__MACH__) +#include +#include +#endif #if defined (_WIN32) #include @@ -23,19 +30,43 @@ extern "C" __declspec(dllimport) int __stdcall WideCharToMultiByte(unsigned int #define CP_UTF8 65001 #endif -bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { - // determine sensible default number of threads. - // std::thread::hardware_concurrency may not be equal to the number of cores, or may return 0. +int32_t get_num_physical_cores() { #ifdef __linux__ std::ifstream cpuinfo("/proc/cpuinfo"); - params.n_threads = std::count(std::istream_iterator(cpuinfo), - std::istream_iterator(), - std::string("processor")); -#endif - if (params.n_threads == 0) { - params.n_threads = std::max(1, (int32_t) std::thread::hardware_concurrency()); + std::string line; + while (std::getline(cpuinfo, line)) { + std::size_t pos = line.find("cpu cores"); + if (pos != std::string::npos) { + pos = line.find(": ", pos); + if (pos != std::string::npos) { + try { + // Extract the number and return it + return static_cast(std::stoul(line.substr(pos + 2))); + } catch (const std::invalid_argument &) { + // Ignore if we could not parse + } + } + } } +#elif defined(__APPLE__) && defined(__MACH__) + int32_t num_physical_cores; + size_t len = sizeof(num_physical_cores); + int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0); + if (result == 0) { + return num_physical_cores; + } + result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0); + if (result == 0) { + return num_physical_cores; + } +#elif defined(_WIN32) + //TODO: Implement +#endif + unsigned int n_threads = std::thread::hardware_concurrency(); + return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4; +} +bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { bool ethreads_set = false; bool invalid_param = false; std::string arg; @@ -69,6 +100,12 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { break; } params.prompt = argv[i]; + } else if (arg == "--session") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.path_session = argv[i]; } else if (arg == "-f" || arg == "--file") { if (++i >= argc) { invalid_param = true; @@ -116,6 +153,18 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { break; } params.temp = std::stof(argv[i]); + } else if (arg == "--tfs") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.tfs_z = std::stof(argv[i]); + } else if (arg == "--typical") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.typical_p = std::stof(argv[i]); } else if (arg == "--repeat_last_n") { if (++i >= argc) { invalid_param = true; @@ -128,6 +177,36 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { break; } params.repeat_penalty = std::stof(argv[i]); + } else if (arg == "--frequency_penalty") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.frequency_penalty = std::stof(argv[i]); + } else if (arg == "--presence_penalty") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.presence_penalty = std::stof(argv[i]); + } else if (arg == "--mirostat") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.mirostat = std::stoi(argv[i]); + } else if (arg == "--mirostat_lr") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.mirostat_eta = std::stof(argv[i]); + } else if (arg == "--mirostat_ent") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.mirostat_tau = std::stof(argv[i]); } else if (arg == "-b" || arg == "--batch_size") { if (++i >= argc) { invalid_param = true; @@ -164,10 +243,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { params.interactive = true; } else if (arg == "--embedding") { params.embedding = true; - } else if (arg == "--interactive-start") { - params.interactive = true; } else if (arg == "--interactive-first") { - params.interactive_start = true; + params.interactive_first = true; } else if (arg == "-ins" || arg == "--instruct") { params.instruct = true; } else if (arg == "--color") { @@ -189,7 +266,28 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { } else if (arg == "--perplexity") { params.perplexity = true; } else if (arg == "--ignore-eos") { - params.ignore_eos = true; + params.logit_bias[llama_token_eos()] = -INFINITY; + } else if (arg == "--no-penalize-nl") { + params.penalize_nl = false; + } else if (arg == "-l" || arg == "--logit-bias") { + if (++i >= argc) { + invalid_param = true; + break; + } + std::stringstream ss(argv[i]); + llama_token key; + char sign; + std::string value_str; + try { + if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) { + params.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f); + } else { + throw std::exception(); + } + } catch (const std::exception &e) { + invalid_param = true; + break; + } } else if (arg == "--n_parts") { if (++i >= argc) { invalid_param = true; @@ -244,17 +342,32 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); fprintf(stderr, " -p PROMPT, --prompt PROMPT\n"); fprintf(stderr, " prompt to start generation with (default: empty)\n"); + fprintf(stderr, " --session FNAME file to cache model state in (may be large!) (default: none)\n"); fprintf(stderr, " --random-prompt start with a randomized prompt.\n"); fprintf(stderr, " --in-prefix STRING string to prefix user inputs with (default: empty)\n"); fprintf(stderr, " -f FNAME, --file FNAME\n"); fprintf(stderr, " prompt file to start generation.\n"); fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d, -1 = infinity)\n", params.n_predict); - fprintf(stderr, " --top_k N top-k sampling (default: %d)\n", params.top_k); - fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", (double)params.top_p); - fprintf(stderr, " --repeat_last_n N last n tokens to consider for penalize (default: %d)\n", params.repeat_last_n); - fprintf(stderr, " --repeat_penalty N penalize repeat sequence of tokens (default: %.1f)\n", (double)params.repeat_penalty); + fprintf(stderr, " --top_k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k); + fprintf(stderr, " --top_p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p); + fprintf(stderr, " --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z); + fprintf(stderr, " --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)params.typical_p); + fprintf(stderr, " --repeat_last_n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", params.repeat_last_n); + fprintf(stderr, " --repeat_penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)params.repeat_penalty); + fprintf(stderr, " --presence_penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)params.presence_penalty); + fprintf(stderr, " --frequency_penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)params.frequency_penalty); + fprintf(stderr, " --mirostat N use Mirostat sampling.\n"); + fprintf(stderr, " Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n"); + fprintf(stderr, " (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", params.mirostat); + fprintf(stderr, " --mirostat_lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)params.mirostat_eta); + fprintf(stderr, " --mirostat_ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)params.mirostat_tau); + fprintf(stderr, " -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n"); + fprintf(stderr, " modifies the likelihood of token appearing in the completion,\n"); + fprintf(stderr, " i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"); + fprintf(stderr, " or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n"); fprintf(stderr, " -c N, --ctx_size N size of the prompt context (default: %d)\n", params.n_ctx); - fprintf(stderr, " --ignore-eos ignore end of stream token and continue generating\n"); + fprintf(stderr, " --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n"); + fprintf(stderr, " --no-penalize-nl do not penalize newline token\n"); fprintf(stderr, " --memory_f32 use f32 instead of f16 for memory key+value\n"); fprintf(stderr, " --temp N temperature (default: %.1f)\n", (double)params.temp); fprintf(stderr, " --n_parts N number of model parts (default: -1 = determine from dimensions)\n"); diff --git a/examples/common.h b/examples/common.h index 4d3631e6c..0fb28d7fb 100644 --- a/examples/common.h +++ b/examples/common.h @@ -8,30 +8,41 @@ #include #include #include +#include // // CLI argument parsing // +int32_t get_num_physical_cores(); struct gpt_params { int32_t seed = -1; // RNG seed - int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); - int32_t n_ethreads = std::min(4, (int32_t) std::thread::hardware_concurrency()); - int32_t n_predict = 128; // new tokens to predict - int32_t repeat_last_n = 64; // last n tokens to penalize + int32_t n_threads = get_num_physical_cores(); + int32_t n_ethreads = get_num_physical_cores(); + int32_t n_predict = -1; // new tokens to predict int32_t n_parts = -1; // amount of model parts (-1 = determine from model dimensions) int32_t n_ctx = 512; // context size - int32_t n_batch = 8; // batch size for prompt processing + int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS) int32_t n_keep = 0; // number of tokens to keep from initial prompt // sampling parameters - int32_t top_k = 40; - float top_p = 0.95f; - float temp = 0.80f; - float repeat_penalty = 1.10f; + std::unordered_map logit_bias; // logit bias for specific tokens + int32_t top_k = 40; // <= 0 to use vocab size + float top_p = 0.95f; // 1.0 = disabled + float tfs_z = 1.00f; // 1.0 = disabled + float typical_p = 1.00f; // 1.0 = disabled + float temp = 0.80f; // 1.0 = disabled + float repeat_penalty = 1.10f; // 1.0 = disabled + int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size) + float frequency_penalty = 0.00f; // 0.0 = disabled + float presence_penalty = 0.00f; // 0.0 = disabled + int mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0 + float mirostat_tau = 5.00f; // target entropy + float mirostat_eta = 0.10f; // learning rate std::string model = "models/lamma-7B/ggml-model.bin"; // model path std::string prompt = ""; + std::string path_session = ""; // path to file for saving/loading model eval state std::string input_prefix = ""; // string to prefix user inputs with std::vector antiprompt; // string upon seeing which more user input is prompted @@ -44,10 +55,10 @@ struct gpt_params { bool interactive = false; // interactive mode bool embedding = false; // get only sentence embedding - bool interactive_start = false; // wait for user input immediately + bool interactive_first = false; // wait for user input immediately bool instruct = false; // instruction mode (used for Alpaca models) - bool ignore_eos = false; // do not stop generating after eos + bool penalize_nl = true; // consider newlines as a repeatable token bool perplexity = false; // compute perplexity over the prompt bool use_mmap = true; // use mmap for faster loads bool use_mlock = false; // use mlock to keep model in memory diff --git a/examples/embedding/CMakeLists.txt b/examples/embedding/CMakeLists.txt index 88c425d4a..db73b6b44 100644 --- a/examples/embedding/CMakeLists.txt +++ b/examples/embedding/CMakeLists.txt @@ -2,3 +2,6 @@ set(TARGET embedding) add_executable(${TARGET} embedding.cpp) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) target_compile_features(${TARGET} PRIVATE cxx_std_11) +if(TARGET BUILD_INFO) + add_dependencies(${TARGET} BUILD_INFO) +endif() diff --git a/examples/embedding/embedding.cpp b/examples/embedding/embedding.cpp index c35e69530..084427ca4 100644 --- a/examples/embedding/embedding.cpp +++ b/examples/embedding/embedding.cpp @@ -1,5 +1,6 @@ #include "common.h" #include "llama.h" +#include "build-info.h" #include @@ -18,11 +19,13 @@ int main(int argc, char ** argv) { "expect poor results\n", __func__, params.n_ctx); } + fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); + if (params.seed <= 0) { params.seed = time(NULL); } - fprintf(stderr, "%s: seed = %d\n", __func__, params.seed); + fprintf(stderr, "%s: seed = %d\n", __func__, params.seed); std::mt19937 rng(params.seed); if (params.random_prompt) { diff --git a/examples/jeopardy/README.md b/examples/jeopardy/README.md new file mode 100644 index 000000000..4c42e3cdb --- /dev/null +++ b/examples/jeopardy/README.md @@ -0,0 +1,21 @@ +# llama.cpp/example/jeopardy + +This is pretty much just a straight port of aigoopy/llm-jeopardy/ with an added graph viewer. + +The jeopardy test can be used to compare the fact knowledge of different models and compare them to eachother. This is in contrast to some other tests, which test logical deduction, creativity, writing skills, etc. + + +Step 1: Open jeopardy.sh and modify the following: +``` +MODEL=(path to your model) +MODEL_NAME=(name of your model) +prefix=(basically, if you use vicuna it's Human: , if you use something else it might be User: , etc) +opts=(add -instruct here if needed for your model, or anything else you want to test out) +``` +Step 2: Run `jeopardy.sh` from the llama.cpp folder + +Step 3: Repeat steps 1 and 2 until you have all the results you need. + +Step 4: Run `graph.py`, and follow the instructions. At the end, it will generate your final graph. + +Note: The Human bar is based off of the full, original 100 sample questions. If you modify the question count or questions, it will not be valid. diff --git a/examples/jeopardy/graph.py b/examples/jeopardy/graph.py new file mode 100644 index 000000000..d00b28652 --- /dev/null +++ b/examples/jeopardy/graph.py @@ -0,0 +1,56 @@ +import matplotlib.pyplot as plt +import sys, os +import csv + +labels = [] +numbers = [] +numEntries = 1 + +rows = [] + +def bar_chart(numbers, labels, pos): + plt.bar(pos, numbers, color='blue') + plt.xticks(ticks=pos, labels=labels) + plt.title("Jeopardy Results by Model") + plt.xlabel("Model") + plt.ylabel("Questions Correct") + plt.show() + +def calculatecorrect(): + directory = os.fsencode("./examples/jeopardy/results/") + csv_reader = csv.reader(open("./examples/jeopardy/qasheet.csv", 'rt'), delimiter=',') + for row in csv_reader: + global rows + rows.append(row) + for listing in os.listdir(directory): + filename = os.fsdecode(listing) + if filename.endswith(".txt"): + file = open("./examples/jeopardy/results/" + filename, "rt") + global labels + global numEntries + global numbers + labels.append(filename[:-4]) + numEntries += 1 + i = 1 + totalcorrect = 0 + for line in file.readlines(): + if line.strip() != "------": + print(line) + else: + print("Correct answer: " + rows[i][2] + "\n") + i+=1 + print("Did the AI get the question right? (y/n)") + if input() == "y": + totalcorrect += 1 + numbers.append(totalcorrect) + + + +if __name__ == '__main__': + calculatecorrect() + pos = list(range(numEntries)) + labels.append("Human") + numbers.append(48.11) + bar_chart(numbers, labels, pos) + print(labels) + print(numbers) diff --git a/examples/jeopardy/jeopardy.sh b/examples/jeopardy/jeopardy.sh new file mode 100644 index 000000000..9bdbc755c --- /dev/null +++ b/examples/jeopardy/jeopardy.sh @@ -0,0 +1,30 @@ +#!/bin/bash +set -e + +MODEL=./models/ggml-vicuna-13b-1.1-q4_0.bin +MODEL_NAME=Vicuna + +# exec options +prefix="Human: " # Ex. Vicuna uses "Human: " +opts="--temp 0 -n 80" # additional flags +nl=' +' +introduction="You will be playing a game of Jeopardy. Simply answer the question in the correct format (Ex. What is Paris, or Who is George Washington)." + +# file options +question_file=./examples/jeopardy/questions.txt +touch ./examples/jeopardy/results/$MODEL_NAME.txt +output_file=./examples/jeopardy/results/$MODEL_NAME.txt + +counter=1 + +echo 'Running' +while IFS= read -r question +do + exe_cmd="./main -p "\"$prefix$introduction$nl$prefix$question\"" "$opts" -m ""\"$MODEL\""" >> ""\"$output_file\"" + echo $counter + echo "Current Question: $question" + eval "$exe_cmd" + echo -e "\n------" >> $output_file + counter=$((counter+1)) +done < "$question_file" diff --git a/examples/jeopardy/qasheet.csv b/examples/jeopardy/qasheet.csv new file mode 100644 index 000000000..35b084189 --- /dev/null +++ b/examples/jeopardy/qasheet.csv @@ -0,0 +1,103 @@ +Index,Original Category,Original Correct Question,Model Prompt +1,The Oscars,Who is John Williams?,Which actor Born in 1932 was the son of a percussionist in the CBS radio orchestra has been nominated for 53 Oscars? +2,English Literature,What is Paradise Lost?,"What work in English Literature says: 'The mind is its own place, & in itself can make a heaven of hell, a hell of heaven. What matter where, if I be still the same'?" +3,Writers’ Lesser-Known Works,Who is Niccolò Machiavelli?,"Known for more philosophical works, he wrote the play 'La Mandragola', in which Florentines are rewarded for immoral actions?" +4,Exploration,What is Easter Island (Rapa Nui)?,"James Cook's account of a 1774 visit where records an object 'near 27 feet long, and upwards of 8 feet over the breast or shoulders'?" +5,The Bill of Rights,What is the Eighth Amendment?,England's 'Bloody Assizes' & a 1685 life sentence for perjury were 2 main origins of which amendment to the U.S. Constitution? +6,Nobel Peace Prize Winners,Who are Nelson Mandela & Desmond Tutu?,"Which nobel peace price winners each lived at times on Vilakazi St. in Soweto , so it claims to be the world's only street home to 2 Nobel Peace Prize winners?" +7,Famous Names,Who is Walt Disney?,"In 1966, the year of who's death did he share plans for an experimental prototype community in Florida?" +8,Geography,What is Colombia?,"Of the 13 nations through which the Equator passes, what is the only one whose coastline borders the Caribbean Sea?" +9,Fashion History,What are rhinestones?,"Which decorative items in fashion history get their name from their origin in the port city of Strasbourg, on the border of France & Germany?" +10,Movies of the ’80s,What is Driving Miss Daisy?,What 1980's movie is based on an off-Broadway play with just 3 characters and won the Best Picture Oscar & the actors in all 3 roles were nominated? +11,Novelists,Who is John Grisham?,"A 2012 book review for which novelist noted subjects that 'sparked his ire': capital punishment, big tobacco & 'the plight of the unjustly convicted'?" +12,20th Century Eponyms,What is the Maginot Line?,"A 1940 headline about what 20th Century Eponym included 'failure', 'liability when it came to offense' & 'stout hearts no match for tanks'?" +13,City History,What is Stockholm?,"Over 700 years after its traditional 1252 founding date, what port city became associated with a psychological response?" +14,Brand Names,What is Jacuzzi?,"The success of what brand has its roots with a hydrotherapy pump its cofounder created for his son, who had arthritis?" +15,American Authors,Who is Washington Irving?,"In a periodical in 1807, what American Author called New York City 'Gotham, Gotham! Most enlightened of cities'?" +16,Symbols,What is “less than”?,What symbol is a rotated V in math and a feeling of some marginalized or underrepresented people in society? +17,Movie Theme Songs,Who is James Bond?,"Monty Norman, the composer of what character's theme, said the staccato riff conveyed sexiness, mystery & ruthlessness?" +18,American Novelists,Who is Joseph Heller?,"What American Novelist served with an airman named Yohannan in World War II & despite what readers might think, he said he enjoyed his service?" +19,Medieval Places,"What is Canterbury, England? (Canterbury Cathedral)","In what Medieval place did one of the participants in an 1170 event say, 'Let us away, knights; he will rise no more'?" +20,Countries of Africa,What is Morocco?,"At one time a province of the Roman Empire, what African country kingdom is known to Arabic scholars as Al-Maghrib Al-Aqsa, 'the far west'?" +21,Statehood,What is Wyoming?,Congress relented in 1890 after what prospective state said it would wait 100 years rather than come in without the women? +22,1980s Movies,What is Raiders of the Lost Ark?,"A writer & producer of what movie said he wanted it to be like a Western or James Bond film, 'only it takes place in the 30s'?" +23,Art Exhibitions,Who is Rembrandt?,In 1898 what's been called the first blockbuster art show was devoted to which artist & put on for Queen Wilhelmina's coronation? +24,Countries of the World,What is Mongolia?,"Part of the largest contiguous land empire during the 1200s & 1300s, today what is the world's second-largest landlocked country?" +25,Literature,What is “Howl”?,A 2006 book was titled 'The Poem That Changed America:' What 'Fifty Years Later'? +26,Invasions,Who is William of Orange?,"Backed by 14,000 troops, who invaded England to restore, in his words, its 'religion, laws, and liberties'?" +27,Landmarks,What is the Eiffel Tower?,"After its completion in the late 19th c., what was landmark was called 'a truly tragic street lamp' & a 'high & skinny pyramid of iron ladders'?" +28,Geographic Name’s the Same,What is Dover?,"The busiest passenger port in the U.K., what shares its name with a capital of one of the original 13 states?" +29,Names in the Bookstore,Who is Peter Mark Roget?,"This man made lists, perhaps to cope with depression; a set of lists he published in 1852 made whose name synonymous with a type of book?" +30,U.S. History,Who is Dr. Samuel Mudd?,"An 1869 presidential pardon was granted to which man, due in part to a plea by the Medical Society of Harford County, Maryland?" +31,American Literature,What is The Things They Carried?,"Letters, pocket knives, C rations & steel helmets are among the tangible items referred to in the title of what American literature modern war classic?" +32,Nonfiction,What is The Communist Manifesto,"What nonfiction book has the line, 'The discovery of America…opened up fresh ground for the rising bourgeoisie'?" +33, a new version was passed 81 years later,Laws in U.S. History,What is the Civil Rights Act?,,,,,,,,,,,,,,,,,,0, 2/3 +34,Names of Myth,Who is Helen of Troy?,"Whose brothers, Castor & Pollux, saved her after Theseus stole her away as a kid; a larger force would seek her later in life?" +35,African Countries,What is Sudan?,"Once Africa's largest country in area, what African Country dropped to third in 2011 when a portion of it declared independence?" +36,The Ancient World,What is Alexandria?,"The ancient writer Galen said books on ships arriving to what city's port were seized, originals kept & copies returned?" +37,Famous Names,Who is Andy Warhol?,"For a special 1970s cookbook, who provided one simple recipe–a can of Campbell's tomato soup & 2 cans of milk?" +38,People & Places,What is Guam?,"Thought to descend from people of Southeast Asia, the Chamorro make up what U.S. territory’s largest ethnic group?" +39,Current World Leaders,What is the Philippines?,"In office from 2022, the president of what country has taken so many foreign trips a play on his name is 'Ferdinand Magellan Jr.'?" +40,Writers & The South,Who is Tennessee Williams?,In 1939 which writer lived on Toulouse Street in the French Quarter & chose the professional name that bonded him to the South? +41,National Parks,What is Yellowstone?,"What National Park is named for a river indigenous people called Mi tse a-da-zi, translated by French-speaking trappers as 'Pierre Jaune'?" +42,Sports,Who are the Harlem Globetrotters?,"In 2010 who introduced the 4-point shot, 35 feet from the basket?" +43,The U.S. Military,What is “Top Gun”?,Losses over Asia in the 1960s led to the establishment of the program known as what at a San Diego naval base in 1969? +44,Art & Science,What is Halley’s Comet?,"A craft that visited what was named for Giotto, based on the story that 680 years earlier, the painter depicted it as the Star of Bethlehem?" +45,Words From World War I,What is “tank”?,"In World War I, 'Cistern' & 'reservoir' were suggested names for what secret invention, but the British preferred this less clumsy monosyllable?" +46,European History,What is Holy Roman Emperor?,"Until 1806, some German nobles included among their honors the title of 'Elector' for their role in selecting this personage?" +47,Theater History,Who is Peter Pan?,"In 1904, wearing a harness, actress Nina Boucicault became the first to play what character onstage?" +48,European Cities,What is Aachen?,"Alphabetically the first German city in encyclopedias, what was also the first one taken by the Allies in World War II?" +49,Word Origins,What is mantra?,This Sanskrit word referring to a spoken word or phrase comes from a word for 'to think'? +50,Inventions,What is barbed wire?,1917's 'Elements of Trench Warfare' said what Old West invention was 'difficult to destroy' & 'difficult to get through'? +51,World War II,What is Schindler’s list?,"Mimi Reinhard, who never learned to type using more than 2 fingers, produced what in World War II with 1,100 names, including hers?" +52, their offspring was the source of this mythical object,Mythology,What is the Golden Fleece? +53,Literature,What is Pride and Prejudice?,"Published in 2011, P.D. James' final novel, 'Death Comes to Pemberley', was a sequel to what novel from 200 years earlier?" +54, only these 2 west of the Mississippi River border each other,U.S. State Names,What are Oregon & Nevada? +55,Word Origins,What is passion?,"Originally relating to a story of suffering, what word now more commonly refers to strong emotion of any kind?" +56,World Cinema,What is La Vie en Rose?,"The 2007 biopic called 'La Môme' in France, meaning 'The Kid', was released in the U.S. under what other French title?" +57,History,What is Santa Maria?,"Returning home in 1493, Columbus stopped in the Azores at an island with what name, also something he'd lost off the Haiti coast?" +58,Landmarks,What is a kremlin?,Pskov & Nizhny Novgorod are 2 of the cities that have a fortress called what? +59,Foreign-Born Authors,Who is Vladimir Nabokov?,In the 1950s the New York Times said what author 'is writing about all lust' & his lecherous narrator 'is all of us'? +60,Astronomy & Geography,What is Capricorn?,"At the winter solstice, the sun is in Sagittarius; it once appeared in what constellation, giving a geographic feature its name?" +61,Television,What is Law & Order?,"Mike Post combined the sound of a slamming jail door, an anvil & 100 men stomping on a floor for what television series that debuted in 1990?" +62,British Landmarks,What is the Tower of London?,"Like Sir Thomas More, 3 16th century English queens are buried at what British location?" +63,Early American History,What are witches?,"In 1692 Increase Mather wrote, 'It were better that ten suspected' of these who 'escape, than that one innocent person … be condemned'?" +64,Geography Mnemonics,What are Arkansas and Louisiana?,"The Geography Mnemonic Mimal, sometimes said to be the silhouette of a chef or elf, stands for Minnesota, Iowa, Missouri, and what other 2 states?" +65,Business Milestones,What is the Ford Model T?,"What was first sold in 1908, at a price equivalent to about $27,000 today?" +66,In The Bookstore,Who is Tom Clancy?,The name of what author dead since 2013 now appears on books written by a former U.S. marshal & a former Apache helicopter pilot? +67,Historic Art,What is the Bayeux Tapestry?,The artwork once known in France as 'la tapisserie de la Reine Mathilde' is better known as what? +68,Pop Stars,Who is Madonna?,In 2022 which pop star became the first woman to have a Billboard Top 10 album in 5 decades starting with the 1980s? +69,Classic Tale Characters,Who is Scheherazade?,"In one 19th century translation, what female classic tale character 'perceived the dawn of day and ceased' speaking nearly 1,000 times?" +70,USA,What is Jack Daniel’s?,"Ironically, though what company founded in the 1860s is Moore County, Tennessee's largest employer, Moore is a dry county?" +71,Historic People,Who was William Bligh?,"After a 1789 event, who wrote, 'My first determination was to seek a supply of…water at Tofoa, & afterwards to sail for Tongataboo'?" +72,The Movies,What is The Godfather?,Laurence Olivier & Ernest Borgnine were considered for the lead role & Sergio Leone to direct for what film that turned 50 in 2022? +73,Continental Geography,What is Colombia?,"Until a 1903 secession, what country's contiguous territory spanned 2 continents?" +74,Foreign-Born Authors,Who is Isabel Allende?,"Early in her career which foreign-born author translated romance novels into Spanish, often changing the dialogue to make the heroines smarter?" +75,Historic Crimes,What is the Mona Lisa?,"Saying it was stolen by Napoleon, self-styled Italian patriot Vincenzo Peruggia took what in 1911?" +76,U.S. Bodies of Water,What is Lake Mead?,"Continuing a downward trend, in July 2022 what US body of water was at 27% capacity, its lowest level since 1937 when it was first being filled?" +77,Gods & Goddesses,Who is Aurora (or Eos)?,"Each morning which goddess began her ride in her chariot across the sky ahead of her brother Sol, or Helios?" +78,America At War,What is the Battle of New Orleans?,"Until the Civil War, the Jan. 8 date of what American battle of dubious military importance but big morale value was a national holiday?" +79,Children’s Books,What is The Velveteen Rabbit?,"Which children's book title character is told 'By the time you are real, most of your hair has been loved off your eyes drop out & you get shabby'?" +80,TV Finales,What is Grace and Frankie?,"In a TV reunion over 40 years in the making, Dolly Parton appeared as an angel named Agnes in the final episode of what comedy in 2022?" +81,American Poems,Who is Evangeline?,"In an 1847 American poem what character sees her town of Grand-Pré burned, but finally reunites with her beau for a kiss before his death?" +82,Famous Names,Who is Banksy?,"In 2001 who published a book called 'Banging Your Head Against a Brick Wall'; in 2002, 'Existencilism'?" +83,Children’s Lit,What is Charlotte’s Web?,The title object of what childrens book 'never looked more beautiful each strand held dozens of bright drops of early morning dew'? +84,Classic Songs,What is “Here Comes Santa Claus”?,The shouts of excited children at a 1946 holiday parade are said to have inspired what perennial classic song favorite? +85,Brand Names,What are Milk Duds?,"Unable to make what candies perfectly round, the confectioner embraced this flawed name for the product?" +86,Countries of the World,What is Italy?,"What country is home to 58 UNESCO World Heritage Sites, more than any other country; the sites include a volcano & a lagoon?" +87,Action Movies,What is Die Hard?,"What action movie's last line is 'If this is their idea of Christmas, I gotta be here for New Years'?" +88,Presidential Facts,Who is Woodrow Wilson?,Only 3 presidents have married while in office— John Tyler was the first & which one was the last? +89,19th Century Americans,Who is Frederick Douglass?,"Demonstrating the dignity & humanity of Black Americans, who sat for 160 known photographs, the most of any American in the 19th century?" +90,Latin Phrases,What is “quid pro quo”?,"Originally, which Latin 3-word phrase referred to when a doctor or apothecary substituted one medicine for another?" +91,1970s Movies,What is Monty Python and the Holy Grail?,The 1975 premiere of what movie comedy advertised free coconuts for the first thousand in the audience? +92,Name’s The Same,What is Manhattan?,"A cocktail, an island & a WWII venture originally called 'Development of Substitute Materials' all bear what name?" +93,U.S. Presidents,Who is Calvin Coolidge?,"Which US President was sworn in twice as President within 2 years, first by his father & then later by a former U.S. President?" +94,Plays,What is The Tempest?,A 1609 story in which an exiled king of Bulgaria creates a sea palace with his magic may have inspired the plot of what play? +95,Landmarks,What is the Berlin Wall?,"In 2009, during a 20th anniversary celebration, what landmark was called 'an edifice of fear. On Nov. 9, it became a place of joy'?" +96,World Capitals,"What is Vienna, Austria?","Among what world capital's nicknames are the 'City of Classical Music' &, possibly in honor of a famous resident from 1860 to 1938, the 'City of Dreams'?" +97,Language & Its Meanings,What is a night owl?,"Now meaning someone with nocturnal habits, what catches a sleeping dove in Shakespeare's 'Lucrece'?" +98,Flags of Our Hemisphere,What is Brazil?,"The stars on what country's flag represent states, 26 of them; unlike the USA's, its 'federal district' gets its own 27th star?" +99,Names in U.S. History,Who is Oliver Brown?,What father was the only man among the 13 plaintiffs in a US class-action case filed in 1951? +100,Children’s Authors,"Who is Sarah? (from Sarah, Plain and Tall)","Reversing the story of what heroine she created, childrens author Patricia Maclachlan was born on the prairie but spent much of her life in New England?" +,,, +TOTALS,,, diff --git a/examples/jeopardy/questions.txt b/examples/jeopardy/questions.txt new file mode 100644 index 000000000..eea78a057 --- /dev/null +++ b/examples/jeopardy/questions.txt @@ -0,0 +1,100 @@ +Which man born in 1932 was the son of a percussionist in the CBS radio orchestra has been nominated for 53 Oscars? +What work in English Literature says: 'The mind is its own place, & in itself can make a heaven of hell, a hell of heaven. What matter where, if I be still the same'? +Known for more philosophical works, he wrote the play 'La Mandragola', in which Florentines are rewarded for immoral actions? +James Cook's account of a 1774 visit where records an object 'near 27 feet long, and upwards of 8 feet over the breast or shoulders'? +England's 'Bloody Assizes' & a 1685 life sentence for perjury were 2 main origins of which amendment to the U.S. Constitution? +Which nobel peace price winners each lived at times on Vilakazi St. in Soweto , so it claims to be the world's only street home to 2 Nobel Peace Prize winners? +In 1966, the year of who's death did he share plans for an experimental prototype community in Florida? +Of the 13 nations through which the Equator passes, what is the only one whose coastline borders the Caribbean Sea? +Which decorative items in fashion history get their name from their origin in the port city of Strasbourg, on the border of France & Germany? +What 1980's movie is based on an off-Broadway play with just 3 characters and won the Best Picture Oscar & the actors in all 3 roles were nominated? +A 2012 book review for which novelist noted subjects that 'sparked his ire': capital punishment, big tobacco & 'the plight of the unjustly convicted'? +A 1940 headline about what 20th Century Eponym included 'failure', 'liability when it came to offense' & 'stout hearts no match for tanks'? +Over 700 years after its traditional 1252 founding date, what port city became associated with a psychological response? +The success of what brand has its roots with a hydrotherapy pump its cofounder created for his son, who had arthritis? +In a periodical in 1807, what American Author called New York City 'Gotham, Gotham! Most enlightened of cities'? +What symbol is a rotated V in math and a feeling of some marginalized or underrepresented people in society? +Monty Norman, the composer of what character's theme, said the staccato riff conveyed sexiness, mystery & ruthlessness? +What American Novelist served with an airman named Yohannan in World War II & despite what readers might think, he said he enjoyed his service? +In what Medieval place did one of the participants in an 1170 event say, 'Let us away, knights; he will rise no more'? +At one time a province of the Roman Empire, what African country kingdom is known to Arabic scholars as Al-Maghrib Al-Aqsa, 'the far west'? +Congress relented in 1890 after what prospective state said it would wait 100 years rather than come in without the women? +A writer & producer of what movie said he wanted it to be like a Western or James Bond film, 'only it takes place in the 30s'? +In 1898 what's been called the first blockbuster art show was devoted to which artist & put on for Queen Wilhelmina's coronation? +Part of the largest contiguous land empire during the 1200s & 1300s, today what is the world's second-largest landlocked country? +A 2006 book was titled 'The Poem That Changed America:' What 'Fifty Years Later'? +Backed by 14,000 troops, who invaded England to restore, in his words, its 'religion, laws, and liberties'? +After its completion in the late 19th c., what was landmark was called 'a truly tragic street lamp' & a 'high & skinny pyramid of iron ladders'? +The busiest passenger port in the U.K., what shares its name with a capital of one of the original 13 states? +This man made lists, perhaps to cope with depression; a set of lists he published in 1852 made whose name synonymous with a type of book? +An 1869 presidential pardon was granted to which man, due in part to a plea by the Medical Society of Harford County, Maryland? +Letters, pocket knives, C rations & steel helmets are among the tangible items referred to in the title of what American literature modern war classic? +What nonfiction book has the line, 'The discovery of America…opened up fresh ground for the rising bourgeoisie'? +A radical Republican championed what 1875 act but the Supreme Court struck it down in 1883; a new version was passed 81 years later? +Whose brothers, Castor & Pollux, saved her after Theseus stole her away as a kid; a larger force would seek her later in life? +Once Africa's largest country in area, what African Country dropped to third in 2011 when a portion of it declared independence? +The ancient writer Galen said books on ships arriving to what city's port were seized, originals kept & copies returned? +For a special 1970s cookbook, who provided one simple recipe–a can of Campbell's tomato soup & 2 cans of milk? +Thought to descend from people of Southeast Asia, the Chamorro make up what U.S. territory’s largest ethnic group? +In office from 2022, the president of what country has taken so many foreign trips a play on his name is 'Ferdinand Magellan Jr.'? +In 1939 which writer lived on Toulouse Street in the French Quarter & chose the professional name that bonded him to the South? +What National Park is named for a river indigenous people called Mi tse a-da-zi, translated by French-speaking trappers as 'Pierre Jaune'? +In 2010 who introduced the 4-point shot, 35 feet from the basket? +Losses over Asia in the 1960s led to the establishment of the program known as what at a San Diego naval base in 1969? +A craft that visited what was named for Giotto, based on the story that 680 years earlier, the painter depicted it as the Star of Bethlehem? +In World War I, 'Cistern' & 'reservoir' were suggested names for what secret invention, but the British preferred this less clumsy monosyllable? +Until 1806, some German nobles included among their honors the title of 'Elector' for their role in selecting this personage? +In 1904, wearing a harness, actress Nina Boucicault became the first to play what character onstage? +Alphabetically the first German city in encyclopedias, what was also the first one taken by the Allies in World War II? +This Sanskrit word referring to a spoken word or phrase comes from a word for 'to think'? +1917's 'Elements of Trench Warfare' said what Old West invention was 'difficult to destroy' & 'difficult to get through'? +Mimi Reinhard, who never learned to type using more than 2 fingers, produced what in World War II with 1,100 names, including hers? +Poseidon carried off the maiden Theophane & turned her into a ewe; their offspring was the source of what mythical object? +Published in 2011, P.D. James' final novel, 'Death Comes to Pemberley', was a sequel to what novel from 200 years earlier? +5 U.S. states have 6-letter names; only which 2 west of the Mississippi River border each other? +Originally relating to a story of suffering, what word now more commonly refers to strong emotion of any kind? +The 2007 biopic called 'La Môme' in France, meaning 'The Kid', was released in the U.S. under what other French title? +Returning home in 1493, Columbus stopped in the Azores at an island with what name, also something he'd lost off the Haiti coast? +Pskov & Nizhny Novgorod are 2 of the cities that have a fortress called what? +In the 1950s the New York Times said what author 'is writing about all lust' & his lecherous narrator 'is all of us'? +At the winter solstice, the sun is in Sagittarius; it once appeared in what constellation, giving a geographic feature its name? +Mike Post combined the sound of a slamming jail door, an anvil & 100 men stomping on a floor for what television series that debuted in 1990? +Like Sir Thomas More, 3 16th century English queens are buried at what British location? +In 1692 Increase Mather wrote, 'It were better that ten suspected' of these who 'escape, than that one innocent person be condemned'? +The Geography Mnemonic Mimal, sometimes said to be the silhouette of a chef or elf, stands for Minnesota, Iowa, Missouri, and what other 2 states? +What was first sold in 1908, at a price equivalent to about $27,000 today? +The name of what author dead since 2013 now appears on books written by a former U.S. marshal & a former Apache helicopter pilot? +The artwork once known in France as 'la tapisserie de la Reine Mathilde' is better known as what? +In 2022 which pop star became the first woman to have a Billboard Top 10 album in 5 decades starting with the 1980s? +In one 19th century translation, what female classic tale character 'perceived the dawn of day and ceased' speaking nearly 1,000 times? +Ironically, though what company founded in the 1860s is Moore County, Tennessee's largest employer, Moore is a dry county? +After a 1789 event, who wrote, 'My first determination was to seek a supply of…water at Tofoa, & afterwards to sail for Tongataboo'? +Laurence Olivier & Ernest Borgnine were considered for the lead role & Sergio Leone to direct for what film that turned 50 in 2022? +Until a 1903 secession, what country's contiguous territory spanned 2 continents? +Early in her career which foreign-born author translated romance novels into Spanish, often changing the dialogue to make the heroines smarter? +Saying it was stolen by Napoleon, self-styled Italian patriot Vincenzo Peruggia took what in 1911? +Continuing a downward trend, in July 2022 what US body of water was at 27% capacity, its lowest level since 1937 when it was first being filled? +Each morning which goddess began her ride in her chariot across the sky ahead of her brother Sol, or Helios? +Until the Civil War, the Jan. 8 date of what American battle of dubious military importance but big morale value was a national holiday? +Which children's book title character is told 'By the time you are real, most of your hair has been loved off your eyes drop out & you get shabby'? +In a TV reunion over 40 years in the making, Dolly Parton appeared as an angel named Agnes in the final episode of what comedy in 2022? +In an 1847 American poem what character sees her town of Grand-Pré burned, but finally reunites with her beau for a kiss before his death? +In 2001 who published a book called 'Banging Your Head Against a Brick Wall'; in 2002, 'Existencilism'? +The title object of what childrens book 'never looked more beautiful each strand held dozens of bright drops of early morning dew'? +The shouts of excited children at a 1946 holiday parade are said to have inspired what perennial classic song favorite? +Unable to make what candies perfectly round, the confectioner embraced this flawed name for the product? +What country is home to 58 UNESCO World Heritage Sites, more than any other country; the sites include a volcano & a lagoon? +What action movie's last line is 'If this is their idea of Christmas, I gotta be here for New Years'? +Only 3 presidents have married while in office— John Tyler was the first & which one was the last? +Demonstrating the dignity & humanity of Black Americans, who sat for 160 known photographs, the most of any American in the 19th century? +Originally, which Latin 3-word phrase referred to when a doctor or apothecary substituted one medicine for another? +The 1975 premiere of what movie comedy advertised free coconuts for the first thousand in the audience? +A cocktail, an island & a WWII venture originally called 'Development of Substitute Materials' all bear what name? +Which US President was sworn in twice as President within 2 years, first by his father & then later by a former U.S. President? +A 1609 story in which an exiled king of Bulgaria creates a sea palace with his magic may have inspired the plot of what play? +In 2009, during a 20th anniversary celebration, what landmark was called 'an edifice of fear. On Nov. 9, it became a place of joy'? +Among what world capital's nicknames are the 'City of Classical Music' &, possibly in honor of a famous resident from 1860 to 1938, the 'City of Dreams'? +Now meaning someone with nocturnal habits, what catches a sleeping dove in Shakespeare's 'Lucrece'? +The stars on what country's flag represent states, 26 of them; unlike the USA's, its 'federal district' gets its own 27th star? +What father was the only man among the 13 plaintiffs in a US class-action case filed in 1951? +Reversing the story of what heroine she created, childrens author Patricia Maclachlan was born on the prairie but spent much of her life in New England? diff --git a/examples/main/CMakeLists.txt b/examples/main/CMakeLists.txt index b2dcc2910..c364242fb 100644 --- a/examples/main/CMakeLists.txt +++ b/examples/main/CMakeLists.txt @@ -2,3 +2,6 @@ set(TARGET main) add_executable(${TARGET} main.cpp) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) target_compile_features(${TARGET} PRIVATE cxx_std_11) +if(TARGET BUILD_INFO) + add_dependencies(${TARGET} BUILD_INFO) +endif() diff --git a/examples/main/README.md b/examples/main/README.md index f09e7ba97..234bf2eb5 100644 --- a/examples/main/README.md +++ b/examples/main/README.md @@ -1,3 +1,191 @@ -# main +# llama.cpp/example/main -TODO +This example program allows you to use various LLaMA language models in an easy and efficient way. It is specifically designed to work with the [llama.cpp](https://github.com/ggerganov/llama.cpp) project, which provides a plain C/C++ implementation with optional 4-bit quantization support for faster, lower memory inference, and is optimized for desktop CPUs. This program can be used to perform various inference tasks with LLaMA models, including generating text based on user-provided prompts and chat-like interactions with reverse prompts. + +## Table of Contents + +1. [Quick Start](#quick-start) +2. [Common Options](#common-options) +3. [Input Prompts](#input-prompts) +4. [Interaction](#interaction) +5. [Context Management](#context-management) +6. [Generation Flags](#generation-flags) +7. [Performance Tuning and Memory Options](#performance-tuning-and-memory-options) +8. [Additional Options](#additional-options) + +## Quick Start + +To get started right away, run the following command, making sure to use the correct path for the model you have: + +```bash +./main -m models/7B/ggml-model.bin --prompt "Once upon a time" +``` + +The following command generates "infinite" text from a starting prompt (you can use `Ctrl-C` to stop it): + +```bash +./main -m models/7B/ggml-model.bin --ignore-eos --n_predict -1 --keep -1 --prompt "Once upon a time" +``` + +For an interactive experience, try this command: + +```bash +./main -m models/7B/ggml-model.bin -n -1 --color -r "User:" --in-prefix " " --prompt $'User: Hi\nAI: Hello. I am an AI chatbot. Would you like to talk?\nUser: Sure!\nAI: What would you like to talk about?\nUser:' +``` + +Note that the newline characters in the prompt string above only work on Linux. On Windows, you will have to use the ``--file`` option (see below) to load a multi-line prompt from file instead. + +## Common Options + +In this section, we cover the most commonly used options for running the `main` program with the LLaMA models: + +- `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.bin`). +- `-i, --interactive`: Run the program in interactive mode, allowing you to provide input directly and receive real-time responses. +- `-ins, --instruct`: Run the program in instruction mode, which is particularly useful when working with Alpaca models. +- `-t N, --threads N`: Set the number of threads to use during computation. It is recommended to set this to the number of physical cores your CPU has. +- `-n N, --n_predict N`: Set the number of tokens to predict when generating text. Adjusting this value can influence the length of the generated text. +- `-c N, --ctx_size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. + +## Input Prompts + +The `main` program provides several ways to interact with the LLaMA models using input prompts: + +- `--prompt PROMPT`: Provide a prompt directly as a command-line option. +- `--file FNAME`: Provide a file containing a prompt or multiple prompts. +- `--interactive-first`: Run the program in interactive mode and wait for input right away. (More on this below.) +- `--random-prompt`: Start with a randomized prompt. + +## Interaction + +The `main` program offers a seamless way to interact with LLaMA models, allowing users to engage in real-time conversations or provide instructions for specific tasks. The interactive mode can be triggered using various options, including `--interactive`, `--interactive-first`, and `--instruct`. + +In interactive mode, users can participate in text generation by injecting their input during the process. Users can press `Ctrl+C` at any time to interject and type their input, followed by pressing `Return` to submit it to the LLaMA model. To submit additional lines without finalizing input, users can end the current line with a backslash (`\`) and continue typing. + +### Interaction Options + +- `-i, --interactive`: Run the program in interactive mode, allowing users to engage in real-time conversations or provide specific instructions to the model. +- `--interactive-first`: Run the program in interactive mode and immediately wait for user input before starting the text generation. +- `-ins, --instruct`: Run the program in instruction mode, which is specifically designed to work with Alpaca models that excel in completing tasks based on user instructions. +- `--color`: Enable colorized output to differentiate visually distinguishing between prompts, user input, and generated text. + +By understanding and utilizing these interaction options, you can create engaging and dynamic experiences with the LLaMA models, tailoring the text generation process to your specific needs. + +### Reverse Prompts + +Reverse prompts are a powerful way to create a chat-like experience with a LLaMA model by pausing the text generation when specific text strings are encountered: + +- `-r PROMPT, --reverse-prompt PROMPT`: Specify one or multiple reverse prompts to pause text generation and switch to interactive mode. For example, `-r "User:"` can be used to jump back into the conversation whenever it's the user's turn to speak. This helps create a more interactive and conversational experience. However, the reverse prompt doesn't work when it ends with a space. + +To overcome this limitation, you can use the `--in-prefix` flag to add a space or any other characters after the reverse prompt. + +### In-Prefix + +The `--in-prefix` flag is used to add a prefix to your input, primarily, this is used to insert a space after the reverse prompt. Here's an example of how to use the `--in-prefix` flag in conjunction with the `--reverse-prompt` flag: + +```sh +./main -r "User:" --in-prefix " " +``` + +### Instruction Mode + +Instruction mode is particularly useful when working with Alpaca models, which are designed to follow user instructions for specific tasks: + +- `-ins, --instruct`: Enable instruction mode to leverage the capabilities of Alpaca models in completing tasks based on user-provided instructions. + +Technical detail: the user's input is internally prefixed with the reverse prompt (or ``### Instruction:`` as the default), and followed by ``### Response:`` (except if you just press Return without any input, to keep generating a longer response). + +By understanding and utilizing these interaction options, you can create engaging and dynamic experiences with the LLaMA models, tailoring the text generation process to your specific needs. + +## Context Management + +During text generation, LLaMA models have a limited context size, which means they can only consider a certain number of tokens from the input and generated text. When the context fills up, the model resets internally, potentially losing some information from the beginning of the conversation or instructions. Context management options help maintain continuity and coherence in these situations. + +### Context Size + +The `--ctx_size` option allows you to set the size of the prompt context used by the LLaMA models during text generation. A larger context size helps the model to better comprehend and generate responses for longer input or conversations. + +- `-c N, --ctx_size N`: Set the size of the prompt context (default: 512). The LLaMA models were built with a context of 2048, which will yield the best results on longer input/inference. However, increasing the context size beyond 2048 may lead to unpredictable results. + +### Keep Prompt + +The `--keep` option allows users to retain the original prompt when the model runs out of context, ensuring a connection to the initial instruction or conversation topic is maintained. + +- `--keep N`: Specify the number of tokens from the initial prompt to retain when the model resets its internal context. By default, this value is set to 0 (meaning no tokens are kept). Use `-1` to retain all tokens from the initial prompt. + +By utilizing context management options like `--ctx_size` and `--keep`, you can maintain a more coherent and consistent interaction with the LLaMA models, ensuring that the generated text remains relevant to the original prompt or conversation. + +## Generation Flags + +The following options are related to controlling the text generation process, influencing the diversity, creativity, and quality of the generated text. Understanding these options will help you fine-tune the output according to your needs: + +### Number of Tokens to Predict + +- `-n N, --n_predict N`: Set the number of tokens to predict when generating text (default: 128, -1 = infinity). + +The `--n_predict` option controls the number of tokens the model generates in response to the input prompt. By adjusting this value, you can influence the length of the generated text. A higher value will result in longer text, while a lower value will produce shorter text. A value of -1 will cause text to be generated without limit. + +It is important to note that the generated text may be shorter than the specified number of tokens if an End-of-Sequence (EOS) token or a reverse prompt is encountered. In interactive mode text generation will pause and control will be returned to the user. In non-interactive mode, the program will end. In both cases, the text generation may stop before reaching the specified `n_predict` value. If you want the model to keep going without ever producing End-of-Sequence on its own, you can use the ``--ignore-eos`` parameter. + +### RNG Seed + +- `-s SEED, --seed SEED`: Set the random number generator (RNG) seed (default: -1). + +The RNG seed is used to initialize the random number generator that influences the text generation process. By setting a specific seed value, you can obtain consistent and reproducible results across multiple runs with the same input and settings. This can be helpful for testing, debugging, or comparing the effects of different options on the generated text to see when they diverge. If the seed is set to a value less than or equal to 0, a random seed will be used, which will result in different outputs on each run. + +### Temperature + +- `--temp N`: Adjust the randomness of the generated text (default: 0.8). + +Temperature is a hyperparameter that controls the randomness of the generated text. It affects the probability distribution of the model's output tokens. A higher temperature (e.g., 1.5) makes the output more random and creative, while a lower temperature (e.g., 0.5) makes the output more focused, deterministic, and conservative. The default value is 0.8, which provides a balance between randomness and determinism. At the extreme, a temperature of 0 will always pick the most likely next token, leading to identical outputs in each run. + +Example usage: `--temp 0.8` + +### Repeat Penalty + +- `--repeat_penalty N`: Control the repetition of token sequences in the generated text (default: 1.1). + +Repeat penalty is a hyperparameter used to penalize the repetition of token sequences during text generation. It helps prevent the model from generating repetitive or monotonous text. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. The default value is 1.1. + +Example usage: `--repeat_penalty 1.1` + +### Top-K Sampling + +- `--top_k N`: Limit the next token selection to the K most probable tokens (default: 40). + +Top-k sampling is a text generation method that selects the next token only from the top k most likely tokens predicted by the model. It helps reduce the risk of generating low-probability or nonsensical tokens, but it may also limit the diversity of the output. A higher value for top_k (e.g., 100) will consider more tokens and lead to more diverse text, while a lower value (e.g., 10) will focus on the most probable tokens and generate more conservative text. The default value is 40. + +Example usage: `--top_k 40` + +### Top-P Sampling + +- `--top_p N`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P (default: 0.9). + +Top-p sampling, also known as nucleus sampling, is another text generation method that selects the next token from a subset of tokens that together have a cumulative probability of at least p. This method provides a balance between diversity and quality by considering both the probabilities of tokens and the number of tokens to sample from. A higher value for top_p (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. The default value is 0.9. + +Example usage: `--top_p 0.9` + +By adjusting these options, you can control the diversity, quality, and creativity of the generated text to better suit your needs. You can experiment with different combinations of values to find the best settings for your specific use case. + +## Performance Tuning and Memory Options + +These options help improve the performance and memory usage of the LLaMA models: + +- `-t N, --threads N`: Set the number of threads to use during computation. Using the correct number of threads can greatly improve performance. It is recommended to set this value to the number of CPU cores. +- `--mlock`: Lock the model in memory, preventing it from being swapped out when mmaped. This can improve performance. +- `--no-mmap`: Do not memory-map the model. This results in a slower load time but may reduce pageouts if you're not using `mlock`. +- `--memory_f32`: Use 32 bit floats instead of 16 bit floats for memory key+value, allowing higher quality inference at the cost of memory. +- `-b N, --batch_size N`: Set the batch size for prompt processing (default: 512). This large batch size benefits users who have BLAS installed and enabled it during the build. If you don't have BLAS enabled ("BLAS=0"), you can use a smaller number, such as 8, to see the prompt progress as it's evaluated in some situations. + +For information about 4-bit quantization, which can significantly improve performance and reduce memory usage, please refer to llama.cpp's primary [README](../../README.md#prepare-data--run). + +By understanding and using these performance tuning settings, you can optimize the LLaMA model's behavior to achieve the best performance for your specific needs. + +## Additional Options + +These options provide extra functionality and customization when running the LLaMA models: + +- `-h, --help`: Display a help message showing all available options and their default values. This is particularly useful for checking the latest options and default values, as they can change frequently, and the information in this document may become outdated. +- `--verbose-prompt`: Print the prompt before generating text. +- `--mtest`: Test the model's functionality by running a series of tests to ensure it's working properly. +- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains. +- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation. diff --git a/examples/main/main.cpp b/examples/main/main.cpp index 28b724933..38147cf28 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -5,6 +5,7 @@ #include "common.h" #include "llama.h" +#include "build-info.h" #include #include @@ -25,6 +26,7 @@ #endif static console_state con_st; +static llama_context ** g_ctx; static bool is_interacting = false; @@ -36,6 +38,7 @@ void sigint_handler(int signo) { if (!is_interacting) { is_interacting=true; } else { + llama_print_timings(*g_ctx); _exit(130); } } @@ -79,11 +82,13 @@ int main(int argc, char ** argv) { "expect poor results\n", __func__, params.n_ctx); } + fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); + if (params.seed <= 0) { params.seed = time(NULL); } - fprintf(stderr, "%s: seed = %d\n", __func__, params.seed); + fprintf(stderr, "%s: seed = %d\n", __func__, params.seed); std::mt19937 rng(params.seed); if (params.random_prompt) { @@ -94,6 +99,7 @@ int main(int argc, char ** argv) { //bool is_prime(int n) {)"; llama_context * ctx; + g_ctx = &ctx; // load the model { @@ -154,6 +160,31 @@ int main(int argc, char ** argv) { // Add a space in front of the first character to match OG llama tokenizer behavior params.prompt.insert(0, 1, ' '); + std::string path_session = params.path_session; + std::vector session_tokens; + + if (!path_session.empty()) { + fprintf(stderr, "%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str()); + + // fopen to check for existing session + FILE * fp = std::fopen(path_session.c_str(), "rb"); + if (fp != NULL) { + std::fclose(fp); + + session_tokens.resize(params.n_ctx); + size_t n_token_count_out = 0; + if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) { + fprintf(stderr, "%s: error: failed to load session file '%s'\n", __func__, path_session.c_str()); + return 1; + } + session_tokens.resize(n_token_count_out); + + fprintf(stderr, "%s: loaded a session with prompt size of %d tokens\n", __func__, (int) session_tokens.size()); + } else { + fprintf(stderr, "%s: session file does not exist, will create\n", __func__); + } + } + // tokenize the prompt auto embd_inp = ::llama_tokenize(ctx, params.prompt, true); @@ -164,8 +195,28 @@ int main(int argc, char ** argv) { return 1; } + // debug message about similarity of saved session, if applicable + size_t n_matching_session_tokens = 0; + if (session_tokens.size()) { + for (llama_token id : session_tokens) { + if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) { + break; + } + n_matching_session_tokens++; + } + if (n_matching_session_tokens >= embd_inp.size()) { + fprintf(stderr, "%s: session file has exact match for prompt!\n", __func__); + } else if (n_matching_session_tokens < (embd_inp.size() / 2)) { + fprintf(stderr, "%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n", + __func__, n_matching_session_tokens, embd_inp.size()); + } else { + fprintf(stderr, "%s: session file matches %zu / %zu tokens of prompt\n", + __func__, n_matching_session_tokens, embd_inp.size()); + } + } + // number of tokens to keep when resetting context - if (params.n_keep < 0 || params.n_keep > (int)embd_inp.size() || params.instruct) { + if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct) { params.n_keep = (int)embd_inp.size(); } @@ -175,12 +226,12 @@ int main(int argc, char ** argv) { // in instruct mode, we inject a prefix and a suffix to each input by the user if (params.instruct) { - params.interactive_start = true; + params.interactive_first = true; params.antiprompt.push_back("### Instruction:\n\n"); } // enable interactive mode if reverse prompt or interactive start is specified - if (params.antiprompt.size() != 0 || params.interactive_start) { + if (params.antiprompt.size() != 0 || params.interactive_first) { params.interactive = true; } @@ -227,8 +278,8 @@ int main(int argc, char ** argv) { fprintf(stderr, "Input prefix: '%s'\n", params.input_prefix.c_str()); } } - fprintf(stderr, "sampling: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n", - params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty); + fprintf(stderr, "sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n", + params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau); fprintf(stderr, "generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep); fprintf(stderr, "\n\n"); @@ -243,15 +294,22 @@ int main(int argc, char ** argv) { #endif " - Press Return to return control to LLaMa.\n" " - If you want to submit another line, end your input in '\\'.\n\n"); - is_interacting = params.interactive_start; + is_interacting = params.interactive_first; } bool is_antiprompt = false; bool input_noecho = false; + // HACK - because session saving incurs a non-negligible delay, for now skip re-saving session + // if we loaded a session with at least 75% similarity. It's currently just used to speed up the + // initial prompt so it doesn't need to be an exact match. + bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < (embd_inp.size() * 3 / 4); + + int n_past = 0; int n_remain = params.n_predict; int n_consumed = 0; + int n_session_consumed = 0; // the first thing we will do is to output the prompt, so set color accordingly set_console_color(con_st, CONSOLE_COLOR_PROMPT); @@ -273,6 +331,9 @@ int main(int argc, char ** argv) { // insert n_left/2 tokens at the start of embd from last_n_tokens embd.insert(embd.begin(), last_n_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_n_tokens.end() - embd.size()); + // stop saving session if we run out of context + path_session = ""; + //printf("\n---\n"); //printf("resetting: '"); //for (int i = 0; i < (int) embd.size(); i++) { @@ -282,6 +343,29 @@ int main(int argc, char ** argv) { //printf("\n---\n"); } + // try to reuse a matching prefix from the loaded session instead of re-eval (via n_past) + // REVIEW + if (n_session_consumed < (int) session_tokens.size()) { + size_t i = 0; + for ( ; i < embd.size(); i++) { + if (embd[i] != session_tokens[n_session_consumed]) { + session_tokens.resize(n_session_consumed); + break; + } + + n_past++; + n_session_consumed++; + + if (n_session_consumed >= (int) session_tokens.size()) { + ++i; + break; + } + } + if (i > 0) { + embd.erase(embd.begin(), embd.begin() + i); + } + } + // evaluate tokens in batches // embd is typically prepared beforehand to fit within a batch, but not always for (int i = 0; i < (int) embd.size(); i += params.n_batch) { @@ -295,29 +379,93 @@ int main(int argc, char ** argv) { } n_past += n_eval; } + + if (embd.size() > 0 && !path_session.empty()) { + session_tokens.insert(session_tokens.end(), embd.begin(), embd.end()); + n_session_consumed = session_tokens.size(); + } } embd.clear(); if ((int) embd_inp.size() <= n_consumed && !is_interacting) { // out of user input, sample next token - const int32_t top_k = params.top_k; - const float top_p = params.top_p; - const float temp = params.temp; - const float repeat_penalty = params.repeat_penalty; + const float temp = params.temp; + const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k; + const float top_p = params.top_p; + const float tfs_z = params.tfs_z; + const float typical_p = params.typical_p; + const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n; + const float repeat_penalty = params.repeat_penalty; + const float alpha_presence = params.presence_penalty; + const float alpha_frequency = params.frequency_penalty; + const int mirostat = params.mirostat; + const float mirostat_tau = params.mirostat_tau; + const float mirostat_eta = params.mirostat_eta; + const bool penalize_nl = params.penalize_nl; + + // optionally save the session on first sample (for faster prompt loading next time) + if (!path_session.empty() && need_to_save_session) { + need_to_save_session = false; + llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size()); + } llama_token id = 0; { auto logits = llama_get_logits(ctx); + auto n_vocab = llama_n_vocab(ctx); - if (params.ignore_eos) { - logits[llama_token_eos()] = 0; + // Apply params.logit_bias map + for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) { + logits[it->first] += it->second; } - id = llama_sample_top_p_top_k(ctx, - last_n_tokens.data() + n_ctx - params.repeat_last_n, - params.repeat_last_n, top_k, top_p, temp, repeat_penalty); + std::vector candidates; + candidates.reserve(n_vocab); + for (llama_token token_id = 0; token_id < n_vocab; token_id++) { + candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); + } + + llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; + + // Apply penalties + float nl_logit = logits[llama_token_nl()]; + auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx); + llama_sample_repetition_penalty(ctx, &candidates_p, + last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, + last_n_repeat, repeat_penalty); + llama_sample_frequency_and_presence_penalties(ctx, &candidates_p, + last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, + last_n_repeat, alpha_frequency, alpha_presence); + if (!penalize_nl) { + logits[llama_token_nl()] = nl_logit; + } + + if (temp <= 0) { + // Greedy sampling + id = llama_sample_token_greedy(ctx, &candidates_p); + } else { + if (mirostat == 1) { + static float mirostat_mu = 2.0f * mirostat_tau; + const int mirostat_m = 100; + llama_sample_temperature(ctx, &candidates_p, temp); + id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu); + } else if (mirostat == 2) { + static float mirostat_mu = 2.0f * mirostat_tau; + llama_sample_temperature(ctx, &candidates_p, temp); + id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu); + } else { + // Temperature sampling + llama_sample_top_k(ctx, &candidates_p, top_k); + llama_sample_tail_free(ctx, &candidates_p, tfs_z); + llama_sample_typical(ctx, &candidates_p, typical_p); + llama_sample_top_p(ctx, &candidates_p, top_p); + llama_sample_temperature(ctx, &candidates_p, temp); + id = llama_sample_token(ctx, &candidates_p); + } + } + // printf("`%d`", candidates_p.size); last_n_tokens.erase(last_n_tokens.begin()); last_n_tokens.push_back(id); diff --git a/examples/perplexity/CMakeLists.txt b/examples/perplexity/CMakeLists.txt index 5836df8b2..61b17b828 100644 --- a/examples/perplexity/CMakeLists.txt +++ b/examples/perplexity/CMakeLists.txt @@ -2,3 +2,6 @@ set(TARGET perplexity) add_executable(${TARGET} perplexity.cpp) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) target_compile_features(${TARGET} PRIVATE cxx_std_11) +if(TARGET BUILD_INFO) + add_dependencies(${TARGET} BUILD_INFO) +endif() diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp index 4b6118e7f..9e6199e83 100644 --- a/examples/perplexity/perplexity.cpp +++ b/examples/perplexity/perplexity.cpp @@ -1,5 +1,6 @@ #include "common.h" #include "llama.h" +#include "build-info.h" #include #include @@ -107,11 +108,13 @@ int main(int argc, char ** argv) { "expect poor results\n", __func__, params.n_ctx); } + fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); + if (params.seed <= 0) { params.seed = time(NULL); } - fprintf(stderr, "%s: seed = %d\n", __func__, params.seed); + fprintf(stderr, "%s: seed = %d\n", __func__, params.seed); std::mt19937 rng(params.seed); if (params.random_prompt) { diff --git a/examples/quantize-stats/quantize-stats.cpp b/examples/quantize-stats/quantize-stats.cpp index 4e6c2c831..9a2aa7c64 100644 --- a/examples/quantize-stats/quantize-stats.cpp +++ b/examples/quantize-stats/quantize-stats.cpp @@ -1,4 +1,5 @@ #include "ggml.h" +#include "build-info.h" #define LLAMA_API_INTERNAL #include "llama.h" @@ -308,6 +309,8 @@ int main(int argc, char ** argv) { return 1; } + fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); + // load the model fprintf(stderr, "Loading model\n"); diff --git a/examples/quantize/CMakeLists.txt b/examples/quantize/CMakeLists.txt index fb27d4517..475fc8be8 100644 --- a/examples/quantize/CMakeLists.txt +++ b/examples/quantize/CMakeLists.txt @@ -2,3 +2,6 @@ set(TARGET quantize) add_executable(${TARGET} quantize.cpp) target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT}) target_compile_features(${TARGET} PRIVATE cxx_std_11) +if(TARGET BUILD_INFO) + add_dependencies(${TARGET} BUILD_INFO) +endif() diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp index 5b4812c62..198bd5fcb 100644 --- a/examples/quantize/quantize.cpp +++ b/examples/quantize/quantize.cpp @@ -1,9 +1,20 @@ #include "ggml.h" #include "llama.h" +#include "build-info.h" #include +#include #include +static const std::map LLAMA_FTYPE_MAP = { + {"q4_0", LLAMA_FTYPE_MOSTLY_Q4_0}, + {"q4_1", LLAMA_FTYPE_MOSTLY_Q4_1}, + {"q4_2", LLAMA_FTYPE_MOSTLY_Q4_2}, + {"q5_0", LLAMA_FTYPE_MOSTLY_Q5_0}, + {"q5_1", LLAMA_FTYPE_MOSTLY_Q5_1}, + {"q8_0", LLAMA_FTYPE_MOSTLY_Q8_0}, +}; + // usage: // ./quantize models/llama/ggml-model.bin models/llama/ggml-model-quant.bin type // @@ -12,10 +23,9 @@ int main(int argc, char ** argv) { if (argc < 4) { fprintf(stderr, "usage: %s model-f32.bin model-quant.bin type [nthread]\n", argv[0]); - fprintf(stderr, " type = %d - q4_0\n", LLAMA_FTYPE_MOSTLY_Q4_0); - fprintf(stderr, " type = %d - q4_1\n", LLAMA_FTYPE_MOSTLY_Q4_1); - fprintf(stderr, " type = %d - q4_2\n", LLAMA_FTYPE_MOSTLY_Q4_2); - fprintf(stderr, " type = %d - q4_3\n", LLAMA_FTYPE_MOSTLY_Q4_3); + for (auto it = LLAMA_FTYPE_MAP.begin(); it != LLAMA_FTYPE_MAP.end(); it++) { + fprintf(stderr, " type = \"%s\" or %d\n", it->first.c_str(), it->second); + } return 1; } @@ -29,7 +39,20 @@ int main(int argc, char ** argv) { const std::string fname_inp = argv[1]; const std::string fname_out = argv[2]; - const enum llama_ftype ftype = (enum llama_ftype)atoi(argv[3]); + enum llama_ftype ftype; + if (argv[3][0] == 'q') { + auto it = LLAMA_FTYPE_MAP.find(argv[3]); + if (it == LLAMA_FTYPE_MAP.end()) { + fprintf(stderr, "%s: unknown ftype '%s'\n", __func__, argv[3]); + return 1; + } + ftype = it->second; + } else { + ftype = (enum llama_ftype)atoi(argv[3]); + } + + fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); + int nthread = argc > 4 ? atoi(argv[4]) : 0; const int64_t t_main_start_us = ggml_time_us(); diff --git a/examples/save-load-state/CMakeLists.txt b/examples/save-load-state/CMakeLists.txt new file mode 100644 index 000000000..08dbe5c2b --- /dev/null +++ b/examples/save-load-state/CMakeLists.txt @@ -0,0 +1,7 @@ +set(TARGET save-load-state) +add_executable(${TARGET} save-load-state.cpp) +target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) +target_compile_features(${TARGET} PRIVATE cxx_std_11) +if(TARGET BUILD_INFO) + add_dependencies(${TARGET} BUILD_INFO) +endif() diff --git a/examples/save-load-state/save-load-state.cpp b/examples/save-load-state/save-load-state.cpp new file mode 100644 index 000000000..ea0a984d9 --- /dev/null +++ b/examples/save-load-state/save-load-state.cpp @@ -0,0 +1,151 @@ +#include "common.h" +#include "llama.h" +#include "build-info.h" + +#include +#include +#include + +int main(int argc, char ** argv) { + gpt_params params; + params.model = "models/llama-7B/ggml-model.bin"; + params.seed = 42; + params.n_threads = 4; + params.repeat_last_n = 64; + params.prompt = "The quick brown fox"; + + if (gpt_params_parse(argc, argv, params) == false) { + return 1; + } + + fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); + + if (params.n_predict < 0) { + params.n_predict = 16; + } + + auto lparams = llama_context_default_params(); + + lparams.n_ctx = params.n_ctx; + lparams.n_parts = params.n_parts; + lparams.seed = params.seed; + lparams.f16_kv = params.memory_f16; + lparams.use_mmap = params.use_mmap; + lparams.use_mlock = params.use_mlock; + + auto n_past = 0; + auto last_n_tokens_data = std::vector(params.repeat_last_n, 0); + + // init + auto ctx = llama_init_from_file(params.model.c_str(), lparams); + auto tokens = std::vector(params.n_ctx); + auto n_prompt_tokens = llama_tokenize(ctx, params.prompt.c_str(), tokens.data(), tokens.size(), true); + + if (n_prompt_tokens < 1) { + fprintf(stderr, "%s : failed to tokenize prompt\n", __func__); + return 1; + } + + // evaluate prompt + llama_eval(ctx, tokens.data(), n_prompt_tokens, n_past, params.n_threads); + + last_n_tokens_data.insert(last_n_tokens_data.end(), tokens.data(), tokens.data() + n_prompt_tokens); + n_past += n_prompt_tokens; + + const size_t state_size = llama_get_state_size(ctx); + uint8_t * state_mem = new uint8_t[state_size]; + + // Save state (rng, logits, embedding and kv_cache) to file + { + FILE *fp_write = fopen("dump_state.bin", "wb"); + llama_copy_state_data(ctx, state_mem); // could also copy directly to memory mapped file + fwrite(state_mem, 1, state_size, fp_write); + fclose(fp_write); + } + + // save state (last tokens) + const auto last_n_tokens_data_saved = std::vector(last_n_tokens_data); + const auto n_past_saved = n_past; + + // first run + printf("\n%s", params.prompt.c_str()); + + for (auto i = 0; i < params.n_predict; i++) { + auto logits = llama_get_logits(ctx); + auto n_vocab = llama_n_vocab(ctx); + std::vector candidates; + candidates.reserve(n_vocab); + for (llama_token token_id = 0; token_id < n_vocab; token_id++) { + candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); + } + llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; + auto next_token = llama_sample_token(ctx, &candidates_p); + auto next_token_str = llama_token_to_str(ctx, next_token); + last_n_tokens_data.push_back(next_token); + + printf("%s", next_token_str); + if (llama_eval(ctx, &next_token, 1, n_past, params.n_threads)) { + fprintf(stderr, "\n%s : failed to evaluate\n", __func__); + return 1; + } + n_past += 1; + } + + printf("\n\n"); + + // free old model + llama_free(ctx); + + // load new model + auto ctx2 = llama_init_from_file(params.model.c_str(), lparams); + + // Load state (rng, logits, embedding and kv_cache) from file + { + FILE *fp_read = fopen("dump_state.bin", "rb"); + if (state_size != llama_get_state_size(ctx2)) { + fprintf(stderr, "\n%s : failed to validate state size\n", __func__); + return 1; + } + + const size_t ret = fread(state_mem, 1, state_size, fp_read); + if (ret != state_size) { + fprintf(stderr, "\n%s : failed to read state\n", __func__); + return 1; + } + + llama_set_state_data(ctx2, state_mem); // could also read directly from memory mapped file + fclose(fp_read); + } + + delete[] state_mem; + + // restore state (last tokens) + last_n_tokens_data = last_n_tokens_data_saved; + n_past = n_past_saved; + + // second run + for (auto i = 0; i < params.n_predict; i++) { + auto logits = llama_get_logits(ctx2); + auto n_vocab = llama_n_vocab(ctx2); + std::vector candidates; + candidates.reserve(n_vocab); + for (llama_token token_id = 0; token_id < n_vocab; token_id++) { + candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); + } + llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; + auto next_token = llama_sample_token(ctx2, &candidates_p); + auto next_token_str = llama_token_to_str(ctx2, next_token); + last_n_tokens_data.push_back(next_token); + + printf("%s", next_token_str); + if (llama_eval(ctx2, &next_token, 1, n_past, params.n_threads)) { + fprintf(stderr, "\n%s : failed to evaluate\n", __func__); + return 1; + } + n_past += 1; + } + + printf("\n\n"); + + return 0; +} diff --git a/flake.nix b/flake.nix index 5363052b1..2c9edbb6a 100644 --- a/flake.nix +++ b/flake.nix @@ -30,9 +30,9 @@ mv bin/* $out/bin/ mv $out/bin/main $out/bin/llama - echo "#!${llama-python}/bin/python" > $out/bin/convert-pth-to-ggml - cat ${./convert-pth-to-ggml.py} >> $out/bin/convert-pth-to-ggml - chmod +x $out/bin/convert-pth-to-ggml + echo "#!${llama-python}/bin/python" > $out/bin/convert.py + cat ${./convert.py} >> $out/bin/convert.py + chmod +x $out/bin/convert.py ''; meta.mainProgram = "llama"; }; diff --git a/ggml-cuda.cu b/ggml-cuda.cu index fa511c1dc..e8a1e77cb 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -1,11 +1,38 @@ +#include +#include #include #include -#include #include -#include "ggml-cuda.h" -typedef uint16_t ggml_fp16_t; -static_assert(sizeof(__half) == sizeof(ggml_fp16_t), "wrong fp16 size"); +#include +#include +#include + +#include "ggml-cuda.h" +#include "ggml.h" + +static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size"); + +#define CUDA_CHECK(err) \ + do { \ + cudaError_t err_ = (err); \ + if (err_ != cudaSuccess) { \ + fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \ + cudaGetErrorString(err_)); \ + exit(1); \ + } \ + } while (0) + +#define CUBLAS_CHECK(err) \ + do { \ + cublasStatus_t err_ = (err); \ + if (err_ != CUBLAS_STATUS_SUCCESS) { \ + fprintf(stderr, "cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \ + exit(1); \ + } \ + } while (0) + +typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream); #define QK4_0 32 typedef struct { @@ -24,18 +51,34 @@ static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 b #define QK4_2 16 typedef struct { - __half d; // delta + half d; // delta uint8_t qs[QK4_2 / 2]; // nibbles / quants } block_q4_2; static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding"); -#define QK4_3 16 +#define QK5_0 32 typedef struct { - __half d; // delta - __half m; // min - uint8_t qs[QK4_3 / 2]; // nibbles / quants -} block_q4_3; -static_assert(sizeof(block_q4_3) == 2 * sizeof(ggml_fp16_t) + QK4_3 / 2, "wrong q4_3 block size/padding"); + half d; // delta + uint8_t qh[4]; // 5-th bit of quants + uint8_t qs[QK5_0 / 2]; // nibbles / quants +} block_q5_0; +static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding"); + +#define QK5_1 32 +typedef struct { + half d; // delta + half m; // min + uint8_t qh[4]; // 5-th bit of quants + uint8_t qs[QK5_1 / 2]; // nibbles / quants +} block_q5_1; +static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding"); + +#define QK8_0 32 +typedef struct { + float d; // delta + int8_t qs[QK8_0]; // quants +} block_q8_0; +static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding"); static __global__ void dequantize_block_q4_0(const void * vx, float * y) { const block_q4_0 * x = (const block_q4_0 *) vx; @@ -107,8 +150,37 @@ static __global__ void dequantize_block_q4_2(const void * vx, float * y) { } } -static __global__ void dequantize_block_q4_3(const void * vx, float * y) { - const block_q4_3 * x = (const block_q4_3 *) vx; +static __global__ void dequantize_block_q5_0(const void * vx, float * y) { + const block_q5_0 * x = (const block_q5_0 *) vx; + + const int i = blockIdx.x; + + const float d = x[i].d; + + const uint8_t * pp = x[i].qs; + + uint32_t qh; + memcpy(&qh, x[i].qh, sizeof(qh)); + + for (int l = 0; l < QK5_0; l += 2) { + const uint8_t vi = pp[l/2]; + + const int8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4; + const int8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4; + + const int8_t vi0 = ((vi & 0xf) | vh0); + const int8_t vi1 = ((vi >> 4) | vh1); + + const float v0 = (vi0 - 16)*d; + const float v1 = (vi1 - 16)*d; + + y[i*QK5_0 + l + 0] = v0; + y[i*QK5_0 + l + 1] = v1; + } +} + +static __global__ void dequantize_block_q5_1(const void * vx, float * y) { + const block_q5_1 * x = (const block_q5_1 *) vx; const int i = blockIdx.x; @@ -117,38 +189,104 @@ static __global__ void dequantize_block_q4_3(const void * vx, float * y) { const uint8_t * pp = x[i].qs; - for (int l = 0; l < QK4_3; l += 2) { + uint32_t qh; + memcpy(&qh, x[i].qh, sizeof(qh)); + + for (int l = 0; l < QK5_1; l += 2) { const uint8_t vi = pp[l/2]; - const int8_t vi0 = vi & 0xf; - const int8_t vi1 = vi >> 4; + const int8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4; + const int8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4; + + const int8_t vi0 = (vi & 0xf) | vh0; + const int8_t vi1 = (vi >> 4) | vh1; const float v0 = vi0*d + m; const float v1 = vi1*d + m; - y[i*QK4_3 + l + 0] = v0; - y[i*QK4_3 + l + 1] = v1; + y[i*QK5_1 + l + 0] = v0; + y[i*QK5_1 + l + 1] = v1; } } -void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) { +static __global__ void dequantize_block_q8_0(const void * vx, float * y) { + const block_q8_0 * x = (const block_q8_0 *) vx; + + const int i = blockIdx.x; + + const float d = x[i].d; + + const int8_t * pp = x[i].qs; + + for (int l = 0; l < QK8_0; l++) { + const int8_t vi = pp[l]; + + y[i*QK8_0 + l] = vi*d; + } +} + +static void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) { const int nb = k / QK4_0; dequantize_block_q4_0<<>>(vx, y); } -void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) { +static void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) { const int nb = k / QK4_1; dequantize_block_q4_1<<>>(vx, y); } -void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream) { +static void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream) { const int nb = k / QK4_2; dequantize_block_q4_2<<>>(vx, y); } -void dequantize_row_q4_3_cuda(const void * vx, float * y, int k, cudaStream_t stream) { - const int nb = k / QK4_3; - dequantize_block_q4_3<<>>(vx, y); +static void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) { + const int nb = k / QK5_0; + dequantize_block_q5_0<<>>(vx, y); +} + +static void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) { + const int nb = k / QK5_1; + dequantize_block_q5_1<<>>(vx, y); +} + +static void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) { + const int nb = k / QK8_0; + dequantize_block_q8_0<<>>(vx, y); +} + +// TODO: optimize +static __global__ void convert_fp16_to_fp32(const void * vx, float * y) { + const half * x = (const half *) vx; + + const int i = blockIdx.x; + + y[i] = __half2float(x[i]); +} + +static void convert_fp16_to_fp32_cuda(const void * x, float * y, int k, cudaStream_t stream) { + convert_fp16_to_fp32<<>>(x, y); +} + +static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) { + switch (type) { + case GGML_TYPE_Q4_0: + return dequantize_row_q4_0_cuda; + case GGML_TYPE_Q4_1: + return dequantize_row_q4_1_cuda; + case GGML_TYPE_Q4_2: + return dequantize_row_q4_2_cuda; + case GGML_TYPE_Q5_0: + return dequantize_row_q5_0_cuda; + case GGML_TYPE_Q5_1: + return dequantize_row_q5_1_cuda; + case GGML_TYPE_Q8_0: + return dequantize_row_q8_0_cuda; + case GGML_TYPE_F16: + return convert_fp16_to_fp32_cuda; + default: + return nullptr; + } } // buffer pool for cuda @@ -176,7 +314,7 @@ struct cuda_buffer { static cuda_buffer g_cuda_buffer_pool[MAX_CUDA_BUFFERS]; static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT; -void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) { +static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) { scoped_spin_lock lock(g_cuda_pool_lock); for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) { @@ -195,7 +333,7 @@ void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) { return ptr; } -void ggml_cuda_pool_free(void * ptr, size_t size) { +static void ggml_cuda_pool_free(void * ptr, size_t size) { scoped_spin_lock lock(g_cuda_pool_lock); for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) { @@ -210,19 +348,369 @@ void ggml_cuda_pool_free(void * ptr, size_t size) { CUDA_CHECK(cudaFree(ptr)); } -cublasHandle_t g_cublasH = NULL; -cudaStream_t g_cudaStream = NULL; +#define GGML_CUDA_MAX_STREAMS 8 +#define GGML_CUDA_MAX_EVENTS 64 +static cublasHandle_t g_cublasH = nullptr; +static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_STREAMS] = { nullptr }; +static cudaStream_t g_cudaStreams2[GGML_CUDA_MAX_STREAMS] = { nullptr }; +static cudaEvent_t g_cudaEvents[GGML_CUDA_MAX_EVENTS] = { nullptr }; -void ggml_init_cublas(void) { - if (g_cublasH == NULL) { - // create cublas handle, bind a stream +void ggml_init_cublas() { + if (g_cublasH == nullptr) { + // create streams + for (int i = 0; i < GGML_CUDA_MAX_STREAMS; ++i) { + CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams[i], cudaStreamNonBlocking)); + CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams2[i], cudaStreamNonBlocking)); + } + // create events + for (int i = 0; i < GGML_CUDA_MAX_EVENTS; ++i) { + CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvents[i], cudaEventDisableTiming)); + } + + // create cublas handle CUBLAS_CHECK(cublasCreate(&g_cublasH)); - - CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStream, cudaStreamNonBlocking)); - - CUBLAS_CHECK(cublasSetStream(g_cublasH, g_cudaStream)); + CUBLAS_CHECK(cublasSetMathMode(g_cublasH, CUBLAS_TF32_TENSOR_OP_MATH)); // configure logging to stdout - // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, NULL)); + // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr)); + } +} + +void * ggml_cuda_host_malloc(size_t size) { + if (getenv("GGML_CUDA_NO_PINNED") != nullptr) { + return nullptr; + } + + void * ptr = nullptr; + cudaError_t err = cudaMallocHost((void **) &ptr, size); + if (err != cudaSuccess) { + fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n", + size/1024.0/1024.0, cudaGetErrorString(err)); + return nullptr; + } + + return ptr; +} + +void ggml_cuda_host_free(void * ptr) { + CUDA_CHECK(cudaFreeHost(ptr)); +} + +static cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) { + const uint64_t ne0 = src->ne[0]; + const uint64_t ne1 = src->ne[1]; + const uint64_t nb0 = src->nb[0]; + const uint64_t nb1 = src->nb[1]; + const uint64_t nb2 = src->nb[2]; + const uint64_t nb3 = src->nb[3]; + const enum ggml_type type = src->type; + const size_t ts = ggml_type_size(type); + const size_t bs = ggml_blck_size(type); + + const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3); + if (nb0 == ts && nb1 == ts*ne0/bs) { + return cudaMemcpyAsync(dst, x, ne1*nb1, cudaMemcpyHostToDevice, stream); + } else if (nb0 == ts) { + return cudaMemcpy2DAsync(dst, ts*ne0/bs, x, nb1, ts*ne0/bs, ne1, cudaMemcpyHostToDevice, stream); + } else { + for (uint64_t i1 = 0; i1 < ne1; i1++) { + const void * rx = (const void *) ((const char *) x + i1*nb1); + void * rd = (void *) ((char *) dst + i1*ts*ne0/bs); + // pretend the row is a matrix with cols=1 + cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyHostToDevice, stream); + if (r != cudaSuccess) return r; + } + return cudaSuccess; + } +} + +static void ggml_cuda_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; + + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + + const int nb2 = dst->nb[2]; + const int nb3 = dst->nb[3]; + + const float alpha = 1.0f; + const float beta = 0.0f; + const int x_ne = ne01 * ne00; + const int y_ne = ne11 * ne10; + const int d_ne = ne11 * ne01; + const int n_mm = ne03 * ne02; + + size_t x_size, y_size, d_size; + float * d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size); + float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size); + float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size); + + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + int i = i03*ne02 + i02; + cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS]; + + float * c_X = d_X + i * x_ne; + float * c_Y = d_Y + i * y_ne; + float * c_D = d_D + i * d_ne; + + // copy data to device + CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream)); + CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream)); + + // compute + CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream)); + CUBLAS_CHECK( + cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N, + ne01, ne11, ne10, + &alpha, c_X, ne00, + c_Y, ne10, + &beta, c_D, ne01)); + + // copy dst to host + float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); + CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream)); + } + } + + CUDA_CHECK(cudaDeviceSynchronize()); + ggml_cuda_pool_free(d_X, x_size); + ggml_cuda_pool_free(d_Y, y_size); + ggml_cuda_pool_free(d_D, d_size); +} + +static void ggml_cuda_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) { + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; + + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + + const int nb10 = src1->nb[0]; + const int nb11 = src1->nb[1]; + const int nb12 = src1->nb[2]; + const int nb13 = src1->nb[3]; + + const int nb2 = dst->nb[2]; + const int nb3 = dst->nb[3]; + + const float alpha = 1.0f; + const float beta = 0.0f; + const int x_ne = ne01 * ne00; + const int y_ne = ne11 * ne10; + const int d_ne = ne11 * ne01; + const int n_mm = ne03 * ne02; + + size_t x_size, y_size, d_size; + half * d_X = (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * x_ne, &x_size); + half * d_Y = (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * y_ne, &y_size); + float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size); + + bool src1_cont_rows = nb10 == sizeof(float); + bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float); + + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + int i = i03*ne02 + i02; + cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS]; + + half * c_X = d_X + i * x_ne; + half * c_Y = d_Y + i * y_ne; + float * c_D = d_D + i * d_ne; + + // copy src0 to device + CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream)); + + // convert src1 to fp16 + // TODO: use multiple threads + ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02); + char * src1i = (char *) src1->data + i03*nb13 + i02*nb12; + if (src1_cont_rows) { + if (src1_cont_cols) { + ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11); + } + else { + for (int64_t i01 = 0; i01 < ne11; i01++) { + ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10); + } + } + } + else { + for (int64_t i01 = 0; i01 < ne11; i01++) { + for (int64_t i00 = 0; i00 < ne10; i00++) { + // very slow due to no inlining + tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10)); + } + } + } + + // copy src1 to device + CUDA_CHECK(cudaMemcpyAsync(c_Y, tmp, sizeof(half) * y_ne, cudaMemcpyHostToDevice, cudaStream)); + + // compute + CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream)); + CUBLAS_CHECK( + cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N, + ne01, ne11, ne10, + &alpha, c_X, CUDA_R_16F, ne00, + c_Y, CUDA_R_16F, ne10, + &beta, c_D, CUDA_R_32F, ne01, + CUBLAS_COMPUTE_32F_FAST_16F, + CUBLAS_GEMM_DEFAULT)); + + // copy dst to host + float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); + CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream)); + } + } + + CUDA_CHECK(cudaDeviceSynchronize()); + ggml_cuda_pool_free(d_X, x_size); + ggml_cuda_pool_free(d_Y, y_size); + ggml_cuda_pool_free(d_D, d_size); +} + +static void ggml_cuda_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; + + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + + const int nb2 = dst->nb[2]; + const int nb3 = dst->nb[3]; + const ggml_type type = src0->type; + + const float alpha = 1.0f; + const float beta = 0.0f; + const int x_ne = ne01 * ne00; + const int y_ne = ne11 * ne10; + const int d_ne = ne11 * ne01; + const int n_mm = ne03 * ne02; + const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type); + + size_t x_size, y_size, d_size, q_size; + float * d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size); + float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size); + float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size); + char * d_Q = (char *) ggml_cuda_pool_malloc(n_mm * q_sz, &q_size); + + const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(type); + GGML_ASSERT(to_fp32_cuda != nullptr); + + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + int i = i03*ne02 + i02; + cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS]; + cudaStream_t cudaStream2 = g_cudaStreams2[i % GGML_CUDA_MAX_STREAMS]; + cudaEvent_t cudaEvent = g_cudaEvents[i % GGML_CUDA_MAX_EVENTS]; + + float * c_X = d_X + i * x_ne; + float * c_Y = d_Y + i * y_ne; + float * c_D = d_D + i * d_ne; + char * c_Q = d_Q + i * q_sz; + + // copy src0 and convert to fp32 on device + CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Q, src0, i03, i02, cudaStream2)); + to_fp32_cuda(c_Q, c_X, x_ne, cudaStream2); + CUDA_CHECK(cudaGetLastError()); + CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2)); + + // copy src1 to device + CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream)); + + // wait for conversion + CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0)); + + // compute + CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream)); + CUBLAS_CHECK( + cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N, + ne01, ne11, ne10, + &alpha, c_X, ne00, + c_Y, ne10, + &beta, c_D, ne01)); + + // copy dst to host + float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); + CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream)); + } + } + + CUDA_CHECK(cudaDeviceSynchronize()); + ggml_cuda_pool_free(d_X, x_size); + ggml_cuda_pool_free(d_Y, y_size); + ggml_cuda_pool_free(d_D, d_size); + ggml_cuda_pool_free(d_Q, q_size); +} + +bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { + const int64_t ne10 = src1->ne[0]; + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + + // TODO: find the optimal values for these + if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && + src1->type == GGML_TYPE_F32 && + dst->type == GGML_TYPE_F32 && + (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) { + + return true; + } + + return false; +} + +bool ggml_cuda_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) { + size_t src0_sz = ggml_nbytes(src0); + size_t src1_sz = ggml_nbytes(src1); + + // mul_mat_q: src0 is converted to fp32 on device + size_t mul_mat_q_transfer = src0_sz + src1_sz; + + // mul_mat_f16: src1 is converted to fp16 on cpu + size_t mul_mat_f16_transfer = src0_sz + sizeof(half) * ggml_nelements(src1); + + // choose the smaller one to transfer to the device + // TODO: this is not always the best choice due to the overhead of converting to fp16 + return mul_mat_f16_transfer < mul_mat_q_transfer; +} + +void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) { + GGML_ASSERT(ggml_cuda_can_mul_mat(src0, src1, dst)); + + if (src0->type == GGML_TYPE_F32) { + ggml_cuda_mul_mat_f32(src0, src1, dst); + } + else if (src0->type == GGML_TYPE_F16) { + if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) { + ggml_cuda_mul_mat_f16(src0, src1, dst, wdata, wsize); + } + else { + ggml_cuda_mul_mat_q_f32(src0, src1, dst); + } + } + else if (ggml_is_quantized(src0->type)) { + ggml_cuda_mul_mat_q_f32(src0, src1, dst); + } + else { + GGML_ASSERT(false); + } +} + +size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { + if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) { + return ggml_nelements(src1) * sizeof(ggml_fp16_t); + } + else { + return 0; } } diff --git a/ggml-cuda.h b/ggml-cuda.h index 370bbc75f..f7d6a8bc1 100644 --- a/ggml-cuda.h +++ b/ggml-cuda.h @@ -1,40 +1,18 @@ -#include -#include +#include "ggml.h" #ifdef __cplusplus extern "C" { #endif -#define CUDA_CHECK(err) \ - do { \ - cudaError_t err_ = (err); \ - if (err_ != cudaSuccess) { \ - fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \ - cudaGetErrorString(err_)); \ - exit(1); \ - } \ - } while (0) - -#define CUBLAS_CHECK(err) \ - do { \ - cublasStatus_t err_ = (err); \ - if (err_ != CUBLAS_STATUS_SUCCESS) { \ - fprintf(stderr, "cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \ - exit(1); \ - } \ - } while (0) - -extern cublasHandle_t g_cublasH; -extern cudaStream_t g_cudaStream; - void ggml_init_cublas(void); -void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size); -void ggml_cuda_pool_free(void * ptr, size_t size); -void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream); -void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream); -void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream); -void dequantize_row_q4_3_cuda(const void * vx, float * y, int k, cudaStream_t stream); +bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); +size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); +void ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize); + +// TODO: export these with GGML_API +void * ggml_cuda_host_malloc(size_t size); +void ggml_cuda_host_free(void * ptr); #ifdef __cplusplus } diff --git a/ggml-opencl.c b/ggml-opencl.c new file mode 100644 index 000000000..4389eca39 --- /dev/null +++ b/ggml-opencl.c @@ -0,0 +1,398 @@ +#include "ggml-opencl.h" + +#define CL_TARGET_OPENCL_VERSION 110 +#include + +#include +#include +#include + +#include "ggml.h" + +#define MULTILINE_QUOTE(...) #__VA_ARGS__ +const char * clblast_dequant = MULTILINE_QUOTE( + +struct block_q4_0 +{ + float d; + uchar qs[16]; +}; + +__kernel void dequantize_row_q4_0(__global struct block_q4_0* blocks, __global float* result) { + const uint i = get_global_id(0) / 32; + const uint l = get_local_id(0); + + const float d = blocks[i].d; + + const uchar vi = blocks[i].qs[l]; + + const uint index = i*32 + l*2; + result[index + 0] = ((vi & 0xf) - 8)*d; + result[index + 1] = ((vi >> 4) - 8)*d; +} + +struct block_q4_1 +{ + float d; + float m; + uchar qs[16]; +}; + +__kernel void dequantize_row_q4_1(__global struct block_q4_1* blocks, __global float* result) { + const uint i = get_global_id(0) / 32; + const uint l = get_local_id(0); + + const float d = blocks[i].d; + const float m = blocks[i].m; + + const uchar vi = blocks[i].qs[l]; + + const uint index = i*32 + l*2; + result[index + 0] = (vi & 0xf) * d + m; + result[index + 1] = (vi >> 4) * d + m; +} + +struct block_q4_2 +{ + ushort d; + uchar qs[8]; +}; + +__kernel void dequantize_row_q4_2(__global struct block_q4_2* blocks, __global float* result) { + const uint i = get_global_id(0) / 16; + const uint l = get_local_id(0); + + const float d = vload_half(0, (__global half*) &blocks[i].d); + + const uchar vi = blocks[i].qs[l]; + + const uint index = i*16 + l*2; + result[index + 0] = ((vi & 0xf) - 8)*d; + result[index + 1] = ((vi >> 4) - 8)*d; +} + + +struct block_q5_0 +{ + float d; + uint qh; + uchar qs[16]; +}; + +__kernel void dequantize_row_q5_0(__global struct block_q5_0* blocks, __global float* result) { + const uint i = get_global_id(0) / 32; + const uint l = get_local_id(0); + + const float d = blocks[i].d; + + const uchar vi = blocks[i].qs[l]; + + const uint l2 = l * 2; + + const uchar vh0 = ((blocks[i].qh & (1 << (l2 + 0))) >> (l2 + 0)) << 4; + const uchar vh1 = ((blocks[i].qh & (1 << (l2 + 1))) >> (l2 + 1)) << 4; + + const uint index = i*32 + l2; + result[index + 0] = (((vi & 0xf) | vh0) - 16)*d; + result[index + 1] = (((vi >> 4) | vh1) - 16)*d; +} + +struct block_q5_1 +{ + ushort d; + ushort m; + uint qh; + uchar qs[16]; +}; + +__kernel void dequantize_row_q5_1(__global struct block_q5_1* blocks, __global float* result) { + const uint i = get_global_id(0) / 32; + const uint l = get_local_id(0); + + const float d = vload_half(0, (__global half*) &blocks[i].d); + const float m = vload_half(0, (__global half*) &blocks[i].m); + + const uchar vi = blocks[i].qs[l]; + + const uint l2 = l * 2; + + const uchar vh0 = ((blocks[i].qh & (1 << (l2 + 0))) >> (l2 + 0)) << 4; + const uchar vh1 = ((blocks[i].qh & (1 << (l2 + 1))) >> (l2 + 1)) << 4; + + const uint index = i*32 + l2; + result[index + 0] = ((vi & 0xf) | vh0)*d + m; + result[index + 1] = ((vi >> 4) | vh1)*d + m; +} + +struct block_q8_0 +{ + float d; + char qs[32]; +}; + +__kernel void dequantize_row_q8_0(__global struct block_q8_0* blocks, __global float* result) { + const uint i = get_global_id(0) / 32; + const uint l = get_local_id(0); + + result[i*32 + l] = blocks[i].qs[l] * blocks[i].d; +} + +); + +#define CL_CHECK(err, name) \ + do { \ + cl_int err_ = (err); \ + if (err_ != CL_SUCCESS) { \ + fprintf(stderr, "OpenCL %s error %d at %s:%d\n", name, err_, __FILE__, __LINE__); \ + exit(1); \ + } \ + } while (0) + +#define QK5_0 32 +typedef struct { + ggml_fp16_t d; // delta + uint8_t qh[4]; // 5-th bit of quants + uint8_t qs[QK5_0 / 2]; // nibbles / quants +} block_q5_0; + + +typedef struct { + float d; // delta + uint32_t qh; // 5-th bit of quants + uint8_t qs[QK5_0 / 2]; // nibbles / quants +} cl_block_q5_0; + +static cl_platform_id platform; +static cl_device_id device; +static cl_context context; +static cl_command_queue queue; +static cl_program program; +static cl_kernel kernel_q4_0, kernel_q4_1, kernel_q4_2, kernel_q5_0, kernel_q5_1, kernel_q8_0; +static cl_mem cl_buffer_a, cl_buffer_qb, cl_buffer_b, cl_buffer_c; +static size_t cl_size_a = 0, cl_size_qb = 0, cl_size_b = 0, cl_size_c = 0; + +static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) { + cl_program p; + char *program_log; + size_t program_size, log_size; + int err; + + program_size = strlen(program_buffer); + + p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err); + if(err < 0) { + fprintf(stderr, "OpenCL error creating program"); + exit(1); + } + + err = clBuildProgram(p, 0, NULL, NULL, NULL, NULL); + if(err < 0) { + + clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size); + program_log = (char*) malloc(log_size + 1); + program_log[log_size] = '\0'; + clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL); + printf("%s\n", program_log); + free(program_log); + exit(1); + } + + return p; +} + +void ggml_cl_init(void) { + cl_int err = 0; + char * GGML_CLBLAST_PLATFORM = getenv("GGML_CLBLAST_PLATFORM"); + char * GGML_CLBLAST_DEVICE = getenv("GGML_CLBLAST_DEVICE"); + int plat_num = (GGML_CLBLAST_PLATFORM == NULL ? 0 : atoi(GGML_CLBLAST_PLATFORM)); + int dev_num = (GGML_CLBLAST_DEVICE == NULL ? 0 : atoi(GGML_CLBLAST_DEVICE)); + printf("\nInitializing CLBlast (First Run)..."); + printf("\nAttempting to use: Platform=%d, Device=%d (If invalid, program will crash)\n",plat_num,dev_num); + cl_uint num_platforms; + clGetPlatformIDs(0, NULL, &num_platforms); + cl_platform_id* platforms = (cl_platform_id*)malloc(num_platforms*sizeof(cl_platform_id)); + clGetPlatformIDs(num_platforms, platforms, NULL); + platform = platforms[plat_num]; + char platform_buffer[1024]; + clGetPlatformInfo(platform, CL_PLATFORM_NAME, sizeof(platform_buffer), &platform_buffer, NULL); + cl_uint num_devices; + clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 0, NULL, &num_devices); + cl_device_id* devices = (cl_device_id*)malloc(num_devices*sizeof(cl_device_id)); + clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, num_devices, devices, NULL); + device = devices[dev_num]; + char device_buffer[1024]; + clGetDeviceInfo(device, CL_DEVICE_NAME, sizeof(device_buffer), &device_buffer, NULL); + printf("Using Platform: %s Device: %s\n", platform_buffer, device_buffer); + context = clCreateContext(NULL, 1, &device, NULL, NULL, &err); + CL_CHECK(err, "clCreateContext"); + queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err); + CL_CHECK(err, "clCreateCommandQueue"); + + free(platforms); + free(devices); + + program = build_program_from_source(context, device, clblast_dequant); + + // Prepare dequantize kernels + kernel_q4_0 = clCreateKernel(program, "dequantize_row_q4_0", &err); + CL_CHECK(err, "clCreateKernel"); + kernel_q4_1 = clCreateKernel(program, "dequantize_row_q4_1", &err); + CL_CHECK(err, "clCreateKernel"); + kernel_q4_2 = clCreateKernel(program, "dequantize_row_q4_2", &err); + CL_CHECK(err, "clCreateKernel"); + kernel_q5_0 = clCreateKernel(program, "dequantize_row_q5_0", &err); + CL_CHECK(err, "clCreateKernel"); + kernel_q5_1 = clCreateKernel(program, "dequantize_row_q5_1", &err); + CL_CHECK(err, "clCreateKernel"); + kernel_q8_0 = clCreateKernel(program, "dequantize_row_q8_0", &err); + CL_CHECK(err, "clCreateKernel"); +} + +static void ggml_cl_malloc(size_t req_size, size_t* cur_size, cl_mem_flags flags, cl_mem* buf) { + if (req_size <= *cur_size) { + return; + } + + // Reallocate buffer with enough space + if (*cur_size > 0) { + clReleaseMemObject(*buf); + } + cl_int err; + *buf = clCreateBuffer(context, flags, req_size, NULL, &err); + *cur_size = req_size; + CL_CHECK(err, "clCreateBuffer"); +} + +void ggml_cl_sgemm_wrapper( + const enum ggml_blas_order order, const enum ggml_blas_op trans_a, const enum ggml_blas_op trans_b, + const int m, const int n, const int k, + const float alpha, const void *host_a, const int lda, + const float *host_b, const int ldb, const float beta, + float *host_c, const int ldc, const int btype) { + cl_int err = 0; + + cl_kernel kernel; + size_t global = n * k, local, size_qb; + bool dequant; + cl_block_q5_0* cl_host_b; + + switch (btype) { + case GGML_TYPE_F32: + dequant = false; + break; + case GGML_TYPE_Q4_0: + dequant = true; + kernel = kernel_q4_0; + local = 16; + size_qb = global * (sizeof(float) + local) / 32; + break; + case GGML_TYPE_Q4_1: + dequant = true; + kernel = kernel_q4_1; + local = 16; + size_qb = global * (sizeof(float) * 2 + local) / 32; + break; + case GGML_TYPE_Q4_2: + dequant = true; + kernel = kernel_q4_2; + local = 8; + size_qb = global * (sizeof(ggml_fp16_t) + local) / 16; + break; + case GGML_TYPE_Q5_0: + dequant = true; + kernel = kernel_q5_0; + local = 16; + // For some reason OpenCL seems to be incapable of working with structs of size 22. + // 20 and 24 bytes are fine. Workaround to do the fp16 to fp32 step on CPU... + // TODO Find the reason, fix and remove workaround. + const block_q5_0* b = (const block_q5_0*) host_b; + cl_host_b = (cl_block_q5_0*) malloc(sizeof(cl_block_q5_0) * global / 32); + for (size_t i = 0; i < global / 32; i++) { + cl_host_b[i].d = ggml_fp16_to_fp32(b[i].d); + memcpy(&cl_host_b[i].qh, b[i].qh, sizeof(uint32_t)); + memcpy(&cl_host_b[i].qs, b[i].qs, QK5_0 / 2); + } + host_b = (const float*) cl_host_b; + size_qb = global * (sizeof(float) + sizeof(uint32_t) + local) / 32; + break; + case GGML_TYPE_Q5_1: + dequant = true; + kernel = kernel_q5_1; + local = 16; + size_qb = global * (sizeof(ggml_fp16_t) * 2 + sizeof(uint32_t) + local) / 32; + break; + case GGML_TYPE_Q8_0: + dequant = true; + kernel = kernel_q8_0; + local = 32; + size_qb = global * (sizeof(float) + local) / 32; + break; + default: + fprintf(stderr, "Error: Unsupported OpenCL btype %d\n", btype); + abort(); + } + + const size_t size_a = m * k * sizeof(float); + const size_t size_b = n * k * sizeof(float); + const size_t size_c = m * n * sizeof(float); + + // Prepare buffers + ggml_cl_malloc(size_a, &cl_size_a, CL_MEM_READ_ONLY, &cl_buffer_a); + if (dequant) { + ggml_cl_malloc(size_qb, &cl_size_qb, CL_MEM_READ_ONLY, &cl_buffer_qb); + } + ggml_cl_malloc(size_b, &cl_size_b, CL_MEM_READ_WRITE, &cl_buffer_b); + ggml_cl_malloc(size_c, &cl_size_c, CL_MEM_WRITE_ONLY, &cl_buffer_c); + + cl_event ev_a, ev_qb, ev_b; + + if (dequant) { + err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &cl_buffer_qb); + err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &cl_buffer_b); + CL_CHECK(err, "clSetKernelArg"); + err = clEnqueueWriteBuffer(queue, cl_buffer_qb, CL_FALSE, 0, size_qb, host_b, 0, NULL, &ev_qb); + CL_CHECK(err, "clEnqueueWriteBuffer qb"); + } else { + err = clEnqueueWriteBuffer(queue, cl_buffer_b, CL_FALSE, 0, size_b, host_b, 0, NULL, &ev_b); + CL_CHECK(err, "clEnqueueWriteBuffer b"); + } + + err = clEnqueueWriteBuffer(queue, cl_buffer_a, CL_FALSE, 0, size_a, host_a, 0, NULL, &ev_a); + CL_CHECK(err, "clEnqueueWriteBuffer a"); + if (dequant) { + err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 1, &ev_qb, &ev_b); + CL_CHECK(err, "clEnqueueNDRangeKernel"); + clReleaseEvent(ev_qb); + } + clWaitForEvents(1, &ev_a); + clWaitForEvents(1, &ev_b); + clReleaseEvent(ev_a); + clReleaseEvent(ev_b); + + cl_event ev_sgemm; + CLBlastStatusCode status = CLBlastSgemm((CLBlastLayout)order, + (CLBlastTranspose)trans_a, (CLBlastTranspose)trans_b, + m, n, k, + alpha, + cl_buffer_a, 0, lda, + cl_buffer_b, 0, ldb, + beta, + cl_buffer_c, 0, ldc, + &queue, &ev_sgemm); + + if (status != CLBlastSuccess) { + fprintf(stderr, "Error: CLBlast SGEMM %d\n", status); + abort(); + } + + cl_event ev_c; + clEnqueueReadBuffer(queue, cl_buffer_c, CL_TRUE, 0, size_c, host_c, 1, &ev_sgemm, &ev_c); + + // Wait for completion + clWaitForEvents(1, &ev_c); + clReleaseEvent(ev_sgemm); + clReleaseEvent(ev_c); + if (btype == GGML_TYPE_Q5_0) { + free((void*) cl_host_b); + } +} diff --git a/ggml-opencl.h b/ggml-opencl.h new file mode 100644 index 000000000..7bcc603ef --- /dev/null +++ b/ggml-opencl.h @@ -0,0 +1,24 @@ +#pragma once + +#ifdef __cplusplus +extern "C" { +#endif + +void ggml_cl_init(void); + +enum ggml_blas_order { + GGML_BLAS_ORDER_ROW_MAJOR = 101, + GGML_BLAS_ORDER_COLUMN_MAJOR = 102, +}; + +enum ggml_blas_op { + GGML_BLAS_OP_N = 111, + GGML_BLAS_OP_T = 112, + GGML_BLAS_OP_C = 113, +}; + +void ggml_cl_sgemm_wrapper(const enum ggml_blas_order order, const enum ggml_blas_op trans_a, const enum ggml_blas_op trans_b, const int m, const int n, const int k, const float alpha, const void *host_a, const int lda, const float *host_b, const int ldb, const float beta, float *host_c, const int ldc, const int btype); + +#ifdef __cplusplus +} +#endif diff --git a/ggml.c b/ggml.c index 2ea4e68fd..bce7a7a57 100644 --- a/ggml.c +++ b/ggml.c @@ -135,20 +135,14 @@ inline static void* ggml_aligned_malloc(size_t size) { #define UNUSED(x) (void)(x) #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0) -#define GGML_ASSERT(x) \ - do { \ - if (!(x)) { \ - fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \ - abort(); \ - } \ - } while (0) - #if defined(GGML_USE_ACCELERATE) #include #elif defined(GGML_USE_OPENBLAS) #include #elif defined(GGML_USE_CUBLAS) #include "ggml-cuda.h" +#elif defined(GGML_USE_CLBLAST) +#include "ggml-opencl.h" #endif #undef MIN @@ -328,6 +322,20 @@ static ggml_fp16_t table_exp_f16[1 << 16]; // precomputed f32 table for f16 (256 KB) static float table_f32_f16[1 << 16]; +#if defined(__ARM_NEON) || defined(__wasm_simd128__) +#define B1(c,s,n) 0x ## n ## c , 0x ## n ## s +#define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s) +#define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s) +#define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s) +#define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s) +#define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s) +#define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s) +#define B8(c,s ) B7(c,s, c), B7(c,s, s) + +// precomputed tables for expanding 8bits to 8 bytes (shl 4) +static const uint64_t table_b2b_u[1 << 8] = { B8(00, 10) }; +#endif + // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32, // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON. // This is also true for POWER9. @@ -354,6 +362,32 @@ ggml_fp16_t ggml_fp32_to_fp16(float x) { return GGML_FP32_TO_FP16(x); } +void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) { + for (size_t i = 0; i < n; i++) { + y[i] = GGML_FP16_TO_FP32(x[i]); + } +} + +void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) { + size_t i = 0; +#if defined(__F16C__) + for (; i + 7 < n; i += 8) { + __m256 x_vec = _mm256_loadu_ps(x + i); + __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT); + _mm_storeu_si128((__m128i *)(y + i), y_vec); + } + for(; i + 3 < n; i += 4) { + __m128 x_vec = _mm_loadu_ps(x + i); + __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT); + _mm_storel_epi64((__m128i *)(y + i), y_vec); + } +#endif + for (; i < n; i++) { + y[i] = GGML_FP32_TO_FP16(x[i]); + } +} + + // // timing // @@ -436,7 +470,7 @@ static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float); static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi) { // Load 8 bytes from memory - __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi ); + __m128i tmp = _mm_loadl_epi64( ( const __m128i* )rsi ); // Expand bytes into uint16_t values __m128i bytes = _mm_cvtepu8_epi16( tmp ); @@ -450,7 +484,46 @@ static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi) return bytes; } +// horizontally add 8 floats +static inline float hsum_float_8(const __m256 x) { + __m128 res = _mm256_extractf128_ps(x, 1); + res = _mm_add_ps(res, _mm256_castps256_ps128(x)); + res = _mm_add_ps(res, _mm_movehl_ps(res, res)); + res = _mm_add_ss(res, _mm_movehdup_ps(res)); + return _mm_cvtss_f32(res); +} + +// horizontally add 8 int32_t +static inline int hsum_i32_8(const __m256i a) { + const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1)); + const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128); + const __m128i sum64 = _mm_add_epi32(hi64, sum128); + const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1)); + return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32)); +} + +// horizontally add 4 int32_t +static inline int hsum_i32_4(const __m128i a) { + const __m128i hi64 = _mm_unpackhi_epi64(a, a); + const __m128i sum64 = _mm_add_epi32(hi64, a); + const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1)); + return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32)); +} + #if __AVX2__ || __AVX512F__ +// spread 32 bits to 32 bytes { 0x00, 0xFF } +static inline __m256i bytes_from_bits_32(const uint8_t * x) { + uint32_t x32; + memcpy(&x32, x, sizeof(uint32_t)); + const __m256i shuf_mask = _mm256_set_epi64x( + 0x0303030303030303, 0x0202020202020202, + 0x0101010101010101, 0x0000000000000000); + __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask); + const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe); + bytes = _mm256_or_si256(bytes, bit_mask); + return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1)); +} + // Unpack 32 4-bit fields into 32 bytes // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi) @@ -470,9 +543,38 @@ static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi) return bytes; } +// add int16_t pairwise and return as float vector +static inline __m256 sum_i16_pairs_float(const __m256i x) { + const __m256i ones = _mm256_set1_epi16(1); + const __m256i summed_pairs = _mm256_madd_epi16(ones, x); + return _mm256_cvtepi32_ps(summed_pairs); +} + +// multiply int8_t, add results pairwise twice and return as float vector +static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) { + // Get absolute values of x vectors + const __m256i ax = _mm256_sign_epi8(x, x); + // Sign the values of the y vectors + const __m256i sy = _mm256_sign_epi8(y, x); +#if __AVXVNNI__ + const __m256i zero = _mm256_setzero_si256(); + const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy); + return _mm256_cvtepi32_ps(summed_pairs); +#else + // Perform multiplication and create 16-bit values + const __m256i dot = _mm256_maddubs_epi16(ax, sy); + return sum_i16_pairs_float(dot); +#endif +} + static inline __m128i packNibbles( __m256i bytes ) { // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh +#if __AVX512F__ + const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000 + bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh + return _mm256_cvtepi16_epi8(bytes); // abcd_efgh +#else const __m256i lowByte = _mm256_set1_epi16( 0xFF ); __m256i high = _mm256_andnot_si256( lowByte, bytes ); __m256i low = _mm256_and_si256( lowByte, bytes ); @@ -483,6 +585,7 @@ static inline __m128i packNibbles( __m256i bytes ) __m128i r0 = _mm256_castsi256_si128( bytes ); __m128i r1 = _mm256_extracti128_si256( bytes, 1 ); return _mm_packus_epi16( r0, r1 ); +#endif } #else static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 ) @@ -583,6 +686,33 @@ uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) { return vget_high_u8(vcombine_u8(a, b)); } +int8x16_t vzip1q_s8(int8x16_t a, int8x16_t b) { + return vcombine_s8(vget_low_s8(a), vget_low_s8(b)); +} + +int8x16_t vzip2q_s8(int8x16_t a, int8x16_t b) { + return vcombine_s8(vget_high_s8(a), vget_high_s8(b)); +} + +uint8x16_t vzip1q_u8(uint8x16_t a, uint8x16_t b) { + return vcombine_u8(vget_low_u8(a), vget_low_u8(b)); +} + +uint8x16_t vzip2q_u8(uint8x16_t a, uint8x16_t b) { + return vcombine_u8(vget_high_u8(a), vget_high_u8(b)); +} + +int32x4_t vcvtnq_s32_f32(float32x4_t v) { + int32x4_t res; + + res[0] = roundf(vgetq_lane_f32(v, 0)); + res[1] = roundf(vgetq_lane_f32(v, 1)); + res[2] = roundf(vgetq_lane_f32(v, 2)); + res[3] = roundf(vgetq_lane_f32(v, 3)); + + return res; +} + #endif #endif @@ -609,22 +739,38 @@ typedef struct { } block_q4_2; static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding"); -#define QK4_3 16 +#define QK5_0 32 +typedef struct { + ggml_fp16_t d; // delta + uint8_t qh[4]; // 5-th bit of quants + uint8_t qs[QK5_0 / 2]; // nibbles / quants +} block_q5_0; +static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding"); + +#define QK5_1 32 typedef struct { ggml_fp16_t d; // delta ggml_fp16_t m; // min - uint8_t qs[QK4_3 / 2]; // nibbles / quants -} block_q4_3; -static_assert(sizeof(block_q4_3) == 2 * sizeof(ggml_fp16_t) + QK4_3 / 2, "wrong q4_3 block size/padding"); + uint8_t qh[4]; // 5-th bit of quants + uint8_t qs[QK5_1 / 2]; // nibbles / quants +} block_q5_1; +static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding"); #define QK8_0 32 typedef struct { float d; // delta - float s; // d * sum(qs[i]) int8_t qs[QK8_0]; // quants } block_q8_0; -static_assert(sizeof(block_q8_0) == 2*sizeof(float) + QK8_0, "wrong q8_0 block size/padding"); +static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding"); +#define QK8_1 32 +typedef struct { + float d; // delta + float s0; // d * sum(qs[i]) low + float s1; // d * sum(qs[i]) high + int8_t qs[QK8_1]; // quants +} block_q8_1; +static_assert(sizeof(block_q8_1) == 3*sizeof(float) + QK8_1, "wrong q8_1 block size/padding"); // reference implementation for deterministic creation of model files static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) { @@ -635,13 +781,17 @@ static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * r for (int i = 0; i < nb; i++) { float amax = 0.0f; // absolute max + float max = 0.0f; for (int l = 0; l < QK4_0; l++) { const float v = x[i*QK4_0 + l]; - amax = MAX(amax, fabsf(v)); + if (amax < fabsf(v)) { + amax = fabsf(v); + max = v; + } } - const float d = amax / ((1 << 3) - 1); + const float d = max / -8; const float id = d ? 1.0f/d : 0.0f; y[i].d = d; @@ -650,8 +800,8 @@ static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * r const float v0 = x[i*QK4_0 + l + 0]*id; const float v1 = x[i*QK4_0 + l + 1]*id; - const uint8_t vi0 = (int8_t)roundf(v0) + 8; - const uint8_t vi1 = (int8_t)roundf(v1) + 8; + const uint8_t vi0 = MIN(15, (int8_t)roundf(v0) + 8); + const uint8_t vi1 = MIN(15, (int8_t)roundf(v1) + 8); assert(vi0 < 16); assert(vi1 < 16); @@ -671,28 +821,42 @@ static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int #if defined(__POWER9_VECTOR__) const vector float v85 = vec_splats(8.5f); + const vector signed int v15 = vec_splats(15); for (int i = 0; i < nb; i++) { - float amax = 0.0f; // absolute max + float max = 0.0f; + float min = 0.0f; vector float srcv [8]; - vector float asrcv[8]; - vector float amaxv[8]; + vector float maxv[8]; + vector float minv[8]; for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l); - for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]); + //for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]); - for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]); - //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]); - amaxv[0] = vec_max(amaxv[0], amaxv[2]); - amaxv[4] = vec_max(amaxv[4], amaxv[6]); - //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]); - amaxv[0] = vec_max(amaxv[0], amaxv[4]); + for (int l = 0; l < 4; l++) maxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]); + //for (int l = 0; l < 2; l++) maxv[4*l] = vec_max(maxv[4*l], maxv[4*l+2]); + maxv[0] = vec_max(maxv[0], maxv[2]); + maxv[4] = vec_max(maxv[4], maxv[6]); + //for (int l = 0; l < 1; l++) maxv[8*l] = vec_max(maxv[8*l], maxv[8*l+4]); + maxv[0] = vec_max(maxv[0], maxv[4]); - amax = MAX( - MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)), - MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3))); + for (int l = 0; l < 4; l++) minv[2*l] = vec_min(asrcv[2*l], asrcv[2*l+1]); + //for (int l = 0; l < 2; l++) minv[4*l] = vec_min(minv[4*l], minv[4*l+2]); + minv[0] = vec_min(minv[0], minv[2]); + minv[4] = vec_min(minv[4], minv[6]); + //for (int l = 0; l < 1; l++) minv[8*l] = vec_min(minv[8*l], minv[8*l+4]); + minv[0] = vec_min(minv[0], minv[4]); - const float d = amax / ((1 << 3) - 1); + + max = MAX( + MAX(vec_extract(maxv[0], 0), vec_extract(maxv[0], 1)), + MAX(vec_extract(maxv[0], 2), vec_extract(maxv[0], 3))); + min = MIN( + MIN(vec_extract(minv[0], 0), vec_extract(minv[0], 1)), + MIN(vec_extract(minv[0], 2), vec_extract(minv[0], 3))); + + const float magnitude = max >= fabsf(min) ? max : min; + const float d = magnitude / -8; const float id = d ? 1.0/d : 0.0; y[i].d = d; @@ -702,27 +866,33 @@ static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int for (int l = 0; l < 8; l++) { const vector float vf = vec_madd(srcv[l], vid, v85); const vector signed int vi = vec_signed(vf); + const vector signed int vc = vec_min(vi, v15); - pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4); - pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4); + pb[2*l + 0] = vec_extract(vc, 0) | (vec_extract(vc, 1) << 4); + pb[2*l + 1] = vec_extract(vc, 2) | (vec_extract(vc, 3) << 4); } } #elif __ARM_NEON for (int i = 0; i < nb; i++) { float32x4_t srcv [8]; - float32x4_t asrcv[8]; - float32x4_t amaxv[8]; + float32x4_t maxv[8]; + float32x4_t minv[8]; for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l); - for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]); - for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]); - for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]); - for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]); + for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l+1]); + for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l+2]); + for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l+4]); - const float amax = vmaxvq_f32(amaxv[0]); + for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l+1]); + for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l+2]); + for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l+4]); - const float d = amax / ((1 << 3) - 1); + const float max = vmaxvq_f32(maxv[0]); + const float min = vminvq_f32(minv[0]); + + const float magnitude = max >= fabsf(min) ? max : min; + const float d = magnitude / -8; const float id = d ? 1.0f/d : 0.0f; y[i].d = d; @@ -731,9 +901,10 @@ static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int const float32x4_t v = vmulq_n_f32(srcv[l], id); const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f)); const int32x4_t vi = vcvtq_s32_f32(vf); + const int32x4_t vc = vminq_s32(vi, vdupq_n_s32(15)); - y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4); - y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4); + y[i].qs[2*l + 0] = vgetq_lane_s32(vc, 0) | (vgetq_lane_s32(vc, 1) << 4); + y[i].qs[2*l + 1] = vgetq_lane_s32(vc, 2) | (vgetq_lane_s32(vc, 3) << 4); } } #elif defined(__AVX2__) @@ -745,22 +916,31 @@ static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int __m256 v3 = _mm256_loadu_ps( x + 24 ); x += 32; - // Compute max(abs(e)) for the block - const __m256 signBit = _mm256_set1_ps( -0.0f ); - __m256 maxAbs = _mm256_andnot_ps( signBit, v0 ); - maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) ); - maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) ); - maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) ); + // Compute max for the block + __m256 max = _mm256_max_ps( v0, v1 ); + __m256 maxTmp = _mm256_max_ps( v2, v3 ); + max = _mm256_max_ps( max, maxTmp ); - __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) ); + __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) ); max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) ); max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) ); const float maxScalar = _mm_cvtss_f32( max4 ); + // Compute min for the block + __m256 min = _mm256_min_ps( v0, v1 ); + __m256 minTmp = _mm256_min_ps( v2, v3 ); + min = _mm256_min_ps( min, minTmp ); + + __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) ); + min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) ); + min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) ); + const float minScalar = _mm_cvtss_f32( min4 ); + // Quantize these floats - const float d = maxScalar / 7.0f; + const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar; + const float d = magnitude / -8.0f; y[i].d = d; - const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f; + const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f; const __m256 mul = _mm256_set1_ps( id ); // Apply the multiplier @@ -793,9 +973,11 @@ static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 ); i0 = _mm256_permutevar8x32_epi32( i0, perm ); - // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ] + // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ] const __m256i off = _mm256_set1_epi8( 8 ); i0 = _mm256_add_epi8( i0, off ); + const __m256i maxNibble = _mm256_set1_epi8( 15 ); + i0 = _mm256_min_epi8( i0, maxNibble ); // Compress the vector into 4 bit/value, and store __m128i res = packNibbles( i0 ); @@ -810,22 +992,31 @@ static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int __m256 v3 = _mm256_loadu_ps( x + 24 ); x += 32; - // Compute max(abs(e)) for the block - const __m256 signBit = _mm256_set1_ps( -0.0f ); - __m256 maxAbs = _mm256_andnot_ps( signBit, v0 ); - maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) ); - maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) ); - maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) ); + // Compute max for the block + __m256 max = _mm256_max_ps( v0, v1 ); + __m256 maxTmp = _mm256_max_ps( v2, v3 ); + max = _mm256_max_ps( max, maxTmp ); - __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) ); + __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) ); max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) ); max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) ); const float maxScalar = _mm_cvtss_f32( max4 ); + // Compute min for the block + __m256 min = _mm256_min_ps( v0, v1 ); + __m256 minTmp = _mm256_min_ps( v2, v3 ); + min = _mm256_min_ps( min, minTmp ); + + __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) ); + min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) ); + min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) ); + const float minScalar = _mm_cvtss_f32( min4 ); + // Quantize these floats - const float d = maxScalar / 7.0f; + const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar; + const float d = magnitude / -8.0f; y[i].d = d; - const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f; + const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f; const __m256 mul = _mm256_set1_ps( id ); // Apply the multiplier @@ -866,10 +1057,13 @@ static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int ni0 = _mm_packs_epi16( ni0, ni2 ); ni4 = _mm_packs_epi16( ni4, ni6 ); - // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ] - const __m128i off = _mm_set1_epi8( 8); + // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ] + const __m128i off = _mm_set1_epi8( 8 ); ni0 = _mm_add_epi8( ni0, off ); ni4 = _mm_add_epi8( ni4, off ); + const __m128i maxNibble = _mm_set1_epi8( 15 ); + ni0 = _mm_min_epi8( ni0, maxNibble ); + ni4 = _mm_min_epi8( ni4, maxNibble ); // Compress the vector into 4 bit/value, and store __m128i res = packNibbles( ni0, ni4 ); @@ -877,24 +1071,32 @@ static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int } #elif defined(__wasm_simd128__) for (int i = 0; i < nb; i++) { - float amax = 0.0f; // absolute max + float max = 0.0f; + float min = 0.0f; v128_t srcv [8]; - v128_t asrcv[8]; - v128_t amaxv[8]; + v128_t maxv[8]; + v128_t minv[8]; for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l); - for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]); - for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]); - for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]); - for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]); + for (int l = 0; l < 4; l++) maxv[2*l] = wasm_f32x4_max(srcv[2*l], srcv[2*l+1]); + for (int l = 0; l < 2; l++) maxv[4*l] = wasm_f32x4_max(maxv[4*l], maxv[4*l+2]); + for (int l = 0; l < 1; l++) maxv[8*l] = wasm_f32x4_max(maxv[8*l], maxv[8*l+4]); - amax = MAX( - MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)), - MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3))); + for (int l = 0; l < 4; l++) minv[2*l] = wasm_f32x4_min(srcv[2*l], srcv[2*l+1]); + for (int l = 0; l < 2; l++) minv[4*l] = wasm_f32x4_min(minv[4*l], minv[4*l+2]); + for (int l = 0; l < 1; l++) minv[8*l] = wasm_f32x4_min(minv[8*l], minv[8*l+4]); - const float d = amax / ((1 << 3) - 1); + max = MAX( + MAX(wasm_f32x4_extract_lane(maxv[0], 0), wasm_f32x4_extract_lane(maxv[0], 1)), + MAX(wasm_f32x4_extract_lane(maxv[0], 2), wasm_f32x4_extract_lane(maxv[0], 3))); + min = MIN( + MIN(wasm_f32x4_extract_lane(minv[0], 0), wasm_f32x4_extract_lane(minv[0], 1)), + MIN(wasm_f32x4_extract_lane(minv[0], 2), wasm_f32x4_extract_lane(minv[0], 3))); + + const float magnitude = max >= fabsf(min) ? max : min; + const float d = magnitude / -8; const float id = d ? 1.0/d : 0.0; y[i].d = d; @@ -903,9 +1105,10 @@ static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id)); const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f)); const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf); + const v128_t vc = wasm_i32x4_min(vi, wasm_i32x4_splat(15)); - y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4); - y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4); + y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vc, 0) | (wasm_i32x4_extract_lane(vc, 1) << 4); + y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vc, 2) | (wasm_i32x4_extract_lane(vc, 3) << 4); } } #else @@ -1086,13 +1289,17 @@ static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * r for (int i = 0; i < nb; i++) { float amax = 0.0f; // absolute max + float max = 0.0f; for (int l = 0; l < QK4_2; l++) { const float v = x[i*QK4_2 + l]; - amax = MAX(amax, fabsf(v)); + if (amax < fabsf(v)) { + amax = fabsf(v); + max = v; + } } - const float d = amax / ((1 << 3) - 1); + const float d = max / -8; const float id = d ? 1.0f/d : 0.0f; @@ -1102,8 +1309,8 @@ static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * r const float v0 = x[i*QK4_2 + l + 0]*id; const float v1 = x[i*QK4_2 + l + 1]*id; - const uint8_t vi0 = (uint8_t)(v0 + 8.5f); - const uint8_t vi1 = (uint8_t)(v1 + 8.5f); + const uint8_t vi0 = MIN(15, (uint8_t)(v0 + 8.5f)); + const uint8_t vi1 = MIN(15, (uint8_t)(v1 + 8.5f)); assert(vi0 < 16); assert(vi1 < 16); @@ -1113,136 +1320,109 @@ static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * r } } -static inline int nearest_int(float fval) { - assert(fval <= 4194303.f); - float val = fval + 12582912.f; - int i; memcpy(&i, &val, sizeof(int)); - return (i & 0x007fffff) - 0x00400000; -} - -static float kquantize_q4_with_bounds(int n, int nmin, int nmax, const float * restrict X, int nCandidates, - const float * restrict candidates, int8_t * restrict L) { - assert (nmin >= INT8_MIN); - assert (nmax <= INT8_MAX); - float amax = 0; - for (int i=0; i sumlxM2*suml2P) { - if (sumlxP2 > best*suml2P) { - best = sumlxP2/suml2P; bestScale = iscale; - } - } else { - if (sumlxM2 > best*suml2M) { - best = sumlxM2/suml2M; bestScale = -iscale; - } - } - } - float sumlx = 0; int suml2 = 0; - for (int i=0; i> 4) << (l + 0); + qh |= ((vi1 & 0x10) >> 4) << (l + 1); + } + + memcpy(&y[i].qh, &qh, sizeof(y[i].qh)); + } +} + +static void quantize_row_q5_0(const float * restrict x, void * restrict vy, int k) { + assert(k % QK5_0 == 0); + + block_q5_0 * restrict y = vy; + + quantize_row_q5_0_reference(x, y, k); +} + +static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) { + assert(k % QK5_1 == 0); + const int nb = k / QK5_1; for (int i = 0; i < nb; i++) { float min = FLT_MAX; float max = -FLT_MAX; - for (int l = 0; l < QK4_3; l++) { - const float v = x[i*QK4_3 + l]; + for (int l = 0; l < QK5_1; l++) { + const float v = x[i*QK5_1 + l]; if (v < min) min = v; if (v > max) max = v; } - const float d = (max - min) / ((1 << 4) - 1); + const float d = (max - min) / ((1 << 5) - 1); const float id = d ? 1.0f/d : 0.0f; y[i].d = GGML_FP32_TO_FP16(d); y[i].m = GGML_FP32_TO_FP16(min); - for (int l = 0; l < QK4_3; l += 2) { - const float v0 = (x[i*QK4_3 + l + 0] - min)*id; - const float v1 = (x[i*QK4_3 + l + 1] - min)*id; + uint32_t qh = 0; - const uint8_t vi0 = (int) (v0 + 0.5f); - const uint8_t vi1 = (int) (v1 + 0.5f); + for (int l = 0; l < QK5_1; l += 2) { + const float v0 = (x[i*QK5_1 + l + 0] - min)*id; + const float v1 = (x[i*QK5_1 + l + 1] - min)*id; - assert(vi0 < 16); - assert(vi1 < 16); + const uint32_t vi0 = (int) (v0 + 0.5f); + const uint32_t vi1 = (int) (v1 + 0.5f); - y[i].qs[l/2] = vi0 | (vi1 << 4); + y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4); + + // get the 5-th bit and store it in qh at the right position + qh |= ((vi0 & 0x10) >> 4) << (l + 0); + qh |= ((vi1 & 0x10) >> 4) << (l + 1); } + + memcpy(&y[i].qh, &qh, sizeof(y[i].qh)); } } -static void quantize_row_q4_3(const float * restrict x, void * restrict vy, int k) { - assert(k % QK4_3 == 0); +static void quantize_row_q5_1(const float * restrict x, void * restrict vy, int k) { + assert(k % QK5_1 == 0); - block_q4_3 * restrict y = vy; + block_q5_1 * restrict y = vy; - quantize_row_q4_3_reference(x, y, k); + quantize_row_q5_1_reference(x, y, k); } // reference implementation for deterministic creation of model files @@ -1263,45 +1443,65 @@ static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * r y[i].d = d; - int sum = 0; for (int l = 0; l < QK8_0; ++l) { - const float v = x[i*QK8_0 + l]*id; - y[i].qs[l] = roundf(v); - sum += y[i].qs[l]; + const float v0 = x[i*QK8_0 + l]*id; + + y[i].qs[l] = roundf(v0); } - y[i].s = d * sum; } } -#ifdef __AVX2__ -// There is no better way of doing this? -// I guess not, AVX is not very good at horizontal sums. -// The commented solution for a hotrizontal sum was suggested by @pubby as being slightly -// faster than the solution below. As I don't have an AVX2 system handt right now to test, -// keeping the original. -// TODO: Please try and if it does make a differece, uncomment and remove the implementation below. -//static inline float horizontal_sum(__m256i a) { -// __m256i b = _mm256_castps_si256(_mm256_movehdup_ps(_mm256_castsi256_ps(a))); -// __m256i sum = _mm256_add_epi32(a, b); -// __m256i hi = _mm256_unpackhi_epi64(sum, sum); -// sum = _mm256_add_epi32(sum, hi); -// return _mm256_cvtsi256_si32(sum) + _mm256_extract_epi32(sum, 4); -//} -static inline float horizontal_sum(__m256i a) { - __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extracti128_si256(a, 1)); - __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128); - __m128i sum64 = _mm_add_epi32(hi64, sum128); - __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1)); - return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32)); -} -#endif - static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) { assert(k % QK8_0 == 0); - const int nb = k / QK8_0; block_q8_0 * restrict y = vy; + quantize_row_q8_0_reference(x, y, k); +} + +// reference implementation for deterministic creation of model files +static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) { + assert(k % QK8_1 == 0); + const int nb = k / QK8_1; + + for (int i = 0; i < nb; i++) { + float amax = 0.0f; // absolute max + + for (int l = 0; l < QK8_1; l++) { + const float v = x[i*QK8_1 + l]; + amax = MAX(amax, fabsf(v)); + } + + const float d = amax / ((1 << 7) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = d; + + int sum0 = 0; + int sum1 = 0; + + for (int l = 0; l < QK8_1/2; ++l) { + const float v0 = x[i*QK8_1 + l]*id; + const float v1 = x[i*QK8_1 + QK8_1/2 + l]*id; + + y[i].qs[ l] = roundf(v0); + y[i].qs[QK8_1/2 + l] = roundf(v1); + + sum0 += y[i].qs[ l]; + sum1 += y[i].qs[QK8_1/2 + l]; + } + + y[i].s0 = d * sum0; + y[i].s1 = d * sum1; + } +} + +static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) { + assert(k % QK8_1 == 0); + const int nb = k / QK8_1; + + block_q8_1 * restrict y = vy; + #if defined(__ARM_NEON) for (int i = 0; i < nb; i++) { float32x4_t srcv [8]; @@ -1322,9 +1522,11 @@ static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int y[i].d = d; - int32x4_t accv = vdupq_n_s32(0); + int32x4_t accv0 = vdupq_n_s32(0); + int32x4_t accv1 = vdupq_n_s32(0); - for (int l = 0; l < 8; l++) { + // low half + for (int l = 0; l < 4; l++) { const float32x4_t v = vmulq_n_f32(srcv[l], id); const int32x4_t vi = vcvtnq_s32_f32(v); @@ -1333,10 +1535,27 @@ static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2); y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3); - accv = vaddq_s32(accv, vi); + accv0 = vaddq_s32(accv0, vi); } - int32_t sum = vaddvq_s32(accv); - y[i].s = d * sum; + + // high half + for (int l = 4; l < 8; l++) { + const float32x4_t v = vmulq_n_f32(srcv[l], id); + const int32x4_t vi = vcvtnq_s32_f32(v); + + y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0); + y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1); + y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2); + y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3); + + accv1 = vaddq_s32(accv1, vi); + } + + const int32_t sum0 = vaddvq_s32(accv0); + const int32_t sum1 = vaddvq_s32(accv1); + + y[i].s0 = d * sum0; + y[i].s1 = d * sum1; } #elif defined(__AVX2__) || defined(__AVX__) for (int i = 0; i < nb; i++) { @@ -1384,9 +1603,10 @@ static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int __m256i i3 = _mm256_cvtps_epi32( v3 ); #if defined(__AVX2__) - // Compute the sum of the quants and set y[i].s - y[i].s = d * horizontal_sum(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3))); + //y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3))); + y[i].s0 = d * hsum_i32_8(_mm256_add_epi32(i0, i1)); + y[i].s1 = d * hsum_i32_8(_mm256_add_epi32(i2, i3)); // Convert int32 to int16 i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15 @@ -1413,6 +1633,12 @@ static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int __m128i ni6 = _mm256_castsi256_si128( i3 ); __m128i ni7 = _mm256_extractf128_si256( i3, 1); + // Compute the sum of the quants and set y[i].s + const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3)); + const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7)); + y[i].s0 = d * hsum_i32_4(s0); + y[i].s1 = d * hsum_i32_4(s1); + // Convert int32 to int16 ni0 = _mm_packs_epi32( ni0, ni1 ); ni2 = _mm_packs_epi32( ni2, ni3 ); @@ -1428,15 +1654,7 @@ static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int } #else // scalar - quantize_row_q8_0_reference(x, y, k); -#endif -#if defined __AVX__ - // TODO: vectorize this - for (int i=0; i> 4; const float v0 = (vi0 - 8)*d; @@ -1606,7 +1824,7 @@ static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, in const uint8x8_t v8 = vld1_u8(pp + l/2); // Expand 4-bit qs to 8-bit bytes - const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f)); + const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F)); const uint8x8_t v1 = vshr_n_u8(v8, 4); // Interleave and combine @@ -1648,7 +1866,7 @@ static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, in for (int l = 0; l < QK4_1; l += 2) { const uint8_t vi = pp[l/2]; - const int8_t vi0 = vi & 0xf; + const int8_t vi0 = vi & 0x0F; const int8_t vi1 = vi >> 4; const float v0 = vi0*d + m; @@ -1678,7 +1896,7 @@ static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, in for (int l = 0; l < QK4_2; l += 2) { const uint8_t vi = pp[l/2]; - const int8_t vi0 = vi & 0xf; + const int8_t vi0 = vi & 0x0F; const int8_t vi1 = vi >> 4; const float v0 = (vi0 - 8)*d; @@ -1693,11 +1911,47 @@ static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, in } } -static void dequantize_row_q4_3(const void * restrict vx, float * restrict y, int k) { - assert(k % QK4_3 == 0); - const int nb = k / QK4_3; +static void dequantize_row_q5_0(const void * restrict vx, float * restrict y, int k) { + assert(k % QK5_0 == 0); + const int nb = k / QK5_0; - const block_q4_3 * restrict x = vx; + const block_q5_0 * restrict x = vx; + + for (int i = 0; i < nb; i++) { + const float d = GGML_FP16_TO_FP32(x[i].d); + + const uint8_t * restrict pp = x[i].qs; + + uint32_t qh; + memcpy(&qh, x[i].qh, sizeof(qh)); + + for (int l = 0; l < QK5_0; l += 2) { + const uint8_t vi = pp[l/2]; + + // extract the 5-th bit from qh + const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4; + const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4; + + const int8_t vi0 = (vi & 0x0F) | vh0; + const int8_t vi1 = (vi >> 4) | vh1; + + const float v0 = (vi0 - 16)*d; + const float v1 = (vi1 - 16)*d; + + y[i*QK5_0 + l + 0] = v0; + y[i*QK5_0 + l + 1] = v1; + + assert(!isnan(y[i*QK5_0 + l + 0])); + assert(!isnan(y[i*QK5_0 + l + 1])); + } + } +} + +static void dequantize_row_q5_1(const void * restrict vx, float * restrict y, int k) { + assert(k % QK5_1 == 0); + const int nb = k / QK5_1; + + const block_q5_1 * restrict x = vx; for (int i = 0; i < nb; i++) { const float d = GGML_FP16_TO_FP32(x[i].d); @@ -1705,28 +1959,54 @@ static void dequantize_row_q4_3(const void * restrict vx, float * restrict y, in const uint8_t * restrict pp = x[i].qs; - for (int l = 0; l < QK4_3; l += 2) { + uint32_t qh; + memcpy(&qh, x[i].qh, sizeof(qh)); + + for (int l = 0; l < QK5_1; l += 2) { const uint8_t vi = pp[l/2]; - const int8_t vi0 = vi & 0xf; - const int8_t vi1 = vi >> 4; + // extract the 5-th bit from qh + const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4; + const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4; + + const uint8_t vi0 = (vi & 0x0F) | vh0; + const uint8_t vi1 = (vi >> 4) | vh1; const float v0 = vi0*d + m; const float v1 = vi1*d + m; - y[i*QK4_3 + l + 0] = v0; - y[i*QK4_3 + l + 1] = v1; + y[i*QK5_1 + l + 0] = v0; + y[i*QK5_1 + l + 1] = v1; - assert(!isnan(y[i*QK4_3 + l + 0])); - assert(!isnan(y[i*QK4_3 + l + 1])); + assert(!isnan(y[i*QK5_1 + l + 0])); + assert(!isnan(y[i*QK5_1 + l + 1])); + } + } +} + +static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) { + assert(k % QK8_0 == 0); + const int nb = k / QK8_0; + + const block_q8_0 * restrict x = vx; + + for (int i = 0; i < nb; i++) { + const float d = x[i].d; + + const int8_t * restrict pp = x[i].qs; + + for (int l = 0; l < QK8_0; ++l) { + y[i*QK8_0 + l] = pp[l]*d; } } } static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); -static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); +static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); -static void ggml_vec_dot_q4_3_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); +static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); +static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); +static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = { [GGML_TYPE_Q4_0] = { @@ -1735,34 +2015,55 @@ static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = { .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference, .quantize_row_q_dot = quantize_row_q8_0, .vec_dot_q = ggml_vec_dot_q4_0_q8_0, + .vec_dot_type = GGML_TYPE_Q8_0, }, [GGML_TYPE_Q4_1] = { .dequantize_row_q = dequantize_row_q4_1, .quantize_row_q = quantize_row_q4_1, .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference, - .quantize_row_q_dot = quantize_row_q8_0, - .vec_dot_q = ggml_vec_dot_q4_1_q8_0, + .quantize_row_q_dot = quantize_row_q8_1, + .vec_dot_q = ggml_vec_dot_q4_1_q8_1, + .vec_dot_type = GGML_TYPE_Q8_1, }, [GGML_TYPE_Q4_2] = { .dequantize_row_q = dequantize_row_q4_2, .quantize_row_q = quantize_row_q4_2, - .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_rmse, //quantize_row_q4_2_reference, + .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_reference, .quantize_row_q_dot = quantize_row_q8_0, .vec_dot_q = ggml_vec_dot_q4_2_q8_0, + .vec_dot_type = GGML_TYPE_Q8_0, }, - [GGML_TYPE_Q4_3] = { - .dequantize_row_q = dequantize_row_q4_3, - .quantize_row_q = quantize_row_q4_3, - .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_3_reference, // TODO: RMSE optimization + [GGML_TYPE_Q5_0] = { + .dequantize_row_q = dequantize_row_q5_0, + .quantize_row_q = quantize_row_q5_0, + .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference, .quantize_row_q_dot = quantize_row_q8_0, - .vec_dot_q = ggml_vec_dot_q4_3_q8_0, + .vec_dot_q = ggml_vec_dot_q5_0_q8_0, + .vec_dot_type = GGML_TYPE_Q8_0, + }, + [GGML_TYPE_Q5_1] = { + .dequantize_row_q = dequantize_row_q5_1, + .quantize_row_q = quantize_row_q5_1, + .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference, + .quantize_row_q_dot = quantize_row_q8_1, + .vec_dot_q = ggml_vec_dot_q5_1_q8_1, + .vec_dot_type = GGML_TYPE_Q8_1, }, [GGML_TYPE_Q8_0] = { - .dequantize_row_q = NULL, // TODO + .dequantize_row_q = dequantize_row_q8_0, .quantize_row_q = quantize_row_q8_0, .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference, .quantize_row_q_dot = quantize_row_q8_0, + .vec_dot_q = ggml_vec_dot_q8_0_q8_0, + .vec_dot_type = GGML_TYPE_Q8_0, + }, + [GGML_TYPE_Q8_1] = { + .dequantize_row_q = NULL, // TODO + .quantize_row_q = quantize_row_q8_1, + .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference, + .quantize_row_q_dot = quantize_row_q8_1, .vec_dot_q = NULL, // TODO + .vec_dot_type = GGML_TYPE_Q8_1, }, }; @@ -2374,23 +2675,18 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * const block_q4_0 * restrict x = vx; const block_q8_0 * restrict y = vy; - float sumf = 0.0; - #if defined(__ARM_NEON) float32x4_t sumv0 = vdupq_n_f32(0.0f); float32x4_t sumv1 = vdupq_n_f32(0.0f); - float sum8 = 0; - for (int i = 0; i < nb; i += 2) { const block_q4_0 * restrict x0 = &x[i + 0]; const block_q4_0 * restrict x1 = &x[i + 1]; const block_q8_0 * restrict y0 = &y[i + 0]; const block_q8_0 * restrict y1 = &y[i + 1]; - sum8 += x0->d * y0->s + x1->d * y1->s; - - const uint8x16_t m4b = vdupq_n_u8(0xf); + const uint8x16_t m4b = vdupq_n_u8(0x0F); + const int8x16_t s8b = vdupq_n_s8(0x8); const uint8x16_t v0_0 = vld1q_u8(x0->qs); const uint8x16_t v0_1 = vld1q_u8(x1->qs); @@ -2401,35 +2697,41 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); + // sub 8 + const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b); + const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b); + const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b); + const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b); + + // interleave + const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs); + const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs); + const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs); + const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs); + // load y const int8x16_t v1_0l = vld1q_s8(y0->qs); const int8x16_t v1_0h = vld1q_s8(y0->qs + 16); const int8x16_t v1_1l = vld1q_s8(y1->qs); const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); - // interleave - const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h); - const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h); - const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h); - const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h); - #if defined(__ARM_FEATURE_DOTPROD) // dot product into int32x4_t - const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0ls), v0_0h, v1_0hs); - const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1ls), v0_1h, v1_1hs); + const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h); + const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h); sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d); sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d); #else - const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0ls)); - const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0ls)); - const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0hs)); - const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0hs)); + const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l)); + const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l)); + const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h)); + const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h)); - const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1ls)); - const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1ls)); - const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1hs)); - const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1hs)); + const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l)); + const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l)); + const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h)); + const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h)); const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h)); const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h)); @@ -2441,7 +2743,7 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * #endif } - sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) - 8 * sum8; + *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1); #elif defined(__AVX2__) // Initialize accumulator with zeros __m256 acc = _mm256_setzero_ps(); @@ -2459,32 +2761,13 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); - // Get absolute values of x vectors - const __m256i ax = _mm256_sign_epi8(bx, bx); - - // Sign the values of the y vectors - const __m256i sy = _mm256_sign_epi8(by, bx); - - // Perform multiplication and create 16-bit values - const __m256i dot = _mm256_maddubs_epi16(ax, sy); - - const __m256i ones = _mm256_set1_epi16(1); - __m256i xy_q = _mm256_madd_epi16(ones, dot); - - /* Convert to vectore of 8 int32_t to 8 floats */ - __m256 q = _mm256_cvtepi32_ps( xy_q ); + const __m256 q = mul_sum_i8_pairs_float(bx, by); /* Multiply q with scale and accumulate */ acc = _mm256_fmadd_ps( d, q, acc ); } - // Return horizontal sum of the acc vector - __m128 res = _mm256_extractf128_ps( acc, 1 ); - res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) ); - res = _mm_add_ps( res, _mm_movehl_ps( res, res ) ); - res = _mm_add_ss( res, _mm_movehdup_ps( res ) ); - - sumf = _mm_cvtss_f32( res ); + *s = hsum_float_8(acc); #elif defined(__AVX__) // Initialize accumulator with zeros __m256 acc = _mm256_setzero_ps(); @@ -2523,15 +2806,10 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc); } - // Return horizontal sum of the acc vector - __m128 res = _mm256_extractf128_ps( acc, 1 ); - res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) ); - res = _mm_add_ps( res, _mm_movehl_ps( res, res ) ); - res = _mm_add_ss( res, _mm_movehdup_ps( res ) ); - - sumf = _mm_cvtss_f32( res ); + *s = hsum_float_8(acc); #else // scalar + float sumf = 0.0; for (int i = 0; i < nb; i++) { const float d0 = x[i].d; const float d1 = y[i].d; @@ -2543,8 +2821,8 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * for (int j = 0; j < QK8_0/2; j++) { const uint8_t v0 = p0[j]; - const int i0 = (int8_t) (v0 & 0xf) - 8; - const int i1 = (int8_t) (v0 >> 4) - 8; + const int i0 = (int8_t) (v0 & 0x0F) - 8; + const int i1 = (int8_t) (v0 >> 4) - 8; const int i2 = p1[2*j + 0]; const int i3 = p1[2*j + 1]; @@ -2553,21 +2831,18 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * } sumf += d0*d1*sumi; } -#endif - *s = sumf; +#endif } -static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { - const int nb = n / QK8_0; +static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { + const int nb = n / QK8_1; - assert(n % QK8_0 == 0); + assert(n % QK8_1 == 0); assert(nb % 2 == 0); const block_q4_1 * restrict x = vx; - const block_q8_0 * restrict y = vy; - - float sumf = 0.0; + const block_q8_1 * restrict y = vy; // TODO: add AVX / WASM SIMD / etc #if defined(__ARM_NEON) @@ -2579,12 +2854,12 @@ static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * for (int i = 0; i < nb; i += 2) { const block_q4_1 * restrict x0 = &x[i + 0]; const block_q4_1 * restrict x1 = &x[i + 1]; - const block_q8_0 * restrict y0 = &y[i + 0]; - const block_q8_0 * restrict y1 = &y[i + 1]; + const block_q8_1 * restrict y0 = &y[i + 0]; + const block_q8_1 * restrict y1 = &y[i + 1]; - summs += x0->m * y0->s + x1->m * y1->s; + summs += x0->m * (y0->s0 + y0->s1) + x1->m * (y1->s0 + y1->s1); - const uint8x16_t m4b = vdupq_n_u8(0xf); + const uint8x16_t m4b = vdupq_n_u8(0x0F); const uint8x16_t v0_0 = vld1q_u8(x0->qs); const uint8x16_t v0_1 = vld1q_u8(x1->qs); @@ -2595,35 +2870,35 @@ static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); + // interleave + const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h); + const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h); + const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h); + const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h); + // load y const int8x16_t v1_0l = vld1q_s8(y0->qs); const int8x16_t v1_0h = vld1q_s8(y0->qs + 16); const int8x16_t v1_1l = vld1q_s8(y1->qs); const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); - // interleave - const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h); - const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h); - const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h); - const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h); - #if defined(__ARM_FEATURE_DOTPROD) // dot product into int32x4_t - const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0ls), v0_0h, v1_0hs); - const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1ls), v0_1h, v1_1hs); + const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h); + const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h); sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d); sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d); #else - const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0ls)); - const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0ls)); - const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0hs)); - const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0hs)); + const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l)); + const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l)); + const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h)); + const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h)); - const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1ls)); - const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1ls)); - const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1hs)); - const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1hs)); + const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l)); + const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l)); + const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h)); + const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h)); const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h)); const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h)); @@ -2635,7 +2910,7 @@ static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * #endif } - sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs; + *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs; #elif defined(__AVX2__) // Initialize accumulator with zeros __m256 acc = _mm256_setzero_ps(); @@ -2646,9 +2921,8 @@ static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * for (int i = 0; i < nb; ++i) { const float * d0 = &x[i].d; const float * d1 = &y[i].d; - //const float * m0 = &x[i].m; - summs += x[i].m * y[i].s; + summs += x[i].m * (y[i].s0 + y[i].s1); const __m256 d0v = _mm256_broadcast_ss( d0 ); const __m256 d1v = _mm256_broadcast_ss( d1 ); @@ -2660,33 +2934,16 @@ static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * const __m256i bx = bytes_from_nibbles_32(x[i].qs); const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs ); - // Get absolute values of x vectors - const __m256i ax = _mm256_sign_epi8( bx, bx ); - - // Sign the values of the y vectors - const __m256i sy = _mm256_sign_epi8( by, bx ); - - // Perform multiplication and create 16-bit values - const __m256i dot = _mm256_maddubs_epi16( ax, sy ); - const __m256i ones = _mm256_set1_epi16( 1 ); - const __m256i xy_q = _mm256_madd_epi16( ones, dot ); - - // Convert to vector of 8 int32_t to 8 floats - const __m256 xy = _mm256_cvtepi32_ps( xy_q ); + const __m256 xy = mul_sum_i8_pairs_float(bx, by); // Accumulate d0*d1*x*y acc = _mm256_fmadd_ps( d0d1, xy, acc ); } - // Return horizontal sum of the acc vector - __m128 res = _mm256_extractf128_ps( acc, 1 ); - res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) ); - res = _mm_add_ps( res, _mm_movehl_ps( res, res ) ); - res = _mm_add_ss( res, _mm_movehdup_ps( res ) ); - - sumf = _mm_cvtss_f32( res ) + summs; + *s = hsum_float_8(acc) + summs; #else // scalar + float sumf = 0.0; for (int i = 0; i < nb; i++) { const float d0 = x[i].d; const float m0 = x[i].m; @@ -2696,11 +2953,11 @@ static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * const int8_t * restrict p1 = y[i].qs; // TODO: this is very slow .. - for (int j = 0; j < QK8_0/2; j++) { + for (int j = 0; j < QK8_1/2; j++) { const uint8_t v0 = p0[j]; - const float f0 = d0*(v0 & 0xf) + m0; - const float f1 = d0*(v0 >> 4) + m0; + const float f0 = d0*(v0 & 0x0F) + m0; + const float f1 = d0*(v0 >> 4) + m0; const float f2 = d1*p1[2*j + 0]; const float f3 = d1*p1[2*j + 1]; @@ -2708,9 +2965,8 @@ static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * sumf += f0*f2 + f1*f3; } } -#endif - *s = sumf; +#endif } static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { @@ -2723,8 +2979,6 @@ static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * const block_q4_2 * restrict x = vx; const block_q8_0 * restrict y = vy; - float sumf = 0.0; - #if defined(__ARM_NEON) float32x4_t sumv0 = vdupq_n_f32(0.0f); float32x4_t sumv1 = vdupq_n_f32(0.0f); @@ -2738,7 +2992,7 @@ static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * const block_q8_0 * restrict y0 = &y[i + 0]; const block_q8_0 * restrict y1 = &y[i + 1]; - const uint8x16_t m4b = vdupq_n_u8(0xf); + const uint8x16_t m4b = vdupq_n_u8(0x0F); const int8x16_t s8b = vdupq_n_s8(0x8); const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs)); @@ -2802,7 +3056,7 @@ static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * #endif } - sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1); + *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1); #elif defined(__AVX2__) // Initialize accumulator with zeros __m256 acc = _mm256_setzero_ps(); @@ -2824,32 +3078,16 @@ static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); - // Get absolute values of x vectors - const __m256i ax = _mm256_sign_epi8(bx, bx); - // Sign the values of the y vectors - const __m256i sy = _mm256_sign_epi8(by, bx); - // Perform multiplication and create 16-bit values - const __m256i dot = _mm256_maddubs_epi16(ax, sy); - - const __m256i ones = _mm256_set1_epi16(1); - __m256i xy_q = _mm256_madd_epi16(ones, dot); - - /* Convert to vectore of 8 int32_t to 8 floats */ - __m256 q = _mm256_cvtepi32_ps(xy_q); + const __m256 q = mul_sum_i8_pairs_float(bx, by); /* Multiply q with scale and accumulate */ acc = _mm256_fmadd_ps(d, q, acc); } - // Return horizontal sum of the acc vector - __m128 res = _mm256_extractf128_ps(acc, 1); - res = _mm_add_ps(res, _mm256_castps256_ps128(acc)); - res = _mm_add_ps(res, _mm_movehl_ps(res, res)); - res = _mm_add_ss(res, _mm_movehdup_ps(res)); - - sumf = _mm_cvtss_f32(res); + *s = hsum_float_8(acc); #else // scalar + float sumf = 0.0; for (int i = 0; i < nb; i++) { const uint8_t * restrict x0 = x[2*i + 0].qs; const uint8_t * restrict x1 = x[2*i + 1].qs; @@ -2865,11 +3103,11 @@ static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * const uint8_t v0 = x0[j]; const uint8_t v1 = x1[j]; - const int i0_0 = (int8_t) (v0 & 0xf) - 8; - const int i1_0 = (int8_t) (v0 >> 4) - 8; + const int i0_0 = (int8_t) (v0 & 0x0F) - 8; + const int i1_0 = (int8_t) (v0 >> 4) - 8; - const int i0_1 = (int8_t) (v1 & 0xf) - 8; - const int i1_1 = (int8_t) (v1 >> 4) - 8; + const int i0_1 = (int8_t) (v1 & 0x0F) - 8; + const int i1_1 = (int8_t) (v1 >> 4) - 8; const int i2_0 = y0[2*j + 0]; const int i3_0 = y0[2*j + 1]; @@ -2884,159 +3122,516 @@ static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * sumf += (d0 * y[i].d) * sumi_0; sumf += (d1 * y[i].d) * sumi_1; } -#endif - *s = sumf; +#endif } -static void ggml_vec_dot_q4_3_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { +static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { const int nb = n / QK8_0; assert(n % QK8_0 == 0); assert(nb % 2 == 0); - assert(QK8_0 == 2*QK4_2); + assert(QK8_0 == QK5_0); - const block_q4_3 * restrict x = vx; + const block_q5_0 * restrict x = vx; const block_q8_0 * restrict y = vy; +#if defined(__ARM_NEON) + float32x4_t sumv = vdupq_n_f32(0.0f); + + uint64_t tmp[4]; + + for (int i = 0; i < nb; ++i) { + const block_q5_0 * restrict x0 = &x[i]; + const block_q8_0 * restrict y0 = &y[i]; + + const uint8x16_t m4b = vdupq_n_u8(0x0F); + const int8x16_t s16b = vdupq_n_s8(0x10); + + // extract the 5th bit + uint32_t qh; + memcpy(&qh, x0->qh, sizeof(qh)); + + tmp[0] = table_b2b_u[(qh >> 0) & 0xFF]; + tmp[1] = table_b2b_u[(qh >> 8) & 0xFF]; + tmp[2] = table_b2b_u[(qh >> 16) & 0xFF]; + tmp[3] = table_b2b_u[(qh >> 24) ]; + + const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0)); + const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2)); + + const uint8x16_t v0 = vld1q_u8(x0->qs); + + // 4-bit -> 8-bit + const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, m4b)); + const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4)); + + // interleave + const int8x16_t v0lz = vzip1q_s8(v0l, v0h); + const int8x16_t v0hz = vzip2q_s8(v0l, v0h); + + // add high bit and sub 16 + const int8x16_t v0lf = vsubq_s8(vorrq_s8(v0lz, qhl), s16b); + const int8x16_t v0hf = vsubq_s8(vorrq_s8(v0hz, qhh), s16b); + + // load y + const int8x16_t v1l = vld1q_s8(y0->qs); + const int8x16_t v1h = vld1q_s8(y0->qs + 16); + + const float x0d = GGML_FP16_TO_FP32(x0->d); + +#if defined(__ARM_FEATURE_DOTPROD) + sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32( + vdotq_s32(vdupq_n_s32(0), v0lf, v1l), + vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d); +#else + const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l)); + const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l)); + const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h)); + const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h)); + + const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h)); + const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h)); + + sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d); +#endif + } + + *s = vaddvq_f32(sumv); +#elif defined(__wasm_simd128__) + v128_t sumv = wasm_f32x4_splat(0.0f); + + uint64_t tmp[4]; + + for (int i = 0; i < nb; ++i) { + const block_q5_0 * restrict x0 = &x[i]; + const block_q8_0 * restrict y0 = &y[i]; + + const v128_t m4b = wasm_i8x16_splat(0x0F); + const v128_t s16b = wasm_i8x16_splat(0x10); + + // extract the 5th bit + uint32_t qh; + memcpy(&qh, x0->qh, sizeof(qh)); + + tmp[0] = table_b2b_u[(qh >> 0) & 0xFF]; + tmp[1] = table_b2b_u[(qh >> 8) & 0xFF]; + tmp[2] = table_b2b_u[(qh >> 16) & 0xFF]; + tmp[3] = table_b2b_u[(qh >> 24) ]; + + const v128_t qhl = wasm_v128_load(tmp + 0); + const v128_t qhh = wasm_v128_load(tmp + 2); + + const v128_t v0 = wasm_v128_load(x0->qs); + + // 4-bit -> 8-bit + const v128_t v0l = wasm_v128_and (v0, m4b); + const v128_t v0h = wasm_u8x16_shr(v0, 4); + + // interleave + const v128_t v0lz = wasm_v8x16_shuffle(v0l, v0h, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23); + const v128_t v0hz = wasm_v8x16_shuffle(v0l, v0h, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31); + + // add high bit and sub 16 + const v128_t v0lf = wasm_i8x16_sub(wasm_v128_or(v0lz, qhl), s16b); + const v128_t v0hf = wasm_i8x16_sub(wasm_v128_or(v0hz, qhh), s16b); + + // load y + const v128_t v1l = wasm_v128_load(y0->qs); + const v128_t v1h = wasm_v128_load(y0->qs + 16); + + // int8x16 -> int16x8 + const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf); + const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf); + const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf); + const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf); + + const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l); + const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l); + const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h); + const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h); + + const float x0d = GGML_FP16_TO_FP32(x0->d); + + // dot product + sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4( + wasm_i32x4_add( + wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll), + wasm_i32x4_dot_i16x8(v0lfh, v1lh)), + wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl), + wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d))); + } + + *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) + + wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3); +#elif defined(__AVX2__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + + // Main loop + for (int i = 0; i < nb; i++) { + /* Compute combined scale for the block */ + const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d)); + + __m256i bx = bytes_from_nibbles_32(x[i].qs); + __m256i bxhi = bytes_from_bits_32(x[i].qh); + bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0)); + bx = _mm256_or_si256(bx, bxhi); + + __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); + + const __m256 q = mul_sum_i8_pairs_float(bx, by); + + /* Multiply q with scale and accumulate */ + acc = _mm256_fmadd_ps(d, q, acc); + } + + *s = hsum_float_8(acc); +#else + // scalar float sumf = 0.0; + for (int i = 0; i < nb; i++) { + const uint8_t * restrict x0 = x[i].qs; + const int8_t * restrict y0 = y[i].qs; + + uint32_t qh; + memcpy(&qh, x[i].qh, sizeof(qh)); + + const float d = GGML_FP16_TO_FP32(x[i].d); + + int sxy = 0; + + for (int j = 0; j < QK8_0/2; j++) { + const uint8_t v0 = x0[j]; + + const int x0_0h = ((qh & (1u << (2*j + 0))) >> (2*j + 0)) << 4; + const int x1_0h = ((qh & (1u << (2*j + 1))) >> (2*j + 1)) << 4; + + const int x0_0 = ((v0 & 0x0F) | x0_0h) - 16; + const int x1_0 = ((v0 >> 4) | x1_0h) - 16; + + const int y0_0 = y0[2*j + 0]; + const int y1_0 = y0[2*j + 1]; + + sxy += x0_0*y0_0 + x1_0*y1_0; + } + + sumf += (d*sxy)*y[i].d; + } + *s = sumf; +#endif +} + +static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { + const int nb = n / QK8_1; + + assert(n % QK8_1 == 0); + assert(nb % 2 == 0); + assert(QK8_1 == QK5_1); + + const block_q5_1 * restrict x = vx; + const block_q8_1 * restrict y = vy; + +#if defined(__ARM_NEON) + float32x4_t sumv = vdupq_n_f32(0.0f); + + float summs = 0.0f; + + uint64_t tmp[4]; + + for (int i = 0; i < nb; ++i) { + const block_q5_1 * restrict x0 = &x[i]; + const block_q8_1 * restrict y0 = &y[i]; + + summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1); + + // extract the 5th bit + uint32_t qh; + memcpy(&qh, x0->qh, sizeof(qh)); + + tmp[0] = table_b2b_u[(qh >> 0) & 0xFF]; + tmp[1] = table_b2b_u[(qh >> 8) & 0xFF]; + tmp[2] = table_b2b_u[(qh >> 16) & 0xFF]; + tmp[3] = table_b2b_u[(qh >> 24) ]; + + const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0)); + const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2)); + + const uint8x16_t v0 = vld1q_u8(x0->qs); + + // 4-bit -> 8-bit + const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, vdupq_n_u8(0x0F))); + const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4)); + + // interleave + const int8x16_t v0lz = vzip1q_s8(v0l, v0h); + const int8x16_t v0hz = vzip2q_s8(v0l, v0h); + + // add + const int8x16_t v0lf = vorrq_s8(v0lz, qhl); + const int8x16_t v0hf = vorrq_s8(v0hz, qhh); + + // load y + const int8x16_t v1l = vld1q_s8(y0->qs); + const int8x16_t v1h = vld1q_s8(y0->qs + 16); + + const float x0d = GGML_FP16_TO_FP32(x0->d); + +#if defined(__ARM_FEATURE_DOTPROD) + sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32( + vdotq_s32(vdupq_n_s32(0), v0lf, v1l), + vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d); +#else + const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l)); + const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l)); + const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h)); + const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h)); + + const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h)); + const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h)); + + sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d); +#endif + } + + *s = vaddvq_f32(sumv) + summs; +#elif defined(__wasm_simd128__) + v128_t sumv = wasm_f32x4_splat(0.0f); + + float summs = 0.0f; + + uint64_t tmp[4]; + + for (int i = 0; i < nb; ++i) { + const block_q5_1 * restrict x0 = &x[i]; + const block_q8_1 * restrict y0 = &y[i]; + + summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1); + + const v128_t m4b = wasm_i8x16_splat(0x0F); + + // extract the 5th bit + uint32_t qh; + memcpy(&qh, x0->qh, sizeof(qh)); + + tmp[0] = table_b2b_u[(qh >> 0) & 0xFF]; + tmp[1] = table_b2b_u[(qh >> 8) & 0xFF]; + tmp[2] = table_b2b_u[(qh >> 16) & 0xFF]; + tmp[3] = table_b2b_u[(qh >> 24) ]; + + const v128_t qhl = wasm_v128_load(tmp + 0); + const v128_t qhh = wasm_v128_load(tmp + 2); + + const v128_t v0 = wasm_v128_load(x0->qs); + + // 4-bit -> 8-bit + const v128_t v0l = wasm_v128_and (v0, m4b); + const v128_t v0h = wasm_u8x16_shr(v0, 4); + + static bool x = true; + + // interleave + const v128_t v0lz = wasm_v8x16_shuffle(v0l, v0h, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23); + const v128_t v0hz = wasm_v8x16_shuffle(v0l, v0h, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31); + + // add high bit + const v128_t v0lf = wasm_v128_or(v0lz, qhl); + const v128_t v0hf = wasm_v128_or(v0hz, qhh); + + // load y + const v128_t v1l = wasm_v128_load(y0->qs); + const v128_t v1h = wasm_v128_load(y0->qs + 16); + + // int8x16 -> int16x8 + const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf); + const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf); + const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf); + const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf); + + const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l); + const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l); + const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h); + const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h); + + const float x0d = GGML_FP16_TO_FP32(x0->d); + + // dot product + sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4( + wasm_i32x4_add( + wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll), + wasm_i32x4_dot_i16x8(v0lfh, v1lh)), + wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl), + wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d))); + } + + *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) + + wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs; +#elif defined(__AVX2__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + float summs = 0.0f; + + // Main loop + for (int i = 0; i < nb; i++) { + const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)); + + summs += GGML_FP16_TO_FP32(x[i].m) * (y[i].s0 + y[i].s1); + + __m256i bx = bytes_from_nibbles_32(x[i].qs); + __m256i bxhi = bytes_from_bits_32(x[i].qh); + bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10)); + bx = _mm256_or_si256(bx, bxhi); + + const __m256 dy = _mm256_broadcast_ss(&y[i].d); + const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); + + const __m256 q = mul_sum_i8_pairs_float(bx, by); + + acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc); + } + + *s = hsum_float_8(acc) + summs; +#else + float sumf = 0.0; + + for (int i = 0; i < nb; i++) { + const uint8_t * restrict x0 = x[i].qs; + const int8_t * restrict y0 = y[i].qs; + + uint32_t qh; + memcpy(&qh, x[i].qh, sizeof(qh)); + + const float d = GGML_FP16_TO_FP32(x[i].d); + const float m = GGML_FP16_TO_FP32(x[i].m); + + int sxy = 0; + + for (int j = 0; j < QK8_1/2; j++) { + const uint8_t v0 = x0[j]; + + const int x0_0h = ((qh & (1u << (2*j + 0))) >> (2*j + 0)) << 4; + const int x1_0h = ((qh & (1u << (2*j + 1))) >> (2*j + 1)) << 4; + + const int x0_0 = (v0 & 0x0F) | x0_0h; + const int x1_0 = (v0 >> 4) | x1_0h; + + const int y0_0 = y0[2*j + 0]; + const int y1_0 = y0[2*j + 1]; + + sxy += x0_0*y0_0 + x1_0*y1_0; + } + + sumf += (d*sxy)*y[i].d + m*(y[i].s0 + y[i].s1); + } + + *s = sumf; +#endif +} + +static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { + const int nb = n / QK8_0; + + assert(n % QK8_0 == 0); + assert(nb % 2 == 0); + assert(QK8_0 == QK8_0); + + const block_q8_0 * restrict x = vx; + const block_q8_0 * restrict y = vy; #if defined(__ARM_NEON) float32x4_t sumv0 = vdupq_n_f32(0.0f); float32x4_t sumv1 = vdupq_n_f32(0.0f); for (int i = 0; i < nb; i += 2) { - const block_q4_3 * restrict x0_0 = &x[2*(i + 0) + 0]; - const block_q4_3 * restrict x0_1 = &x[2*(i + 0) + 1]; - const block_q4_3 * restrict x1_0 = &x[2*(i + 1) + 0]; - const block_q4_3 * restrict x1_1 = &x[2*(i + 1) + 1]; - + const block_q8_0 * restrict x0 = &x[i + 0]; + const block_q8_0 * restrict x1 = &x[i + 1]; const block_q8_0 * restrict y0 = &y[i + 0]; const block_q8_0 * restrict y1 = &y[i + 1]; - const uint8x16_t m4b = vdupq_n_u8(0xf); - - const float x0_0d = GGML_FP16_TO_FP32(x0_0->d); - const float x0_1d = GGML_FP16_TO_FP32(x0_1->d); - const float x1_0d = GGML_FP16_TO_FP32(x1_0->d); - const float x1_1d = GGML_FP16_TO_FP32(x1_1->d); - - const float x0_0m = GGML_FP16_TO_FP32(x0_0->m); - const float x0_1m = GGML_FP16_TO_FP32(x0_1->m); - const float x1_0m = GGML_FP16_TO_FP32(x1_0->m); - const float x1_1m = GGML_FP16_TO_FP32(x1_1->m); - - const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs)); - const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs)); - - // 4-bit -> 8-bit - const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b)); - const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); - const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); - const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); - - // interleave - const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h); - const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h); - const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h); - const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h); + const int8x16_t x0_0 = vld1q_s8(x0->qs); + const int8x16_t x0_1 = vld1q_s8(x0->qs + 16); + const int8x16_t x1_0 = vld1q_s8(x1->qs); + const int8x16_t x1_1 = vld1q_s8(x1->qs + 16); // load y - const int8x16_t v1_0l = vld1q_s8(y0->qs); - const int8x16_t v1_0h = vld1q_s8(y0->qs + 16); - const int8x16_t v1_1l = vld1q_s8(y1->qs); - const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); - - const int16x8_t sy0_0 = vaddq_s16(vmovl_s8(vget_low_s8(v1_0l)), vmovl_s8(vget_high_s8(v1_0l))); - const int16x8_t sy0_1 = vaddq_s16(vmovl_s8(vget_low_s8(v1_0h)), vmovl_s8(vget_high_s8(v1_0h))); - - const int16x8_t sy1_0 = vaddq_s16(vmovl_s8(vget_low_s8(v1_1l)), vmovl_s8(vget_high_s8(v1_1l))); - const int16x8_t sy1_1 = vaddq_s16(vmovl_s8(vget_low_s8(v1_1h)), vmovl_s8(vget_high_s8(v1_1h))); - - sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddl_s16(vget_low_s16(sy0_0), vget_high_s16(sy0_0))), x0_0m*y0->d); - sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddl_s16(vget_low_s16(sy0_1), vget_high_s16(sy0_1))), x0_1m*y0->d); - sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddl_s16(vget_low_s16(sy1_0), vget_high_s16(sy1_0))), x1_0m*y1->d); - sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddl_s16(vget_low_s16(sy1_1), vget_high_s16(sy1_1))), x1_1m*y1->d); + const int8x16_t y0_0 = vld1q_s8(y0->qs); + const int8x16_t y0_1 = vld1q_s8(y0->qs + 16); + const int8x16_t y1_0 = vld1q_s8(y1->qs); + const int8x16_t y1_1 = vld1q_s8(y1->qs + 16); #if defined(__ARM_FEATURE_DOTPROD) - sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), x0_0d*y0->d); - sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), x0_1d*y0->d); - sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), x1_0d*y1->d); - sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), x1_1d*y1->d); + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32( + vdotq_s32(vdupq_n_s32(0), x0_0, y0_0), + vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d); + + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32( + vdotq_s32(vdupq_n_s32(0), x1_0, y1_0), + vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d); + #else - const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l)); - const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l)); - const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h)); - const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h)); + const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0)); + const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0)); + const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1)); + const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1)); - const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l)); - const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l)); - const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h)); - const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h)); + const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0)); + const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0)); + const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1)); + const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1)); - const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h)); - const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h)); - const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h)); - const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h)); + const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1)); + const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3)); + const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1)); + const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3)); - sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(pl0), x0_0d*y0->d); - sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(ph0), x0_1d*y0->d); - sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(pl1), x1_0d*y1->d); - sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(ph1), x1_1d*y1->d); + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d); + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d); #endif } - sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1); + *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1); +#elif defined(__AVX2__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + + // Main loop + for (int i = 0; i < nb; ++i) { + // Compute combined scale for the block + const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) ); + __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs); + __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); + + const __m256 q = mul_sum_i8_pairs_float(bx, by); + + // Multiply q with scale and accumulate + acc = _mm256_fmadd_ps( d, q, acc ); + } + + *s = hsum_float_8(acc); #else // scalar + float sumf = 0.0; + for (int i = 0; i < nb; i++) { - const uint8_t * restrict x0 = x[2*i + 0].qs; - const uint8_t * restrict x1 = x[2*i + 1].qs; - const int8_t * restrict y0 = y[i].qs; + const int8_t * restrict x0 = x[i].qs; + const int8_t * restrict y0 = y[i].qs; - const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d); - const float m0 = GGML_FP16_TO_FP32(x[2*i + 0].m); - const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d); - const float m1 = GGML_FP16_TO_FP32(x[2*i + 1].m); + int sumi = 0; - int sy_0 = 0; - int sy_1 = 0; + for (int j = 0; j < QK8_0; j++) { + const int v0 = x0[j]; + const int v1 = y0[j]; - int sxy_0 = 0; - int sxy_1 = 0; - - for (int j = 0; j < QK8_0/4; j++) { - const uint8_t v0 = x0[j]; - const uint8_t v1 = x1[j]; - - const int x0_0 = v0 & 0xf; - const int x1_0 = v0 >> 4; - - const int x0_1 = v1 & 0xf; - const int x1_1 = v1 >> 4; - - const int y0_0 = y0[2*j + 0]; - const int y1_0 = y0[2*j + 1]; - - const int y0_1 = y0[2*(j + QK8_0/4) + 0]; - const int y1_1 = y0[2*(j + QK8_0/4) + 1]; - - sy_0 += y0_0 + y1_0; - sy_1 += y0_1 + y1_1; - - sxy_0 += x0_0*y0_0 + x1_0*y1_0; - sxy_1 += x0_1*y0_1 + x1_1*y1_1; + sumi += v0*v1; } - sumf += (d0*sxy_0 + m0*sy_0)*y[i].d; - sumf += (d1*sxy_1 + m1*sy_1)*y[i].d; + sumf += (x[i].d*y[i].d)*sumi; } -#endif *s = sumf; +#endif } - // compute GGML_VEC_DOT_UNROLL dot products at once // xs - x row stride in bytes inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) { @@ -3233,6 +3828,14 @@ inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) { #endif } +inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) { + ggml_float sum = 0.0; + for (int i = 0; i < n; ++i) { + sum += (ggml_float)x[i]; + } + *s = sum; +} + inline static void ggml_vec_max_f32(const int n, float * s, const float * x) { #ifndef GGML_USE_ACCELERATE float max = -INFINITY; @@ -3284,13 +3887,15 @@ static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = { [GGML_TYPE_Q4_0] = QK4_0, [GGML_TYPE_Q4_1] = QK4_1, [GGML_TYPE_Q4_2] = QK4_2, - [GGML_TYPE_Q4_3] = QK4_3, + [GGML_TYPE_Q5_0] = QK5_0, + [GGML_TYPE_Q5_1] = QK5_1, [GGML_TYPE_Q8_0] = QK8_0, + [GGML_TYPE_Q8_1] = QK8_1, [GGML_TYPE_I8] = 1, [GGML_TYPE_I16] = 1, [GGML_TYPE_I32] = 1, }; -static_assert(GGML_TYPE_COUNT == 10, "GGML_BLCK_SIZE is outdated"); +static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated"); static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = { [GGML_TYPE_F32] = sizeof(float), @@ -3298,13 +3903,15 @@ static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = { [GGML_TYPE_Q4_0] = sizeof(block_q4_0), [GGML_TYPE_Q4_1] = sizeof(block_q4_1), [GGML_TYPE_Q4_2] = sizeof(block_q4_2), - [GGML_TYPE_Q4_3] = sizeof(block_q4_3), + [GGML_TYPE_Q5_0] = sizeof(block_q5_0), + [GGML_TYPE_Q5_1] = sizeof(block_q5_1), [GGML_TYPE_Q8_0] = sizeof(block_q8_0), + [GGML_TYPE_Q8_1] = sizeof(block_q8_1), [GGML_TYPE_I8] = sizeof(int8_t), [GGML_TYPE_I16] = sizeof(int16_t), [GGML_TYPE_I32] = sizeof(int32_t), }; -static_assert(GGML_TYPE_COUNT == 10, "GGML_TYPE_SIZE is outdated"); +static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated"); static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = { @@ -3313,13 +3920,15 @@ static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = { [GGML_TYPE_Q4_0] = "q4_0", [GGML_TYPE_Q4_1] = "q4_1", [GGML_TYPE_Q4_2] = "q4_2", - [GGML_TYPE_Q4_3] = "q4_3", + [GGML_TYPE_Q5_0] = "q5_0", + [GGML_TYPE_Q5_1] = "q5_1", [GGML_TYPE_Q8_0] = "q8_0", + [GGML_TYPE_Q8_1] = "q8_1", [GGML_TYPE_I8] = "i8", [GGML_TYPE_I16] = "i16", [GGML_TYPE_I32] = "i32", }; -static_assert(GGML_TYPE_COUNT == 10, "GGML_TYPE_NAME is outdated"); +static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated"); static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = { [GGML_TYPE_F32] = false, @@ -3327,13 +3936,15 @@ static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = { [GGML_TYPE_Q4_0] = true, [GGML_TYPE_Q4_1] = true, [GGML_TYPE_Q4_2] = true, - [GGML_TYPE_Q4_3] = true, + [GGML_TYPE_Q5_0] = true, + [GGML_TYPE_Q5_1] = true, [GGML_TYPE_Q8_0] = true, + [GGML_TYPE_Q8_1] = true, [GGML_TYPE_I8] = false, [GGML_TYPE_I16] = false, [GGML_TYPE_I32] = false, }; -static_assert(GGML_TYPE_COUNT == 10, "GGML_IS_QUANTIZED is outdated"); +static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated"); static const char * GGML_OP_LABEL[GGML_OP_COUNT] = { "NONE", @@ -3371,6 +3982,7 @@ static const char * GGML_OP_LABEL[GGML_OP_COUNT] = { "DIAG_MASK_INF", "SOFT_MAX", "ROPE", + "ALIBI", "CONV_1D_1S", "CONV_1D_2S", @@ -3381,7 +3993,7 @@ static const char * GGML_OP_LABEL[GGML_OP_COUNT] = { "MAP_BINARY", }; -static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38"); +static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39"); static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "none", @@ -3419,6 +4031,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "diag_mask_inf(x)", "soft_max(x)", "rope(x)", + "alibi(x)", "conv_1d_1s(x)", "conv_1d_2s(x)", @@ -3429,7 +4042,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "f(x,y)", }; -static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38"); +static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39"); static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN"); static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN"); @@ -3599,6 +4212,27 @@ bool ggml_is_quantized(enum ggml_type type) { return GGML_IS_QUANTIZED[type]; } +enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) { + enum ggml_type wtype = GGML_TYPE_COUNT; + + switch (ftype) { + case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break; + case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break; + case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break; + case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break; + case GGML_FTYPE_MOSTLY_Q4_2: wtype = GGML_TYPE_Q4_2; break; + case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break; + case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break; + case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break; + case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break; + case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break; + } + + GGML_ASSERT(wtype != GGML_TYPE_COUNT); + + return wtype; +} + static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) { return tensor->nb[0] > tensor->nb[1]; } @@ -3709,10 +4343,11 @@ struct ggml_context * ggml_init(struct ggml_init_params params) { GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f); } - // initialize cuBLAS - #if defined(GGML_USE_CUBLAS) +#if defined(GGML_USE_CUBLAS) ggml_init_cublas(); - #endif +#elif defined(GGML_USE_CLBLAST) + ggml_cl_init(); +#endif is_first_call = false; } @@ -3793,7 +4428,7 @@ void ggml_free(struct ggml_context * ctx) { } size_t ggml_used_mem(const struct ggml_context * ctx) { - return ctx->objects_end->offs + ctx->objects_end->size; + return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size; } size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) { @@ -5425,6 +6060,37 @@ struct ggml_tensor * ggml_rope( return result; } +// ggml_alibi + +struct ggml_tensor * ggml_alibi( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past, + int n_head) { + GGML_ASSERT(n_past >= 0); + bool is_node = false; + + if (a->grad) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + // TODO: when implement backward, fix this: + //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + struct ggml_tensor * result = ggml_view_tensor(ctx, a); + + struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2); + ((int32_t *) b->data)[0] = n_past; + ((int32_t *) b->data)[1] = n_head; + + result->op = GGML_OP_ALIBI; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + // ggml_conv_1d_1s struct ggml_tensor * ggml_conv_1d_1s( @@ -6544,7 +7210,9 @@ static void ggml_compute_forward_add( case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q4_2: - case GGML_TYPE_Q4_3: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: { ggml_compute_forward_add_q_f32(params, src0, src1, dst); } break; @@ -6802,15 +7470,20 @@ static void ggml_compute_forward_sum_f32( const size_t nb02 = src0->nb[2]; const size_t nb03 = src0->nb[3]; + ggml_float sum = 0; + ggml_float row_sum = 0; + for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { for (int64_t i01 = 0; i01 < ne01; i01++) { - ggml_vec_sum_f32(ne00, - (float *) (dst->data), + ggml_vec_sum_ggf(ne00, + &row_sum, (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03)); + sum += row_sum; } } } + ((float *) dst->data)[0] = sum; } static void ggml_compute_forward_sum( @@ -7445,7 +8118,7 @@ static void ggml_compute_forward_rms_norm( // ggml_compute_forward_mul_mat -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) // helper function to determine if it is better to use BLAS or not // for large matrices, BLAS is faster static bool ggml_compute_forward_mul_mat_use_blas( @@ -7462,7 +8135,8 @@ static bool ggml_compute_forward_mul_mat_use_blas( // TODO: find the optimal values for these if (ggml_is_contiguous(src0) && - ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) { + ggml_is_contiguous(src1) && + (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) { /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/ return true; @@ -7485,7 +8159,7 @@ static void ggml_compute_forward_mul_mat_f32( const int64_t ne02 = src0->ne[2]; const int64_t ne03 = src0->ne[3]; -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) const int64_t ne10 = src1->ne[0]; #endif const int64_t ne11 = src1->ne[1]; @@ -7542,7 +8216,16 @@ static void ggml_compute_forward_mul_mat_f32( // nb01 >= nb00 - src0 is not transposed // compute by src0 rows -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) +#if defined(GGML_USE_CUBLAS) + if (ggml_cuda_can_mul_mat(src0, src1, dst)) { + if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) { + ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize); + } + return; + } +#endif + +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) { if (params->ith != 0) { return; @@ -7556,43 +8239,21 @@ static void ggml_compute_forward_mul_mat_f32( return; } -#if defined(GGML_USE_CUBLAS) - const float alpha = 1.0f; - const float beta = 0.0f; - const int x_ne = ne01 * ne10; - const int y_ne = ne11 * ne10; - const int d_ne = ne11 * ne01; - - size_t x_size, y_size, d_size; - float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size); - float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size); - float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size); -#endif - for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03); const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13); - float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); -#if defined(GGML_USE_CUBLAS) - // copy data to device - CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, g_cudaStream)); - CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream)); - - // compute - CUBLAS_CHECK( - cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N, - ne01, ne11, ne10, - &alpha, d_X, ne00, - d_Y, ne10, - &beta, d_D, ne01)); - - // copy data to host - CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream)); -#else +#if defined(GGML_USE_CLBLAST) // zT = y * xT + ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T, + ne11, ne01, ne10, + 1.0f, y, ne10, + x, ne10, + 0.0f, d, ne01, + GGML_TYPE_F32); +#else cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, ne11, ne01, ne10, 1.0f, y, ne10, @@ -7601,12 +8262,6 @@ static void ggml_compute_forward_mul_mat_f32( #endif } } -#if defined(GGML_USE_CUBLAS) - CUDA_CHECK(cudaStreamSynchronize(g_cudaStream)); - ggml_cuda_pool_free(d_X, x_size); - ggml_cuda_pool_free(d_Y, y_size); - ggml_cuda_pool_free(d_D, d_size); -#endif //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3); return; @@ -7736,7 +8391,16 @@ static void ggml_compute_forward_mul_mat_f16_f32( // nb01 >= nb00 - src0 is not transposed // compute by src0 rows -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) +#if defined(GGML_USE_CUBLAS) + if (ggml_cuda_can_mul_mat(src0, src1, dst)) { + if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) { + ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize); + } + return; + } +#endif + +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) { GGML_ASSERT(nb10 == sizeof(float)); @@ -7752,35 +8416,9 @@ static void ggml_compute_forward_mul_mat_f16_f32( return; } -#if defined(GGML_USE_CUBLAS) - ggml_fp16_t * const wdata = params->wdata; - - const float alpha = 1.0f; - const float beta = 0.0f; - const int x_ne = ne01 * ne10; - const int y_ne = ne11 * ne10; - const int d_ne = ne11 * ne01; - - size_t x_size, y_size, d_size; - float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size); - float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size); - float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size); -#else - float * const wdata = params->wdata; -#endif for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { -#if defined(GGML_USE_CUBLAS) - // with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16 - { - size_t id = 0; - for (int64_t i01 = 0; i01 < ne11; ++i01) { - for (int64_t i00 = 0; i00 < ne10; ++i00) { - wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10)); - } - } - } -#else + float * const wdata = params->wdata; { size_t id = 0; for (int64_t i01 = 0; i01 < ne01; ++i01) { @@ -7788,31 +8426,23 @@ static void ggml_compute_forward_mul_mat_f16_f32( wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00)); } } - } -#endif -#if defined(GGML_USE_CUBLAS) - const ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + i02*nb02 + i03*nb03); - const ggml_fp16_t * y = (ggml_fp16_t *) wdata; + assert(id*sizeof(float) <= params->wsize); + } + +#if defined(GGML_USE_CLBLAST) + const float * x = wdata; + const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13); float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); - // copy data to device - CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, g_cudaStream)); - CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream)); - - // compute - CUBLAS_CHECK( - cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N, - ne01, ne11, ne10, - &alpha, d_X, CUDA_R_16F, ne00, - d_Y, CUDA_R_16F, ne10, - &beta, d_D, CUDA_R_32F, ne01, - CUBLAS_COMPUTE_32F, - CUBLAS_GEMM_DEFAULT)); - - // copy data to host - CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream)); + // zT = y * xT + ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T, + ne11, ne01, ne10, + 1.0f, y, ne10, + x, ne10, + 0.0f, d, ne01, + GGML_TYPE_F32); #else const float * x = wdata; const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13); @@ -7829,12 +8459,6 @@ static void ggml_compute_forward_mul_mat_f16_f32( } } -#if defined(GGML_USE_CUBLAS) - CUDA_CHECK(cudaStreamSynchronize(g_cudaStream)); - ggml_cuda_pool_free(d_X, x_size); - ggml_cuda_pool_free(d_Y, y_size); - ggml_cuda_pool_free(d_D, d_size); -#endif /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/ return; @@ -7967,6 +8591,7 @@ static void ggml_compute_forward_mul_mat_q_f32( const enum ggml_type type = src0->type; quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot; vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q; + enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type; // we don't support permuted src0 or src1 GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]); @@ -7986,7 +8611,16 @@ static void ggml_compute_forward_mul_mat_q_f32( // nb01 >= nb00 - src0 is not transposed // compute by src0 rows -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) +#if defined(GGML_USE_CUBLAS) + if (ggml_cuda_can_mul_mat(src0, src1, dst)) { + if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) { + ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize); + } + return; + } +#endif + +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) { if (params->ith != 0) { return; @@ -8000,36 +8634,8 @@ static void ggml_compute_forward_mul_mat_q_f32( return; } -#if defined(GGML_USE_CUBLAS) - const float alpha = 1.0f; - const float beta = 0.0f; - const int x_ne = ne01 * ne10; - const int y_ne = ne11 * ne10; - const int d_ne = ne11 * ne01; - - size_t x_size, y_size, d_size, q_size; - float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size); - float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size); - float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size); - float *d_Q = ggml_cuda_pool_malloc(GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], &q_size); - - void (*dequantize_row_q_cuda)(const void * x, float * y, int k, cudaStream_t stream) = NULL; - if (type == GGML_TYPE_Q4_0) { - dequantize_row_q_cuda = dequantize_row_q4_0_cuda; - } - else if (type == GGML_TYPE_Q4_1) { - dequantize_row_q_cuda = dequantize_row_q4_1_cuda; - } - else if (type == GGML_TYPE_Q4_2) { - dequantize_row_q_cuda = dequantize_row_q4_2_cuda; - } - else { - GGML_ASSERT(false); - } -#else float * const wdata = params->wdata; dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q; -#endif for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { @@ -8037,14 +8643,8 @@ static void ggml_compute_forward_mul_mat_q_f32( float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); -#if defined(GGML_USE_CUBLAS) - // copy and dequantize on device - CUDA_CHECK( - cudaMemcpyAsync(d_Q, (char *) src0->data + i03*nb03 + i02*nb02, - GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], cudaMemcpyHostToDevice, g_cudaStream)); - - dequantize_row_q_cuda(d_Q, d_X, ne01 * ne00, g_cudaStream); - CUDA_CHECK(cudaGetLastError()); +#if defined(GGML_USE_CLBLAST) + const void* x = (char *) src0->data + i03*nb03 + i02*nb02; #else { size_t id = 0; @@ -8052,27 +8652,22 @@ static void ggml_compute_forward_mul_mat_q_f32( dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00); id += ne00; } + + assert(id*sizeof(float) <= params->wsize); } + const float * x = wdata; #endif - -#if defined(GGML_USE_CUBLAS) - // copy data to device - CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream)); - - // compute - CUBLAS_CHECK( - cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N, - ne01, ne11, ne10, - &alpha, d_X, ne00, - d_Y, ne10, - &beta, d_D, ne01)); - - // copy data to host - CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream)); -#else +#if defined(GGML_USE_CLBLAST) // zT = y * xT + ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T, + ne11, ne01, ne10, + 1.0f, y, ne10, + x, ne10, + 0.0f, d, ne01, + type); +#else cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, ne11, ne01, ne10, 1.0f, y, ne10, @@ -8082,13 +8677,6 @@ static void ggml_compute_forward_mul_mat_q_f32( } } -#if defined(GGML_USE_CUBLAS) - CUDA_CHECK(cudaStreamSynchronize(g_cudaStream)); - ggml_cuda_pool_free(d_X, x_size); - ggml_cuda_pool_free(d_Y, y_size); - ggml_cuda_pool_free(d_D, d_size); - ggml_cuda_pool_free(d_Q, q_size); -#endif //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3); return; @@ -8097,7 +8685,7 @@ static void ggml_compute_forward_mul_mat_q_f32( if (params->type == GGML_TASK_INIT) { char * wdata = params->wdata; - const size_t row_size = ne10*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0]; + const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type]; for (int64_t i13 = 0; i13 < ne13; ++i13) { for (int64_t i12 = 0; i12 < ne12; ++i12) { @@ -8128,7 +8716,7 @@ static void ggml_compute_forward_mul_mat_q_f32( const int ir1 = MIN(ir0 + dr, nr); void * wdata = params->wdata; - const size_t row_size = ne00*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0]; + const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type]; for (int ir = ir0; ir < ir1; ++ir) { // src0 indices @@ -8177,8 +8765,10 @@ static void ggml_compute_forward_mul_mat( case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q4_2: - case GGML_TYPE_Q4_3: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: + case GGML_TYPE_Q8_1: { ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst); } break; @@ -8406,8 +8996,10 @@ static void ggml_compute_forward_get_rows( case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q4_2: - case GGML_TYPE_Q4_3: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: + case GGML_TYPE_Q8_1: { ggml_compute_forward_get_rows_q(params, src0, src1, dst); } break; @@ -8545,6 +9137,7 @@ static void ggml_compute_forward_soft_max_f32( uint16_t scvt; for (int i = 0; i < nc; i++) { + //printf("p[%3d] = %8.4f\n", i, p[i]); if (p[i] == -INFINITY) { p[i] = 0.0f; } else { @@ -8587,6 +9180,161 @@ static void ggml_compute_forward_soft_max( } } +// ggml_compute_forward_alibi + +static void ggml_compute_forward_alibi_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(src1->type == GGML_TYPE_I32); + assert(ggml_nelements(src1) == 2); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n_past = ((int32_t *) src1->data)[0]; + const int n_head = ((int32_t *) src1->data)[1]; + + const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1 + const int ne1 = src0->ne[1]; // seq_len_without_past + //const int ne2 = src0->ne[2]; // n_head -> this is k + //const int ne3 = src0->ne[3]; // 1 -> bsz + + const int n = ggml_nrows(src0); + const int ne2_ne3 = n/ne1; // ne2*ne3 + + const int nb0 = src0->nb[0]; + const int nb1 = src0->nb[1]; + const int nb2 = src0->nb[2]; + //const int nb3 = src0->nb[3]; + + assert(nb0 == sizeof(float)); + assert(ne1 + n_past == ne0); (void) n_past; + + // add alibi to src0 (KQ_scaled) + const int n_heads_log2_floor = 1 << (int) floor(log2(n_head)); + + const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor); + const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor); + + for (int i = 0; i < ne0; i++) { + for (int j = 0; j < ne1; j++) { + for (int k = 0; k < ne2_ne3; k++) { + float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2); + float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2); + + // TODO: k*nb2 or k*nb3 + + float m_k; + + if (k < n_heads_log2_floor) { + m_k = powf(m0, k + 1); + } else { + m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1); + } + + pdst[0] = (j+1) * m_k + src[0]; + } + } + } +} + + +static void ggml_compute_forward_alibi_f16( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(src1->type == GGML_TYPE_I32); + assert(ggml_nelements(src1) == 2); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n_past = ((int32_t *) src1->data)[0]; + const int n_head = ((int32_t *) src1->data)[1]; + + const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1 + const int ne1 = src0->ne[1]; // seq_len_without_past + //const int ne2 = src0->ne[2]; // n_head -> this is k + //const int ne3 = src0->ne[3]; // 1 -> bsz + + const int n = ggml_nrows(src0); + const int ne2_ne3 = n/ne1; // ne2*ne3 + + const int nb0 = src0->nb[0]; + const int nb1 = src0->nb[1]; + const int nb2 = src0->nb[2]; + //const int nb3 = src0->nb[3]; + + assert(nb0 == sizeof(ggml_fp16_t)); + assert(ne1 + n_past == ne0); (void) n_past; + + // add alibi to src0 (KQ_scaled) + const int n_heads_log2_floor = 1 << (int) floor(log2(n_head)); + + const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor); + const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor); + + for (int i = 0; i < ne0; i++) { + for (int j = 0; j < ne1; j++) { + for (int k = 0; k < ne2_ne3; k++) { + ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2); + float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2); + + // TODO: k*nb2 or k*nb3 + + float m_k; + + if (k < n_heads_log2_floor) { + m_k = powf(m0, k + 1); + } else { + m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1); + } + + // we return F32 + pdst[0] = (j+1) * m_k + GGML_FP16_TO_FP32(src[0]); + } + } + } +} + +static void ggml_compute_forward_alibi( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_alibi_f16(params, src0, src1, dst); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_alibi_f32(params, src0, src1, dst); + } break; + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q4_2: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + case GGML_TYPE_Q8_1: + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_COUNT: + { + GGML_ASSERT(false); + } break; + } +} + // ggml_compute_forward_rope static void ggml_compute_forward_rope_f32( @@ -10225,6 +10973,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm { ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor); } break; + case GGML_OP_ALIBI: + { + ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor); + } break; case GGML_OP_CONV_1D_1S: { ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor); @@ -10427,6 +11179,10 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor { GGML_ASSERT(false); // TODO: not implemented } break; + case GGML_OP_ALIBI: + { + GGML_ASSERT(false); // TODO: not implemented + } break; case GGML_OP_SILU: { GGML_ASSERT(false); // TODO: not implemented @@ -10904,15 +11660,21 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) size_t cur = 0; +#if defined(GGML_USE_CUBLAS) + if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) { + node->n_tasks = 1; // TODO: this actually is doing nothing + // the threads are still spinning + cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node); + } + else +#endif if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) { -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { node->n_tasks = 1; // TODO: this actually is doing nothing // the threads are still spinning + // here we need memory just for single 2D matrix from src0 cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]); - //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]); - //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]); - //printf("cur = %zu\n", cur); } else { cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1); } @@ -10921,15 +11683,21 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) #endif } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) { cur = 0; +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) + if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { + node->n_tasks = 1; + } +#endif } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) { -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { node->n_tasks = 1; cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]); } else #endif { - cur = GGML_TYPE_SIZE[GGML_TYPE_Q8_0]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[GGML_TYPE_Q8_0]; + const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type; + cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q]; } } else { GGML_ASSERT(false); @@ -10959,6 +11727,10 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) { node->n_tasks = n_threads; } break; + case GGML_OP_ALIBI: + { + node->n_tasks = 1; //TODO + } break; case GGML_OP_CONV_1D_1S: case GGML_OP_CONV_1D_2S: { @@ -11257,9 +12029,9 @@ void ggml_graph_print(const struct ggml_cgraph * cgraph) { for (int i = 0; i < cgraph->n_nodes; i++) { struct ggml_tensor * node = cgraph->nodes[i]; - perf_total_per_op_us[node->op] += node->perf_time_us; + perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us); - GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n", + GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs, @@ -11273,13 +12045,17 @@ void ggml_graph_print(const struct ggml_cgraph * cgraph) { for (int i = 0; i < cgraph->n_leafs; i++) { struct ggml_tensor * node = cgraph->leafs[i]; - GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n", + GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n", i, node->ne[0], node->ne[1], GGML_OP_LABEL[node->op]); } for (int i = 0; i < GGML_OP_COUNT; i++) { + if (perf_total_per_op_us[i] == 0) { + continue; + } + GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0); } @@ -12113,7 +12889,7 @@ size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * for (int i = 0; i < nb; i++) { for (int l = 0; l < QK4_0; l += 2) { - const uint8_t vi0 = y[i].qs[l/2] & 0xF; + const uint8_t vi0 = y[i].qs[l/2] & 0x0F; const uint8_t vi1 = y[i].qs[l/2] >> 4; hist[vi0]++; @@ -12136,7 +12912,7 @@ size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * for (int i = 0; i < nb; i++) { for (int l = 0; l < QK4_1; l += 2) { - const uint8_t vi0 = y[i].qs[l/2] & 0xF; + const uint8_t vi0 = y[i].qs[l/2] & 0x0F; const uint8_t vi1 = y[i].qs[l/2] >> 4; hist[vi0]++; @@ -12155,12 +12931,11 @@ size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * for (int j = 0; j < n; j += k) { block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2; - //quantize_row_q4_2_reference(src + j, y, k); - quantize_row_q4_2_rmse(src + j, y, k); + quantize_row_q4_2_reference(src + j, y, k); for (int i = 0; i < nb; i++) { for (int l = 0; l < QK4_2; l += 2) { - const uint8_t vi0 = y[i].qs[l/2] & 0xF; + const uint8_t vi0 = y[i].qs[l/2] & 0x0F; const uint8_t vi1 = y[i].qs[l/2] >> 4; hist[vi0]++; @@ -12172,19 +12947,26 @@ size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * return (n/QK4_2*sizeof(block_q4_2)); } -size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t * hist) { - assert(k % QK4_3 == 0); - const int nb = k / QK4_3; +size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) { + assert(k % QK5_0 == 0); + const int nb = k / QK5_0; for (int j = 0; j < n; j += k) { - block_q4_3 * restrict y = (block_q4_3 *)dst + j/QK4_3; + block_q5_0 * restrict y = (block_q5_0 *)dst + j/QK5_0; - quantize_row_q4_3_reference(src + j, y, k); + quantize_row_q5_0_reference(src + j, y, k); for (int i = 0; i < nb; i++) { - for (int l = 0; l < QK4_3; l += 2) { - const uint8_t vi0 = y[i].qs[l/2] & 0xF; - const uint8_t vi1 = y[i].qs[l/2] >> 4; + uint32_t qh; + memcpy(&qh, &y[i].qh, sizeof(qh)); + + for (int l = 0; l < QK5_0; l += 2) { + const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4; + const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4; + + // cast to 16 bins + const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2; + const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2; hist[vi0]++; hist[vi1]++; @@ -12192,7 +12974,58 @@ size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t * } } - return (n/QK4_3*sizeof(block_q4_3)); + return (n/QK5_0*sizeof(block_q5_0)); +} + +size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) { + assert(k % QK5_1 == 0); + const int nb = k / QK5_1; + + for (int j = 0; j < n; j += k) { + block_q5_1 * restrict y = (block_q5_1 *)dst + j/QK5_1; + + quantize_row_q5_1_reference(src + j, y, k); + + for (int i = 0; i < nb; i++) { + uint32_t qh; + memcpy(&qh, &y[i].qh, sizeof(qh)); + + for (int l = 0; l < QK5_1; l += 2) { + const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4; + const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4; + + // cast to 16 bins + const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2; + const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2; + + hist[vi0]++; + hist[vi1]++; + } + } + } + + return (n/QK5_1*sizeof(block_q5_1)); +} + +size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) { + assert(k % QK8_0 == 0); + const int nb = k / QK8_0; + + for (int j = 0; j < n; j += k) { + block_q8_0 * restrict y = (block_q8_0 *)dst + j/QK8_0; + + quantize_row_q8_0_reference(src + j, y, k); + + for (int i = 0; i < nb; i++) { + for (int l = 0; l < QK8_0; ++l) { + const int8_t vi = y[i].qs[l]; + + hist[vi/16 + 8]++; + } + } + } + + return (n/QK8_0*sizeof(block_q8_0)); } size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) { @@ -12216,11 +13049,23 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i block_q4_2 * block = (block_q4_2*)dst + start / QK4_2; result = ggml_quantize_q4_2(src + start, block, n, n, hist); } break; - case GGML_TYPE_Q4_3: + case GGML_TYPE_Q5_0: { - GGML_ASSERT(start % QK4_3 == 0); - block_q4_3 * block = (block_q4_3*)dst + start / QK4_3; - result = ggml_quantize_q4_3(src + start, block, n, n, hist); + GGML_ASSERT(start % QK5_0 == 0); + block_q5_0 * block = (block_q5_0*)dst + start / QK5_0; + result = ggml_quantize_q5_0(src + start, block, n, n, hist); + } break; + case GGML_TYPE_Q5_1: + { + GGML_ASSERT(start % QK5_1 == 0); + block_q5_1 * block = (block_q5_1*)dst + start / QK5_1; + result = ggml_quantize_q5_1(src + start, block, n, n, hist); + } break; + case GGML_TYPE_Q8_0: + { + GGML_ASSERT(start % QK8_0 == 0); + block_q8_0 * block = (block_q8_0*)dst + start / QK8_0; + result = ggml_quantize_q8_0(src + start, block, n, n, hist); } break; default: assert(false); @@ -12319,7 +13164,7 @@ int ggml_cpu_has_wasm_simd(void) { } int ggml_cpu_has_blas(void) { -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) return 1; #else return 0; @@ -12334,6 +13179,18 @@ int ggml_cpu_has_cublas(void) { #endif } +int ggml_cpu_has_clblast(void) { +#if defined(GGML_USE_CLBLAST) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_gpublas(void) { + return ggml_cpu_has_cublas() || ggml_cpu_has_clblast(); +} + int ggml_cpu_has_sse3(void) { #if defined(__SSE3__) return 1; diff --git a/ggml.h b/ggml.h index 460d4ffe0..ef5a048c3 100644 --- a/ggml.h +++ b/ggml.h @@ -169,14 +169,27 @@ // // -#ifdef __cplusplus -extern "C" { +#ifdef GGML_SHARED +# if defined(_WIN32) && !defined(__MINGW32__) +# ifdef GGML_BUILD +# define GGML_API __declspec(dllexport) +# else +# define GGML_API __declspec(dllimport) +# endif +# else +# define GGML_API __attribute__ ((visibility ("default"))) +# endif +#else +# define GGML_API #endif #include #include #include +#define GGML_FILE_MAGIC 0x67676d6c // "ggml" +#define GGML_FILE_VERSION 1 + #define GGML_MAX_DIMS 4 #define GGML_MAX_NODES 4096 #define GGML_MAX_PARAMS 16 @@ -184,682 +197,732 @@ extern "C" { #define GGML_MAX_OPT 4 #define GGML_DEFAULT_N_THREADS 4 -#ifdef __ARM_NEON -// we use the built-in 16-bit float type -typedef __fp16 ggml_fp16_t; -#else -typedef uint16_t ggml_fp16_t; -#endif - -// convert FP16 <-> FP32 -float ggml_fp16_to_fp32(ggml_fp16_t x); -ggml_fp16_t ggml_fp32_to_fp16(float x); - -struct ggml_object; -struct ggml_context; - -enum ggml_type { - // explicitly numbered values are used in llama.cpp files - GGML_TYPE_F32 = 0, - GGML_TYPE_F16 = 1, - GGML_TYPE_Q4_0 = 2, - GGML_TYPE_Q4_1 = 3, - GGML_TYPE_Q4_2 = 4, - GGML_TYPE_Q4_3 = 5, - GGML_TYPE_Q8_0 = 6, - GGML_TYPE_I8, - GGML_TYPE_I16, - GGML_TYPE_I32, - GGML_TYPE_COUNT, -}; - -// available tensor operations: -enum ggml_op { - GGML_OP_NONE = 0, - - GGML_OP_DUP, - GGML_OP_ADD, - GGML_OP_SUB, - GGML_OP_MUL, - GGML_OP_DIV, - GGML_OP_SQR, - GGML_OP_SQRT, - GGML_OP_SUM, - GGML_OP_MEAN, - GGML_OP_REPEAT, - GGML_OP_ABS, - GGML_OP_SGN, - GGML_OP_NEG, - GGML_OP_STEP, - GGML_OP_RELU, - GGML_OP_GELU, - GGML_OP_SILU, - GGML_OP_NORM, // normalize - GGML_OP_RMS_NORM, - - GGML_OP_MUL_MAT, - - GGML_OP_SCALE, - GGML_OP_CPY, - GGML_OP_CONT, - GGML_OP_RESHAPE, - GGML_OP_VIEW, - GGML_OP_PERMUTE, - GGML_OP_TRANSPOSE, - GGML_OP_GET_ROWS, - GGML_OP_DIAG_MASK_INF, - GGML_OP_SOFT_MAX, - GGML_OP_ROPE, - GGML_OP_CONV_1D_1S, - GGML_OP_CONV_1D_2S, - - GGML_OP_FLASH_ATTN, - GGML_OP_FLASH_FF, - - GGML_OP_MAP_UNARY, - GGML_OP_MAP_BINARY, - - GGML_OP_COUNT, -}; - - -// ggml object -struct ggml_object { - size_t offs; - size_t size; - - struct ggml_object * next; - - char padding[8]; -}; - -static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object); - -// n-dimensional tensor -struct ggml_tensor { - enum ggml_type type; - - int n_dims; - int64_t ne[GGML_MAX_DIMS]; // number of elements - size_t nb[GGML_MAX_DIMS]; // stride in bytes: - // nb[0] = sizeof(type) - // nb[1] = nb[0] * ne[0] + padding - // nb[i] = nb[i-1] * ne[i-1] - - // compute data - enum ggml_op op; - - bool is_param; - - struct ggml_tensor * grad; - struct ggml_tensor * src0; - struct ggml_tensor * src1; - struct ggml_tensor * opt[GGML_MAX_OPT]; - - // thread scheduling - int n_tasks; - - // performance - int perf_runs; - int64_t perf_cycles; - int64_t perf_time_us; - - void * data; - char padding[8]; -}; - -// computation graph -struct ggml_cgraph { - int n_nodes; - int n_leafs; - int n_threads; - - size_t work_size; - struct ggml_tensor * work; - - struct ggml_tensor * nodes[GGML_MAX_NODES]; - struct ggml_tensor * grads[GGML_MAX_NODES]; - struct ggml_tensor * leafs[GGML_MAX_NODES]; - - // performance - int perf_runs; - int64_t perf_cycles; - int64_t perf_time_us; -}; - -// scratch buffer -struct ggml_scratch { - size_t offs; - size_t size; - void * data; -}; - -struct ggml_init_params { - // memory pool - size_t mem_size; // bytes - void * mem_buffer; // if NULL, memory will be allocated internally - bool no_alloc; // don't allocate memory for the tensor data -}; - -void ggml_time_init(void); // call this once at the beginning of the program -int64_t ggml_time_ms(void); -int64_t ggml_time_us(void); -int64_t ggml_cycles(void); -int64_t ggml_cycles_per_ms(void); - -void ggml_print_object (const struct ggml_object * obj); -void ggml_print_objects(const struct ggml_context * ctx); - -int64_t ggml_nelements(const struct ggml_tensor * tensor); -size_t ggml_nbytes (const struct ggml_tensor * tensor); - -int ggml_blck_size (enum ggml_type type); -size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block -float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float - -const char * ggml_type_name(enum ggml_type type); - -size_t ggml_element_size(const struct ggml_tensor * tensor); - -bool ggml_is_quantized(enum ggml_type type); - -struct ggml_context * ggml_init(struct ggml_init_params params); -void ggml_free(struct ggml_context * ctx); - -size_t ggml_used_mem(const struct ggml_context * ctx); - -size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch); - -struct ggml_tensor * ggml_new_tensor( - struct ggml_context * ctx, - enum ggml_type type, - int n_dims, - const int64_t *ne); - -struct ggml_tensor * ggml_new_tensor_1d( - struct ggml_context * ctx, - enum ggml_type type, - int64_t ne0); - -struct ggml_tensor * ggml_new_tensor_2d( - struct ggml_context * ctx, - enum ggml_type type, - int64_t ne0, - int64_t ne1); - -struct ggml_tensor * ggml_new_tensor_3d( - struct ggml_context * ctx, - enum ggml_type type, - int64_t ne0, - int64_t ne1, - int64_t ne2); - -struct ggml_tensor * ggml_new_tensor_4d( - struct ggml_context * ctx, - enum ggml_type type, - int64_t ne0, - int64_t ne1, - int64_t ne2, - int64_t ne3); - -struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value); -struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value); - -struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src); -struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src); - -struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor); -struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value); -struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value); - -int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i); -void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value); - -float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i); -void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value); - - void * ggml_get_data (const struct ggml_tensor * tensor); -float * ggml_get_data_f32(const struct ggml_tensor * tensor); - -// -// operations on tensors with backpropagation -// - -struct ggml_tensor * ggml_dup( - struct ggml_context * ctx, - struct ggml_tensor * a); - -struct ggml_tensor * ggml_add( - struct ggml_context * ctx, - struct ggml_tensor * a, - struct ggml_tensor * b); - - -struct ggml_tensor * ggml_add_inplace( - struct ggml_context * ctx, - struct ggml_tensor * a, - struct ggml_tensor * b); - -struct ggml_tensor * ggml_sub( - struct ggml_context * ctx, - struct ggml_tensor * a, - struct ggml_tensor * b); - -struct ggml_tensor * ggml_mul( - struct ggml_context * ctx, - struct ggml_tensor * a, - struct ggml_tensor * b); - -struct ggml_tensor * ggml_div( - struct ggml_context * ctx, - struct ggml_tensor * a, - struct ggml_tensor * b); - -struct ggml_tensor * ggml_sqr( - struct ggml_context * ctx, - struct ggml_tensor * a); - -struct ggml_tensor * ggml_sqrt( - struct ggml_context * ctx, - struct ggml_tensor * a); - -// return scalar -// TODO: compute sum along rows -struct ggml_tensor * ggml_sum( - struct ggml_context * ctx, - struct ggml_tensor * a); - -// mean along rows -struct ggml_tensor * ggml_mean( - struct ggml_context * ctx, - struct ggml_tensor * a); - -// if a is the same shape as b, and a is not parameter, return a -// otherwise, return a new tensor: repeat(a) to fit in b -struct ggml_tensor * ggml_repeat( - struct ggml_context * ctx, - struct ggml_tensor * a, - struct ggml_tensor * b); - -struct ggml_tensor * ggml_abs( - struct ggml_context * ctx, - struct ggml_tensor * a); - -struct ggml_tensor * ggml_sgn( - struct ggml_context * ctx, - struct ggml_tensor * a); - -struct ggml_tensor * ggml_neg( - struct ggml_context * ctx, - struct ggml_tensor * a); - -struct ggml_tensor * ggml_step( - struct ggml_context * ctx, - struct ggml_tensor * a); - -struct ggml_tensor * ggml_relu( - struct ggml_context * ctx, - struct ggml_tensor * a); - -// TODO: double-check this computation is correct -struct ggml_tensor * ggml_gelu( - struct ggml_context * ctx, - struct ggml_tensor * a); - -struct ggml_tensor * ggml_silu( - struct ggml_context * ctx, - struct ggml_tensor * a); - -// normalize along rows -// TODO: eps is hardcoded to 1e-5 for now -struct ggml_tensor * ggml_norm( - struct ggml_context * ctx, - struct ggml_tensor * a); - -struct ggml_tensor * ggml_rms_norm( - struct ggml_context * ctx, - struct ggml_tensor * a); - -// A: m rows, n columns -// B: p rows, n columns (i.e. we transpose it internally) -// result is m columns, p rows -struct ggml_tensor * ggml_mul_mat( - struct ggml_context * ctx, - struct ggml_tensor * a, - struct ggml_tensor * b); - -// -// operations on tensors without backpropagation -// - -// in-place, returns view(a) -struct ggml_tensor * ggml_scale( - struct ggml_context * ctx, - struct ggml_tensor * a, - struct ggml_tensor * b); - -// a -> b, return view(b) -struct ggml_tensor * ggml_cpy( - struct ggml_context * ctx, - struct ggml_tensor * a, - struct ggml_tensor * b); - -// make contiguous -struct ggml_tensor * ggml_cont( - struct ggml_context * ctx, - struct ggml_tensor * a); - -// return view(a), b specifies the new shape -// TODO: when we start computing gradient, make a copy instead of view -struct ggml_tensor * ggml_reshape( - struct ggml_context * ctx, - struct ggml_tensor * a, - struct ggml_tensor * b); - -// return view(a) -// TODO: when we start computing gradient, make a copy instead of view -struct ggml_tensor * ggml_reshape_2d( - struct ggml_context * ctx, - struct ggml_tensor * a, - int64_t ne0, - int64_t ne1); - -// return view(a) -// TODO: when we start computing gradient, make a copy instead of view -struct ggml_tensor * ggml_reshape_3d( - struct ggml_context * ctx, - struct ggml_tensor * a, - int64_t ne0, - int64_t ne1, - int64_t ne2); - -// offset in bytes -struct ggml_tensor * ggml_view_1d( - struct ggml_context * ctx, - struct ggml_tensor * a, - int64_t ne0, - size_t offset); - -struct ggml_tensor * ggml_view_2d( - struct ggml_context * ctx, - struct ggml_tensor * a, - int64_t ne0, - int64_t ne1, - size_t nb1, // row stride in bytes - size_t offset); - -struct ggml_tensor * ggml_view_3d( - struct ggml_context * ctx, - struct ggml_tensor * a, - int64_t ne0, - int64_t ne1, - int64_t ne2, - size_t nb1, // row stride in bytes - size_t nb2, // slice stride in bytes - size_t offset); - -struct ggml_tensor * ggml_permute( - struct ggml_context * ctx, - struct ggml_tensor * a, - int axis0, - int axis1, - int axis2, - int axis3); - -// alias for ggml_permute(ctx, a, 1, 0, 2, 3) -struct ggml_tensor * ggml_transpose( - struct ggml_context * ctx, - struct ggml_tensor * a); - -struct ggml_tensor * ggml_get_rows( - struct ggml_context * ctx, - struct ggml_tensor * a, - struct ggml_tensor * b); - -// set elements above the diagonal to -INF -// in-place, returns view(a) -struct ggml_tensor * ggml_diag_mask_inf( - struct ggml_context * ctx, - struct ggml_tensor * a, - int n_past); - -// in-place, returns view(a) -struct ggml_tensor * ggml_soft_max( - struct ggml_context * ctx, - struct ggml_tensor * a); - -// rotary position embedding -// in-place, returns view(a) -// if mode & 1 == 1, skip n_past elements -// if mode & 2 == 1, GPT-NeoX style -// TODO: avoid creating a new tensor every time -struct ggml_tensor * ggml_rope( - struct ggml_context * ctx, - struct ggml_tensor * a, - int n_past, - int n_dims, - int mode); - -// padding = 1 -// TODO: we don't support extra parameters for now -// that's why we are hard-coding the stride, padding, and dilation -// not great .. -struct ggml_tensor * ggml_conv_1d_1s( - struct ggml_context * ctx, - struct ggml_tensor * a, - struct ggml_tensor * b); - -struct ggml_tensor * ggml_conv_1d_2s( - struct ggml_context * ctx, - struct ggml_tensor * a, - struct ggml_tensor * b); - -struct ggml_tensor * ggml_flash_attn( - struct ggml_context * ctx, - struct ggml_tensor * q, - struct ggml_tensor * k, - struct ggml_tensor * v, - bool masked); - -struct ggml_tensor * ggml_flash_ff( - struct ggml_context * ctx, - struct ggml_tensor * a, - struct ggml_tensor * b0, - struct ggml_tensor * b1, - struct ggml_tensor * c0, - struct ggml_tensor * c1); - -// Mapping operations -typedef void (*ggml_unary_op_f32_t)(const int, float *, const float *); -typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *); - -struct ggml_tensor * ggml_map_unary_f32( - struct ggml_context * ctx, - struct ggml_tensor * a, - const ggml_unary_op_f32_t fun); - -struct ggml_tensor * ggml_map_binary_f32( - struct ggml_context * ctx, - struct ggml_tensor * a, - struct ggml_tensor * b, - const ggml_binary_op_f32_t fun); - -// -// automatic differentiation -// - -void ggml_set_param( - struct ggml_context * ctx, - struct ggml_tensor * tensor); - -void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor); - -struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor); -struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep); - -void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph); -void ggml_graph_reset (struct ggml_cgraph * cgraph); - -// print info and performance information for the graph -void ggml_graph_print(const struct ggml_cgraph * cgraph); - -// dump the graph into a file using the dot format -void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename); - -// -// optimization -// - -// optimization methods -enum ggml_opt_type { - GGML_OPT_ADAM, - GGML_OPT_LBFGS, -}; - -// linesearch methods -enum ggml_linesearch { - GGML_LINESEARCH_DEFAULT = 1, - - GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0, - GGML_LINESEARCH_BACKTRACKING_WOLFE = 1, - GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2, -}; - -// optimization return values -enum ggml_opt_result { - GGML_OPT_OK = 0, - GGML_OPT_DID_NOT_CONVERGE, - GGML_OPT_NO_CONTEXT, - GGML_OPT_INVALID_WOLFE, - GGML_OPT_FAIL, - - GGML_LINESEARCH_FAIL = -128, - GGML_LINESEARCH_MINIMUM_STEP, - GGML_LINESEARCH_MAXIMUM_STEP, - GGML_LINESEARCH_MAXIMUM_ITERATIONS, - GGML_LINESEARCH_INVALID_PARAMETERS, -}; - -// optimization parameters -// -// see ggml.c (ggml_opt_default_params) for default values -// -struct ggml_opt_params { - enum ggml_opt_type type; - - int n_threads; - - // delta-based convergence test - // - // if past == 0 - disabled - // if past > 0: - // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|) - // - int past; - float delta; - - // maximum number of iterations without improvement - // - // if 0 - disabled - // if > 0: - // assume convergence if no cost improvement in this number of iterations - // - int max_no_improvement; - - bool print_forward_graph; - bool print_backward_graph; - - // ADAM parameters - struct { - int n_iter; - - float alpha; // learning rate - float beta1; - float beta2; - float eps; // epsilon for numerical stability - float eps_f; // epsilon for convergence test - float eps_g; // epsilon for convergence test - } adam; - - // LBFGS parameters - struct { - int m; // number of corrections to approximate the inv. Hessian - int n_iter; - int max_linesearch; - - float eps; // convergence tolerance - float ftol; // line search tolerance - float wolfe; - float min_step; - float max_step; - - enum ggml_linesearch linesearch; - } lbfgs; -}; - -struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type); - -// optimize the function defined by the tensor f -enum ggml_opt_result ggml_opt( - struct ggml_context * ctx, - struct ggml_opt_params params, - struct ggml_tensor * f); - -// -// quantization -// - -size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist); -size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist); -size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist); -size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t * hist); - -size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist); - -// -// system info -// - -int ggml_cpu_has_avx(void); -int ggml_cpu_has_avx2(void); -int ggml_cpu_has_avx512(void); -int ggml_cpu_has_avx512_vbmi(void); -int ggml_cpu_has_avx512_vnni(void); -int ggml_cpu_has_fma(void); -int ggml_cpu_has_neon(void); -int ggml_cpu_has_arm_fma(void); -int ggml_cpu_has_f16c(void); -int ggml_cpu_has_fp16_va(void); -int ggml_cpu_has_wasm_simd(void); -int ggml_cpu_has_blas(void); -int ggml_cpu_has_cublas(void); -int ggml_cpu_has_sse3(void); -int ggml_cpu_has_vsx(void); - - -// -// Internal types and functions exposed for tests and benchmarks -// +#define GGML_ASSERT(x) \ + do { \ + if (!(x)) { \ + fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \ + abort(); \ + } \ + } while (0) #ifdef __cplusplus -// restrict not standard in C++ +extern "C" { +#endif + +#ifdef __ARM_NEON + // we use the built-in 16-bit float type + typedef __fp16 ggml_fp16_t; +#else + typedef uint16_t ggml_fp16_t; +#endif + + // convert FP16 <-> FP32 + GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x); + GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x); + + GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n); + GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n); + + struct ggml_object; + struct ggml_context; + + enum ggml_type { + GGML_TYPE_F32 = 0, + GGML_TYPE_F16 = 1, + GGML_TYPE_Q4_0 = 2, + GGML_TYPE_Q4_1 = 3, + GGML_TYPE_Q4_2 = 4, + // GGML_TYPE_Q4_3 (5) support has been removed + GGML_TYPE_Q5_0 = 6, + GGML_TYPE_Q5_1 = 7, + GGML_TYPE_Q8_0 = 8, + GGML_TYPE_Q8_1 = 9, + GGML_TYPE_I8, + GGML_TYPE_I16, + GGML_TYPE_I32, + GGML_TYPE_COUNT, + }; + + // model file types + enum ggml_ftype { + GGML_FTYPE_UNKNOWN = -1, + GGML_FTYPE_ALL_F32 = 0, + GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors + GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors + GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors + GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16 + GGML_FTYPE_MOSTLY_Q4_2 = 5, // except 1d tensors + GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors + GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors + GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors + }; + + // available tensor operations: + enum ggml_op { + GGML_OP_NONE = 0, + + GGML_OP_DUP, + GGML_OP_ADD, + GGML_OP_SUB, + GGML_OP_MUL, + GGML_OP_DIV, + GGML_OP_SQR, + GGML_OP_SQRT, + GGML_OP_SUM, + GGML_OP_MEAN, + GGML_OP_REPEAT, + GGML_OP_ABS, + GGML_OP_SGN, + GGML_OP_NEG, + GGML_OP_STEP, + GGML_OP_RELU, + GGML_OP_GELU, + GGML_OP_SILU, + GGML_OP_NORM, // normalize + GGML_OP_RMS_NORM, + + GGML_OP_MUL_MAT, + + GGML_OP_SCALE, + GGML_OP_CPY, + GGML_OP_CONT, + GGML_OP_RESHAPE, + GGML_OP_VIEW, + GGML_OP_PERMUTE, + GGML_OP_TRANSPOSE, + GGML_OP_GET_ROWS, + GGML_OP_DIAG_MASK_INF, + GGML_OP_SOFT_MAX, + GGML_OP_ROPE, + GGML_OP_ALIBI, + GGML_OP_CONV_1D_1S, + GGML_OP_CONV_1D_2S, + + GGML_OP_FLASH_ATTN, + GGML_OP_FLASH_FF, + + GGML_OP_MAP_UNARY, + GGML_OP_MAP_BINARY, + + GGML_OP_COUNT, + }; + + + // ggml object + struct ggml_object { + size_t offs; + size_t size; + + struct ggml_object * next; + + char padding[8]; + }; + + static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object); + + // n-dimensional tensor + struct ggml_tensor { + enum ggml_type type; + + int n_dims; + int64_t ne[GGML_MAX_DIMS]; // number of elements + size_t nb[GGML_MAX_DIMS]; // stride in bytes: + // nb[0] = sizeof(type) + // nb[1] = nb[0] * ne[0] + padding + // nb[i] = nb[i-1] * ne[i-1] + + // compute data + enum ggml_op op; + + bool is_param; + + struct ggml_tensor * grad; + struct ggml_tensor * src0; + struct ggml_tensor * src1; + struct ggml_tensor * opt[GGML_MAX_OPT]; + + // thread scheduling + int n_tasks; + + // performance + int perf_runs; + int64_t perf_cycles; + int64_t perf_time_us; + + void * data; + char padding[8]; + }; + + // computation graph + struct ggml_cgraph { + int n_nodes; + int n_leafs; + int n_threads; + + size_t work_size; + struct ggml_tensor * work; + + struct ggml_tensor * nodes[GGML_MAX_NODES]; + struct ggml_tensor * grads[GGML_MAX_NODES]; + struct ggml_tensor * leafs[GGML_MAX_NODES]; + + // performance + int perf_runs; + int64_t perf_cycles; + int64_t perf_time_us; + }; + + // scratch buffer + struct ggml_scratch { + size_t offs; + size_t size; + void * data; + }; + + struct ggml_init_params { + // memory pool + size_t mem_size; // bytes + void * mem_buffer; // if NULL, memory will be allocated internally + bool no_alloc; // don't allocate memory for the tensor data + }; + + // misc + + GGML_API void ggml_time_init(void); // call this once at the beginning of the program + GGML_API int64_t ggml_time_ms(void); + GGML_API int64_t ggml_time_us(void); + GGML_API int64_t ggml_cycles(void); + GGML_API int64_t ggml_cycles_per_ms(void); + + GGML_API void ggml_print_object (const struct ggml_object * obj); + GGML_API void ggml_print_objects(const struct ggml_context * ctx); + + GGML_API int64_t ggml_nelements(const struct ggml_tensor * tensor); + GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor); + + GGML_API int ggml_blck_size (enum ggml_type type); + GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block + GGML_API float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float + + GGML_API const char * ggml_type_name(enum ggml_type type); + + GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor); + + GGML_API bool ggml_is_quantized(enum ggml_type type); + + // TODO: temporary until model loading of ggml examples is refactored + GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype); + + // main + + GGML_API struct ggml_context * ggml_init(struct ggml_init_params params); + GGML_API void ggml_free(struct ggml_context * ctx); + + GGML_API size_t ggml_used_mem(const struct ggml_context * ctx); + + GGML_API size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch); + + GGML_API struct ggml_tensor * ggml_new_tensor( + struct ggml_context * ctx, + enum ggml_type type, + int n_dims, + const int64_t *ne); + + GGML_API struct ggml_tensor * ggml_new_tensor_1d( + struct ggml_context * ctx, + enum ggml_type type, + int64_t ne0); + + GGML_API struct ggml_tensor * ggml_new_tensor_2d( + struct ggml_context * ctx, + enum ggml_type type, + int64_t ne0, + int64_t ne1); + + GGML_API struct ggml_tensor * ggml_new_tensor_3d( + struct ggml_context * ctx, + enum ggml_type type, + int64_t ne0, + int64_t ne1, + int64_t ne2); + + GGML_API struct ggml_tensor * ggml_new_tensor_4d( + struct ggml_context * ctx, + enum ggml_type type, + int64_t ne0, + int64_t ne1, + int64_t ne2, + int64_t ne3); + + GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value); + GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value); + + GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src); + GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src); + + GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor); + GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value); + GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value); + + GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i); + GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value); + + GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i); + GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value); + + GGML_API void * ggml_get_data (const struct ggml_tensor * tensor); + GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor); + + // + // operations on tensors with backpropagation + // + + GGML_API struct ggml_tensor * ggml_dup( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_add( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + GGML_API struct ggml_tensor * ggml_add_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + GGML_API struct ggml_tensor * ggml_sub( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + GGML_API struct ggml_tensor * ggml_mul( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + GGML_API struct ggml_tensor * ggml_div( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + GGML_API struct ggml_tensor * ggml_sqr( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_sqrt( + struct ggml_context * ctx, + struct ggml_tensor * a); + + // return scalar + // TODO: compute sum along rows + GGML_API struct ggml_tensor * ggml_sum( + struct ggml_context * ctx, + struct ggml_tensor * a); + + // mean along rows + GGML_API struct ggml_tensor * ggml_mean( + struct ggml_context * ctx, + struct ggml_tensor * a); + + // if a is the same shape as b, and a is not parameter, return a + // otherwise, return a new tensor: repeat(a) to fit in b + GGML_API struct ggml_tensor * ggml_repeat( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + GGML_API struct ggml_tensor * ggml_abs( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_sgn( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_neg( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_step( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_relu( + struct ggml_context * ctx, + struct ggml_tensor * a); + + // TODO: double-check this computation is correct + GGML_API struct ggml_tensor * ggml_gelu( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_silu( + struct ggml_context * ctx, + struct ggml_tensor * a); + + // normalize along rows + // TODO: eps is hardcoded to 1e-5 for now + GGML_API struct ggml_tensor * ggml_norm( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_rms_norm( + struct ggml_context * ctx, + struct ggml_tensor * a); + + // A: m rows, n columns + // B: p rows, n columns (i.e. we transpose it internally) + // result is m columns, p rows + GGML_API struct ggml_tensor * ggml_mul_mat( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + // + // operations on tensors without backpropagation + // + + // in-place, returns view(a) + GGML_API struct ggml_tensor * ggml_scale( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + // a -> b, return view(b) + GGML_API struct ggml_tensor * ggml_cpy( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + // make contiguous + GGML_API struct ggml_tensor * ggml_cont( + struct ggml_context * ctx, + struct ggml_tensor * a); + + // return view(a), b specifies the new shape + // TODO: when we start computing gradient, make a copy instead of view + GGML_API struct ggml_tensor * ggml_reshape( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + // return view(a) + // TODO: when we start computing gradient, make a copy instead of view + GGML_API struct ggml_tensor * ggml_reshape_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1); + + // return view(a) + // TODO: when we start computing gradient, make a copy instead of view + GGML_API struct ggml_tensor * ggml_reshape_3d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2); + + // offset in bytes + GGML_API struct ggml_tensor * ggml_view_1d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + size_t offset); + + GGML_API struct ggml_tensor * ggml_view_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + size_t nb1, // row stride in bytes + size_t offset); + + GGML_API struct ggml_tensor * ggml_view_3d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2, + size_t nb1, // row stride in bytes + size_t nb2, // slice stride in bytes + size_t offset); + + GGML_API struct ggml_tensor * ggml_permute( + struct ggml_context * ctx, + struct ggml_tensor * a, + int axis0, + int axis1, + int axis2, + int axis3); + + // alias for ggml_permute(ctx, a, 1, 0, 2, 3) + GGML_API struct ggml_tensor * ggml_transpose( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_get_rows( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + // set elements above the diagonal to -INF + // in-place, returns view(a) + GGML_API struct ggml_tensor * ggml_diag_mask_inf( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past); + + // in-place, returns view(a) + GGML_API struct ggml_tensor * ggml_soft_max( + struct ggml_context * ctx, + struct ggml_tensor * a); + + // rotary position embedding + // in-place, returns view(a) + // if mode & 1 == 1, skip n_past elements + // if mode & 2 == 1, GPT-NeoX style + // TODO: avoid creating a new tensor every time + GGML_API struct ggml_tensor * ggml_rope( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past, + int n_dims, + int mode); + + // alibi position embedding + // in-place, returns view(a) + struct ggml_tensor * ggml_alibi( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past, + int n_head); + + // padding = 1 + // TODO: we don't support extra parameters for now + // that's why we are hard-coding the stride, padding, and dilation + // not great .. + GGML_API struct ggml_tensor * ggml_conv_1d_1s( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + GGML_API struct ggml_tensor * ggml_conv_1d_2s( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + GGML_API struct ggml_tensor * ggml_flash_attn( + struct ggml_context * ctx, + struct ggml_tensor * q, + struct ggml_tensor * k, + struct ggml_tensor * v, + bool masked); + + GGML_API struct ggml_tensor * ggml_flash_ff( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b0, + struct ggml_tensor * b1, + struct ggml_tensor * c0, + struct ggml_tensor * c1); + + // Mapping operations + typedef void (*ggml_unary_op_f32_t)(const int, float *, const float *); + typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *); + + GGML_API struct ggml_tensor * ggml_map_unary_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + const ggml_unary_op_f32_t fun); + + GGML_API struct ggml_tensor * ggml_map_binary_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + const ggml_binary_op_f32_t fun); + + // + // automatic differentiation + // + + GGML_API void ggml_set_param( + struct ggml_context * ctx, + struct ggml_tensor * tensor); + + GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor); + + GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor); + GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep); + + GGML_API void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph); + GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); + + // print info and performance information for the graph + GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph); + + // dump the graph into a file using the dot format + GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename); + + // + // optimization + // + + // optimization methods + enum ggml_opt_type { + GGML_OPT_ADAM, + GGML_OPT_LBFGS, + }; + + // linesearch methods + enum ggml_linesearch { + GGML_LINESEARCH_DEFAULT = 1, + + GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0, + GGML_LINESEARCH_BACKTRACKING_WOLFE = 1, + GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2, + }; + + // optimization return values + enum ggml_opt_result { + GGML_OPT_OK = 0, + GGML_OPT_DID_NOT_CONVERGE, + GGML_OPT_NO_CONTEXT, + GGML_OPT_INVALID_WOLFE, + GGML_OPT_FAIL, + + GGML_LINESEARCH_FAIL = -128, + GGML_LINESEARCH_MINIMUM_STEP, + GGML_LINESEARCH_MAXIMUM_STEP, + GGML_LINESEARCH_MAXIMUM_ITERATIONS, + GGML_LINESEARCH_INVALID_PARAMETERS, + }; + + // optimization parameters + // + // see ggml.c (ggml_opt_default_params) for default values + // + struct ggml_opt_params { + enum ggml_opt_type type; + + int n_threads; + + // delta-based convergence test + // + // if past == 0 - disabled + // if past > 0: + // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|) + // + int past; + float delta; + + // maximum number of iterations without improvement + // + // if 0 - disabled + // if > 0: + // assume convergence if no cost improvement in this number of iterations + // + int max_no_improvement; + + bool print_forward_graph; + bool print_backward_graph; + + // ADAM parameters + struct { + int n_iter; + + float alpha; // learning rate + float beta1; + float beta2; + float eps; // epsilon for numerical stability + float eps_f; // epsilon for convergence test + float eps_g; // epsilon for convergence test + } adam; + + // LBFGS parameters + struct { + int m; // number of corrections to approximate the inv. Hessian + int n_iter; + int max_linesearch; + + float eps; // convergence tolerance + float ftol; // line search tolerance + float wolfe; + float min_step; + float max_step; + + enum ggml_linesearch linesearch; + } lbfgs; + }; + + GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type); + + // optimize the function defined by the tensor f + GGML_API enum ggml_opt_result ggml_opt( + struct ggml_context * ctx, + struct ggml_opt_params params, + struct ggml_tensor * f); + + // + // quantization + // + + GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist); + GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist); + GGML_API size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist); + GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist); + GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist); + GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist); + + GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist); + + // + // system info + // + + GGML_API int ggml_cpu_has_avx (void); + GGML_API int ggml_cpu_has_avx2 (void); + GGML_API int ggml_cpu_has_avx512 (void); + GGML_API int ggml_cpu_has_avx512_vbmi(void); + GGML_API int ggml_cpu_has_avx512_vnni(void); + GGML_API int ggml_cpu_has_fma (void); + GGML_API int ggml_cpu_has_neon (void); + GGML_API int ggml_cpu_has_arm_fma (void); + GGML_API int ggml_cpu_has_f16c (void); + GGML_API int ggml_cpu_has_fp16_va (void); + GGML_API int ggml_cpu_has_wasm_simd (void); + GGML_API int ggml_cpu_has_blas (void); + GGML_API int ggml_cpu_has_cublas (void); + GGML_API int ggml_cpu_has_clblast (void); + GGML_API int ggml_cpu_has_gpublas (void); + GGML_API int ggml_cpu_has_sse3 (void); + GGML_API int ggml_cpu_has_vsx (void); + + // + // Internal types and functions exposed for tests and benchmarks + // + +#ifdef __cplusplus + // restrict not standard in C++ #define GGML_RESTRICT #else #define GGML_RESTRICT restrict #endif -typedef void (*dequantize_row_q_t)(const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k); -typedef void (*quantize_row_q_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k); -typedef void (*vec_dot_q_t)(const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y); + typedef void (*dequantize_row_q_t)(const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k); + typedef void (*quantize_row_q_t) (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k); + typedef void (*vec_dot_q_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y); -typedef struct { - dequantize_row_q_t dequantize_row_q; - quantize_row_q_t quantize_row_q; - quantize_row_q_t quantize_row_q_reference; - quantize_row_q_t quantize_row_q_dot; - vec_dot_q_t vec_dot_q; -} quantize_fns_t; + typedef struct { + dequantize_row_q_t dequantize_row_q; + quantize_row_q_t quantize_row_q; + quantize_row_q_t quantize_row_q_reference; + quantize_row_q_t quantize_row_q_dot; + vec_dot_q_t vec_dot_q; + enum ggml_type vec_dot_type; + } quantize_fns_t; -quantize_fns_t ggml_internal_get_quantize_fn(size_t i); + quantize_fns_t ggml_internal_get_quantize_fn(size_t i); #ifdef __cplusplus } diff --git a/llama_util.h b/llama-util.h old mode 100755 new mode 100644 similarity index 88% rename from llama_util.h rename to llama-util.h index acb207e65..d531588d5 --- a/llama_util.h +++ b/llama-util.h @@ -243,7 +243,8 @@ struct llama_mmap { #else static constexpr bool SUPPORTED = false; - llama_mmap(struct llama_file *) { + llama_mmap(struct llama_file *, bool prefetch = true) { + (void)prefetch; throw std::string("mmap not supported"); } #endif @@ -382,8 +383,13 @@ struct llama_mlock { #else static constexpr bool SUPPORTED = false; - void raw_lock(const void * addr, size_t size) { + size_t lock_granularity() { + return (size_t) 65536; + } + + bool raw_lock(const void * addr, size_t size) { fprintf(stderr, "warning: mlock not supported on this system\n"); + return false; } void raw_unlock(const void * addr, size_t size) {} @@ -395,6 +401,8 @@ struct llama_buffer { uint8_t * addr = NULL; size_t size = 0; + llama_buffer() = default; + void resize(size_t size) { delete[] addr; addr = new uint8_t[size]; @@ -404,5 +412,62 @@ struct llama_buffer { ~llama_buffer() { delete[] addr; } + + // disable copy and move + llama_buffer(const llama_buffer&) = delete; + llama_buffer(llama_buffer&&) = delete; + llama_buffer& operator=(const llama_buffer&) = delete; + llama_buffer& operator=(llama_buffer&&) = delete; }; + +#ifdef GGML_USE_CUBLAS +#include "ggml-cuda.h" +struct llama_ctx_buffer { + uint8_t * addr = NULL; + bool is_cuda; + size_t size = 0; + + llama_ctx_buffer() = default; + + void resize(size_t size) { + free(); + + addr = (uint8_t *) ggml_cuda_host_malloc(size); + if (addr) { + is_cuda = true; + } + else { + // fall back to pageable memory + addr = new uint8_t[size]; + is_cuda = false; + } + this->size = size; + } + + void free() { + if (addr) { + if (is_cuda) { + ggml_cuda_host_free(addr); + } + else { + delete[] addr; + } + } + addr = NULL; + } + + ~llama_ctx_buffer() { + free(); + } + + // disable copy and move + llama_ctx_buffer(const llama_ctx_buffer&) = delete; + llama_ctx_buffer(llama_ctx_buffer&&) = delete; + llama_ctx_buffer& operator=(const llama_ctx_buffer&) = delete; + llama_ctx_buffer& operator=(llama_ctx_buffer&&) = delete; +}; +#else +typedef llama_buffer llama_ctx_buffer; +#endif + #endif diff --git a/llama.cpp b/llama.cpp index 7829c5091..2a8b7fa1a 100644 --- a/llama.cpp +++ b/llama.cpp @@ -5,7 +5,7 @@ #include #endif -#include "llama_util.h" +#include "llama-util.h" #include "llama.h" #include "ggml.h" @@ -27,11 +27,12 @@ #include #include #include +#include +#include #define LLAMA_USE_SCRATCH #define LLAMA_MAX_SCRATCH_BUFFERS 16 - // available llama models enum e_model { MODEL_UNKNOWN, @@ -53,7 +54,7 @@ static const std::map & MEM_REQ_SCRATCH0() { MODEL_7B, 512ull * MB }, { MODEL_13B, 512ull * MB }, { MODEL_30B, 512ull * MB }, - { MODEL_65B, 512ull * MB }, + { MODEL_65B, 1024ull * MB }, }; return _MEM_REQ_SCRATCH0; } @@ -64,10 +65,10 @@ static const std::map & MEM_REQ_SCRATCH1() { MODEL_7B, 512ull * MB }, { MODEL_13B, 512ull * MB }, { MODEL_30B, 512ull * MB }, - { MODEL_65B, 512ull * MB }, + { MODEL_65B, 1024ull * MB }, }; return _MEM_REQ_SCRATCH1; -}; +} // 2*n_embd*n_ctx*n_layer*sizeof(float16) static const std::map & MEM_REQ_KV_SELF() @@ -79,7 +80,7 @@ static const std::map & MEM_REQ_KV_SELF() { MODEL_65B, 5120ull * MB }, }; return _MEM_REQ_KV_SELF; -}; +} // this is mostly needed for temporary mul_mat buffers to dequantize the data // not actually needed if BLAS is disabled @@ -92,7 +93,7 @@ static const std::map & MEM_REQ_EVAL() { MODEL_65B, 1536ull * MB }, }; return _MEM_REQ_EVAL; -}; +} // default hparams (LLaMA 7B) struct llama_hparams { @@ -135,7 +136,7 @@ struct llama_kv_cache { struct ggml_context * ctx = NULL; - llama_buffer buf; + llama_ctx_buffer buf; int n; // number of tokens currently in the cache @@ -166,7 +167,7 @@ struct llama_model { struct llama_kv_cache kv_self; // the model memory buffer - llama_buffer buf; + llama_ctx_buffer buf; // model memory mapped file std::unique_ptr mapping; @@ -227,8 +228,8 @@ struct llama_context { // memory buffers used to evaluate the model // TODO: move in llama_state - llama_buffer buf_compute; - llama_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS]; + llama_ctx_buffer buf_compute; + llama_ctx_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS]; int buf_last = 0; size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 }; @@ -482,7 +483,9 @@ struct llama_file_loader { case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q4_2: - case GGML_TYPE_Q4_3: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: break; default: { throw format("unrecognized tensor type %u\n", shard.type); @@ -556,7 +559,9 @@ struct llama_file_saver { case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q4_2: - case GGML_TYPE_Q4_3: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: break; default: LLAMA_ASSERT(false); } @@ -722,8 +727,7 @@ struct llama_model_loader { LLAMA_ASSERT(offset == lt.size); } else if (lt.split_type == SPLIT_BY_COLUMNS) { // Let's load the data into temporary buffers to ensure the OS performs large loads. - std::vector tmp_bufs; - tmp_bufs.resize(lt.shards.size()); + std::vector tmp_bufs(lt.shards.size()); for (size_t i = 0; i < lt.shards.size(); i++) { llama_load_tensor_shard & shard = lt.shards.at(i); llama_file & file = file_loaders.at(shard.file_idx)->file; @@ -775,7 +779,7 @@ static bool kv_cache_init( const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; - const int64_t n_mem = (int64_t)n_layer*n_ctx; + const int64_t n_mem = n_layer*n_ctx; const int64_t n_elements = n_embd*n_mem; cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB); @@ -846,7 +850,9 @@ static const char *llama_ftype_name(enum llama_ftype ftype) { case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16: return "mostly Q4_1, some F16"; case LLAMA_FTYPE_MOSTLY_Q4_2: return "mostly Q4_2"; - case LLAMA_FTYPE_MOSTLY_Q4_3: return "mostly Q4_3"; + case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0"; + case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1"; + case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0"; default: return "unknown, may not work"; } } @@ -1077,7 +1083,7 @@ static bool llama_eval_internal( // for big prompts, if BLAS is enabled, it is better to use only one thread // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance ggml_cgraph gf = {}; - gf.n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_cublas() ? 1 : (N == 1 ? n_ethreads : n_threads); + gf.n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : (N == 1 ? n_ethreads : n_threads); struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); memcpy(embd->data, tokens, N*ggml_element_size(embd)); @@ -1251,9 +1257,11 @@ static bool llama_eval_internal( ggml_build_forward_expand(&gf, inpL); ggml_graph_compute (ctx0, &gf); +#ifdef GGML_PERF // print timing information per ggml operation (for debugging purposes) // requires GGML_PERF to be defined - //ggml_graph_print(&gf); + ggml_graph_print(&gf); +#endif // plot the computation graph in dot format (for debugging purposes) //if (n_past%100 == 0) { @@ -1468,109 +1476,402 @@ static std::vector llama_tokenize(const llama_vocab & vocab, co // sampling // -static void sample_top_k(std::vector> & logits_id, int top_k) { - // find the top k tokens - std::partial_sort( - logits_id.begin(), - logits_id.begin() + top_k, logits_id.end(), - [](const std::pair & a, const std::pair & b) { - return a.first > b.first; - }); +void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) { + assert(candidates->size > 0); - logits_id.resize(top_k); + const int64_t t_start_sample_us = ggml_time_us(); + + // Sort the logits in descending order + if (!candidates->sorted) { + std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { + return a.logit > b.logit; + }); + candidates->sorted = true; + } + + float max_l = candidates->data[0].logit; + float cum_sum = 0.0f; + for (size_t i = 0; i < candidates->size; ++i) { + float p = expf(candidates->data[i].logit - max_l); + candidates->data[i].p = p; + cum_sum += p; + } + for (size_t i = 0; i < candidates->size; ++i) { + candidates->data[i].p /= cum_sum; + } + + if (ctx) { + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + } } -static llama_vocab::id llama_sample_top_p_top_k( - llama_context & lctx, - const std::vector & last_n_tokens, - int top_k, - float top_p, - float temp, - float repeat_penalty) { - auto & rng = lctx.rng; +void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep) { + const int64_t t_start_sample_us = ggml_time_us(); - const int n_logits = lctx.model.hparams.n_vocab; + k = std::max(k, (int) min_keep); + k = std::min(k, (int) candidates->size); - const auto & logits = lctx.logits; - const auto * plogits = logits.data() + logits.size() - n_logits; - - if (temp <= 0) { - // select the token with the highest logit directly - float max_logit = plogits[0]; - llama_vocab::id max_id = 0; - - for (int i = 1; i < n_logits; ++i) { - if (plogits[i] > max_logit) { - max_logit = plogits[i]; - max_id = i; - } + // Sort scores in descending order + if (!candidates->sorted) { + auto comp = [](const llama_token_data & a, const llama_token_data & b) { + return a.logit > b.logit; + }; + if (k == (int) candidates->size) { + std::sort(candidates->data, candidates->data + candidates->size, comp); + } else { + std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp); } - return max_id; + candidates->sorted = true; + } + candidates->size = k; + + if (ctx) { + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) { + if (p >= 1.0f) { + return; } - std::vector> logits_id; - logits_id.reserve(n_logits); + const int64_t t_start_sample_us = ggml_time_us(); - { - const float scale = 1.0f/temp; - for (int i = 0; i < n_logits; ++i) { - // repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858) - // credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main - if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) { - // if score < 0 then repetition penalty has to multiplied to reduce the previous token probability - if (plogits[i] < 0.0f) { - logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i)); - } else { - logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i)); - } - } else { - logits_id.push_back(std::make_pair(plogits[i]*scale, i)); - } + llama_sample_softmax(ctx, candidates); + + // Compute the cumulative probabilities + float cum_sum = 0.0f; + size_t last_idx = candidates->size; + + for (size_t i = 0; i < candidates->size; ++i) { + cum_sum += candidates->data[i].p; + + // Check if the running sum is greater than p or if we have kept at least min_keep tokens + if (cum_sum > p && i >= min_keep) { + last_idx = i; + break; } } - sample_top_k(logits_id, top_k > 0 ? std::min(top_k, n_logits) : n_logits); + // Resize the output vector to keep only the top-p tokens + candidates->size = last_idx; + + if (ctx) { + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) { + if (z >= 1.0f || candidates->size <= 2) { + return; + } + + const int64_t t_start_sample_us = ggml_time_us(); + + llama_sample_softmax(nullptr, candidates); + + // Compute the first and second derivatives + std::vector first_derivatives(candidates->size - 1); + std::vector second_derivatives(candidates->size - 2); + + for (size_t i = 0; i < first_derivatives.size(); ++i) { + first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p; + } + for (size_t i = 0; i < second_derivatives.size(); ++i) { + second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1]; + } + + // Calculate absolute value of second derivatives + for (size_t i = 0; i < second_derivatives.size(); ++i) { + second_derivatives[i] = abs(second_derivatives[i]); + } + + // Normalize the second derivatives + float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f); + for (float & value : second_derivatives) { + value /= second_derivatives_sum; + } + + float cum_sum = 0.0f; + size_t last_idx = candidates->size; + for (size_t i = 0; i < second_derivatives.size(); ++i) { + cum_sum += second_derivatives[i]; + + // Check if the running sum is greater than z or if we have kept at least min_keep tokens + if (cum_sum > z && i >= min_keep) { + last_idx = i; + break; + } + } + + // Resize the output vector to keep only the tokens above the tail location + candidates->size = last_idx; + + if (ctx) { + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + } +} + + +void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) { + // Reference implementation: + // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr + if (p >= 1.0f) { + return; + } + + const int64_t t_start_sample_us = ggml_time_us(); + + // Compute the softmax of logits and calculate entropy + llama_sample_softmax(nullptr, candidates); + + float entropy = 0.0f; + for (size_t i = 0; i < candidates->size; ++i) { + entropy += -candidates->data[i].p * logf(candidates->data[i].p); + } + + // Compute the absolute difference between negative log probability and entropy for each candidate + std::vector shifted_scores; + for (size_t i = 0; i < candidates->size; ++i) { + float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy); + shifted_scores.push_back(shifted_score); + } + + // Sort tokens based on the shifted_scores and their corresponding indices + std::vector indices(candidates->size); + std::iota(indices.begin(), indices.end(), 0); + + std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) { + return shifted_scores[a] < shifted_scores[b]; + }); + + // Compute the cumulative probabilities + float cum_sum = 0.0f; + size_t last_idx = indices.size(); + + for (size_t i = 0; i < indices.size(); ++i) { + size_t idx = indices[i]; + cum_sum += candidates->data[idx].p; + + // Check if the running sum is greater than typical or if we have kept at least min_keep tokens + if (cum_sum > p && i >= min_keep - 1) { + last_idx = i + 1; + break; + } + } + + // Resize the output vector to keep only the locally typical tokens + std::vector new_candidates; + for (size_t i = 0; i < last_idx; ++i) { + size_t idx = indices[i]; + new_candidates.push_back(candidates->data[idx]); + } + + // Replace the data in candidates with the new_candidates data + std::copy(new_candidates.begin(), new_candidates.end(), candidates->data); + candidates->size = new_candidates.size(); + + if (ctx) { + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) { + const int64_t t_start_sample_us = ggml_time_us(); + + for (size_t i = 0; i < candidates_p->size; ++i) { + candidates_p->data[i].logit /= temp; + } + + if (ctx) { + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, llama_token * last_tokens, size_t last_tokens_size, float penalty) { + if (last_tokens_size == 0 || penalty == 1.0f) { + return; + } + + const int64_t t_start_sample_us = ggml_time_us(); + + for (size_t i = 0; i < candidates->size; ++i) { + auto token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id); + if (token_iter == last_tokens + last_tokens_size) { + continue; + } + + // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong. + // This is common fix for this problem, which is to multiply by the penalty instead of dividing. + if (candidates->data[i].logit <= 0) { + candidates->data[i].logit *= penalty; + } else { + candidates->data[i].logit /= penalty; + } + } + + candidates->sorted = false; + + if (ctx) { + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) { + if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) { + return; + } + + const int64_t t_start_sample_us = ggml_time_us(); + + // Create a frequency map to count occurrences of each token in last_tokens + std::unordered_map token_count; + for (size_t i = 0; i < last_tokens_size; ++i) { + token_count[last_tokens_p[i]]++; + } + + // Apply frequency and presence penalties to the candidates + for (size_t i = 0; i < candidates->size; ++i) { + auto token_iter = token_count.find(candidates->data[i].id); + if (token_iter == token_count.end()) { + continue; + } + + int count = token_iter->second; + candidates->data[i].logit -= float(count) * alpha_frequency + float(count > 0) * alpha_presence; + } + + candidates->sorted = false; + + if (ctx) { + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + } +} + + +llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) { + assert(ctx); + auto N = float(llama_n_vocab(ctx)); + int64_t t_start_sample_us; + t_start_sample_us = ggml_time_us(); + + llama_sample_softmax(nullptr, candidates); + + // Estimate s_hat using the most probable m tokens + float s_hat = 0.0; + float sum_ti_bi = 0.0; + float sum_ti_sq = 0.0; + for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) { + float t_i = logf(float(i + 2) / float(i + 1)); + float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p); + sum_ti_bi += t_i * b_i; + sum_ti_sq += t_i * t_i; + } + s_hat = sum_ti_bi / sum_ti_sq; + + // Compute k from the estimated s_hat and target surprise value + float epsilon_hat = s_hat - 1; + float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat); + + // Sample the next word X using top-k sampling + llama_sample_top_k(nullptr, candidates, int(k)); + if (ctx) { + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + } + llama_token X = llama_sample_token(ctx, candidates); + t_start_sample_us = ggml_time_us(); + + // Compute error as the difference between observed surprise and target surprise value + size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { + return candidate.id == X; + })); + float observed_surprise = -log2f(candidates->data[X_idx].p); + float e = observed_surprise - tau; + + // Update mu using the learning rate and error + *mu = *mu - eta * e; + + if (ctx) { + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + ctx->n_sample++; + } + return X; +} + +llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) { + assert(ctx); + int64_t t_start_sample_us; + t_start_sample_us = ggml_time_us(); + + llama_sample_softmax(ctx, candidates); + + // Truncate the words with surprise values greater than mu + candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { + return -log2f(candidate.p) > *mu; + })); + + // Normalize the probabilities of the remaining words + llama_sample_softmax(ctx, candidates); + + // Sample the next word X from the remaining words + if (ctx) { + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + } + llama_token X = llama_sample_token(ctx, candidates); + t_start_sample_us = ggml_time_us(); + + // Compute error as the difference between observed surprise and target surprise value + size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { + return candidate.id == X; + })); + float observed_surprise = -log2f(candidates->data[X_idx].p); + float e = observed_surprise - tau; + + // Update mu using the learning rate and error + *mu = *mu - eta * e; + + if (ctx) { + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + } + return X; +} + +llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) { + const int64_t t_start_sample_us = ggml_time_us(); + + // Find max element + auto max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { + return a.logit < b.logit; + }); + + llama_token result = max_iter->id; + if (ctx) { + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + ctx->n_sample++; + } + return result; +} + +llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) { + assert(ctx); + const int64_t t_start_sample_us = ggml_time_us(); + llama_sample_softmax(nullptr, candidates); - // compute probs for the top k tokens std::vector probs; - probs.reserve(logits_id.size()); - - float maxl = logits_id[0].first; - double sum = 0.0; - for (const auto & kv : logits_id) { - const float p = expf(kv.first - maxl); - probs.push_back(p); - sum += p; + probs.reserve(candidates->size); + for (size_t i = 0; i < candidates->size; ++i) { + probs.push_back(candidates->data[i].p); } - // normalize the probs - for (auto & p : probs) { - p /= sum; - } - - if (top_p < 1.0) { - double cumsum = 0.0; - for (int i = 0; i < (int) probs.size(); i++) { - cumsum += probs[i]; - if (cumsum >= top_p) { - probs.resize(i + 1); - logits_id.resize(i + 1); - break; - } - } - } - - //printf("\n"); - //for (int i = 0; i < (int) 10; i++) { - // printf("%d: '%s' %f\n", i, lctx.vocab.id_to_token.at(logits_id[i].second).tok.c_str(), probs[i]); - //} - //printf("\n\n"); - //exit(0); - std::discrete_distribution<> dist(probs.begin(), probs.end()); + auto & rng = ctx->rng; int idx = dist(rng); - return logits_id[idx].second; + llama_token result = candidates->data[idx].id; + + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + ctx->n_sample++; + return result; } // @@ -1583,7 +1884,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break; case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break; case LLAMA_FTYPE_MOSTLY_Q4_2: quantized_type = GGML_TYPE_Q4_2; break; - case LLAMA_FTYPE_MOSTLY_Q4_3: quantized_type = GGML_TYPE_Q4_3; break; + case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break; + case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break; + case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break; default: throw format("invalid output file type %d\n", ftype); }; @@ -1789,7 +2092,7 @@ struct llama_context * llama_init_from_file( if (params.logits_all) { ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab); } else { - ctx->logits.reserve(hparams.n_ctx); + ctx->logits.reserve(hparams.n_vocab); } if (params.embedding){ @@ -2071,35 +2374,277 @@ int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lor } } -// Returns the KV cache that will contain the context for the -// ongoing prediction with the model. -const uint8_t * llama_get_kv_cache(struct llama_context * ctx) { - return ctx->model.kv_self.buf.addr; -} - -// Returns the size of the KV cache -size_t llama_get_kv_cache_size(struct llama_context * ctx) { - return ctx->model.kv_self.buf.size; -} - -int llama_get_kv_cache_token_count(struct llama_context * ctx) { +int llama_get_kv_cache_token_count(const struct llama_context * ctx) { return ctx->model.kv_self.n; } -// Sets the KV cache containing the current context for the model -void llama_set_kv_cache( - struct llama_context * ctx, - const uint8_t * kv_cache, - size_t n_size, - int n_token_count) { - // Make sure we have the same kv cache setup - LLAMA_ASSERT(ctx->model.kv_self.buf.size == n_size); - void * k_data = ctx->model.kv_self.k->data; // remember data pointers - void * v_data = ctx->model.kv_self.v->data; // because their value is stored in buf and overwritten by memcpy - memcpy(ctx->model.kv_self.buf.addr, kv_cache, n_size); - ctx->model.kv_self.k->data = k_data; // restore correct data pointers - ctx->model.kv_self.v->data = v_data; - ctx->model.kv_self.n = n_token_count; +#define LLAMA_MAX_RNG_STATE 64*1024 + +void llama_set_rng_seed(struct llama_context * ctx, int seed) { + if (seed <= 0) { + seed = time(NULL); + } + ctx->rng.seed(seed); +} + +// Returns the size of the state +size_t llama_get_state_size(const struct llama_context * ctx) { + // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state. + // for reference, std::mt19937(1337) serializes to 6701 bytes. + const size_t s_rng_size = sizeof(size_t); + const size_t s_rng = LLAMA_MAX_RNG_STATE; + const size_t s_logits_capacity = sizeof(size_t); + const size_t s_logits_size = sizeof(size_t); + const size_t s_logits = ctx->logits.capacity() * sizeof(float); + const size_t s_embedding_size = sizeof(size_t); + const size_t s_embedding = ctx->embedding.size() * sizeof(float); + const size_t s_kv_size = sizeof(size_t); + const size_t s_kv_ntok = sizeof(int); + const size_t s_kv = ctx->model.kv_self.buf.size; + + const size_t s_total = ( + + s_rng_size + + s_rng + + s_logits_capacity + + s_logits_size + + s_logits + + s_embedding_size + + s_embedding + + s_kv_size + + s_kv_ntok + + s_kv + ); + + return s_total; +} + +// Copies the state to the specified destination address +size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dest) { + uint8_t * out = dest; + + // copy rng + { + std::stringstream rng_ss; + rng_ss << ctx->rng; + + const size_t rng_size = rng_ss.str().size(); + char rng_buf[LLAMA_MAX_RNG_STATE]; + + memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE); + memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size()); + + memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size); + memcpy(out, &rng_buf[0], LLAMA_MAX_RNG_STATE); out += LLAMA_MAX_RNG_STATE; + } + + // copy logits + { + const size_t logits_cap = ctx->logits.capacity(); + const size_t logits_size = ctx->logits.size(); + + memcpy(out, &logits_cap, sizeof(logits_cap)); out += sizeof(logits_cap); + memcpy(out, &logits_size, sizeof(logits_size)); out += sizeof(logits_size); + + if (logits_size) { + memcpy(out, ctx->logits.data(), logits_size * sizeof(float)); + } + + out += logits_cap * sizeof(float); + } + + // copy embeddings + { + const size_t embedding_size = ctx->embedding.size(); + + memcpy(out, &embedding_size, sizeof(embedding_size)); out += sizeof(embedding_size); + + if (embedding_size) { + memcpy(out, ctx->embedding.data(), embedding_size * sizeof(float)); + out += embedding_size * sizeof(float); + } + } + + // copy kv cache + { + const size_t kv_size = ctx->model.kv_self.buf.size; + const int kv_ntok = llama_get_kv_cache_token_count(ctx); + + memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size); + memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok); + + if (kv_size) { + memcpy(out, ctx->model.kv_self.buf.addr, kv_size); out += kv_size; + } + } + + const size_t written = out - dest; + const size_t expected = llama_get_state_size(ctx); + + LLAMA_ASSERT(written == expected); + + return written; +} + +// Sets the state reading from the specified source address +size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) { + const uint8_t * in = src; + + // set rng + { + size_t rng_size; + char rng_buf[LLAMA_MAX_RNG_STATE]; + + memcpy(&rng_size, in, sizeof(rng_size)); in += sizeof(rng_size); + memcpy(&rng_buf[0], in, LLAMA_MAX_RNG_STATE); in += LLAMA_MAX_RNG_STATE; + + std::stringstream rng_ss; + rng_ss.str(std::string(&rng_buf[0], rng_size)); + rng_ss >> ctx->rng; + + LLAMA_ASSERT(rng_ss.fail() == false); + } + + // set logits + { + size_t logits_cap; + size_t logits_size; + + memcpy(&logits_cap, in, sizeof(logits_cap)); in += sizeof(logits_cap); + memcpy(&logits_size, in, sizeof(logits_size)); in += sizeof(logits_size); + + LLAMA_ASSERT(ctx->logits.capacity() == logits_cap); + + if (logits_size) { + ctx->logits.resize(logits_size); + memcpy(ctx->logits.data(), in, logits_size * sizeof(float)); + } + + in += logits_cap * sizeof(float); + } + + // set embeddings + { + size_t embedding_size; + + memcpy(&embedding_size, in, sizeof(embedding_size)); in += sizeof(embedding_size); + + LLAMA_ASSERT(ctx->embedding.capacity() == embedding_size); + + if (embedding_size) { + memcpy(ctx->embedding.data(), in, embedding_size * sizeof(float)); + in += embedding_size * sizeof(float); + } + } + + // set kv cache + { + size_t kv_size; + int kv_ntok; + + memcpy(&kv_size, in, sizeof(kv_size)); in += sizeof(kv_size); + memcpy(&kv_ntok, in, sizeof(kv_ntok)); in += sizeof(kv_ntok); + + if (kv_size) { + LLAMA_ASSERT(ctx->model.kv_self.buf.size == kv_size); + + void * k_data = ctx->model.kv_self.k->data; // remember data pointers + void * v_data = ctx->model.kv_self.v->data; // because their value is stored in buf and overwritten by memcpy + + memcpy(ctx->model.kv_self.buf.addr, in, kv_size); in += kv_size; + + ctx->model.kv_self.k->data = k_data; // restore correct data pointers + ctx->model.kv_self.v->data = v_data; + + } + + ctx->model.kv_self.n = kv_ntok; + } + + const size_t nread = in - src; + const size_t expected = llama_get_state_size(ctx); + + LLAMA_ASSERT(nread == expected); + + return nread; +} + +bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { + llama_file file(path_session, "rb"); + + // sanity checks + { + const uint32_t magic = file.read_u32(); + const uint32_t version = file.read_u32(); + + if (!(magic == LLAMA_SESSION_MAGIC && version == LLAMA_SESSION_VERSION)) { + fprintf(stderr, "%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version); + return false; + } + + llama_hparams session_hparams; + file.read_raw(&session_hparams, sizeof(llama_hparams)); + + if (session_hparams != ctx->model.hparams) { + fprintf(stderr, "%s : model hparams didn't match from session file!\n", __func__); + return false; + } + } + + // load the prompt + { + const uint32_t n_token_count = file.read_u32(); + + if (n_token_count > n_token_capacity) { + fprintf(stderr, "%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity); + return false; + } + + file.read_raw(tokens_out, sizeof(llama_token) * n_token_count); + *n_token_count_out = n_token_count; + } + + // restore the context state + { + const size_t n_state_size_cur = file.size - file.tell(); + const size_t n_state_size_exp = llama_get_state_size(ctx); + + if (n_state_size_cur != n_state_size_exp) { + fprintf(stderr, "%s : the state size in session file didn't match! expected %zu, got %zu\n", __func__, n_state_size_exp, n_state_size_cur); + return false; + } + + std::vector state_data(n_state_size_cur); + file.read_raw(state_data.data(), n_state_size_cur); + + llama_set_state_data(ctx, state_data.data()); + } + + return true; +} + +bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) { + llama_file file(path_session, "wb"); + + file.write_u32(LLAMA_SESSION_MAGIC); + file.write_u32(LLAMA_SESSION_VERSION); + + file.write_raw(&ctx->model.hparams, sizeof(llama_hparams)); + + // save the prompt + file.write_u32((uint32_t) n_token_count); + file.write_raw(tokens, sizeof(llama_token) * n_token_count); + + // save the context state + { + const size_t n_state_size = llama_get_state_size(ctx); + + std::vector state_data(n_state_size); + llama_copy_state_data(ctx, state_data.data()); + + file.write_raw(state_data.data(), n_state_size); + } + + return true; } int llama_eval( @@ -2141,15 +2686,15 @@ int llama_tokenize( return res.size(); } -int llama_n_vocab(struct llama_context * ctx) { +int llama_n_vocab(const struct llama_context * ctx) { return ctx->vocab.id_to_token.size(); } -int llama_n_ctx(struct llama_context * ctx) { +int llama_n_ctx(const struct llama_context * ctx) { return ctx->model.hparams.n_ctx; } -int llama_n_embd(struct llama_context * ctx) { +int llama_n_embd(const struct llama_context * ctx) { return ctx->model.hparams.n_embd; } @@ -2161,7 +2706,7 @@ float * llama_get_embeddings(struct llama_context * ctx) { return ctx->embedding.data(); } -const char * llama_token_to_str(struct llama_context * ctx, llama_token token) { +const char * llama_token_to_str(const struct llama_context * ctx, llama_token token) { if (token >= llama_n_vocab(ctx)) { return nullptr; } @@ -2177,33 +2722,8 @@ llama_token llama_token_eos() { return 2; } -llama_token llama_sample_top_p_top_k( - llama_context * ctx, - const llama_token * last_n_tokens_data, - int last_n_tokens_size, - int top_k, - float top_p, - float temp, - float repeat_penalty) { - const int64_t t_start_sample_us = ggml_time_us(); - - llama_token result = 0; - - // TODO: avoid this ... - const auto last_n_tokens = std::vector(last_n_tokens_data, last_n_tokens_data + last_n_tokens_size); - - result = llama_sample_top_p_top_k( - *ctx, - last_n_tokens, - top_k, - top_p, - temp, - repeat_penalty); - - ctx->t_sample_us += ggml_time_us() - t_start_sample_us; - ctx->n_sample++; - - return result; +llama_token llama_token_nl() { + return 13; } diff --git a/llama.h b/llama.h index b31ac9aeb..d1447ea2e 100644 --- a/llama.h +++ b/llama.h @@ -19,9 +19,11 @@ # define LLAMA_API #endif -#define LLAMA_FILE_VERSION 1 -#define LLAMA_FILE_MAGIC 0x67676a74 // 'ggjt' in hex -#define LLAMA_FILE_MAGIC_UNVERSIONED 0x67676d6c // pre-versioned files +#define LLAMA_FILE_VERSION 1 +#define LLAMA_FILE_MAGIC 'ggjt' +#define LLAMA_FILE_MAGIC_UNVERSIONED 'ggml' +#define LLAMA_SESSION_MAGIC 'ggsn' +#define LLAMA_SESSION_VERSION 0 #ifdef __cplusplus extern "C" { @@ -39,12 +41,16 @@ extern "C" { typedef struct llama_token_data { llama_token id; // token id - + float logit; // log-odds of the token float p; // probability of the token - float plog; // log probability of the token - } llama_token_data; + typedef struct llama_token_data_array { + llama_token_data * data; + size_t size; + bool sorted; + } llama_token_data_array; + typedef void (*llama_progress_callback)(float progress, void *ctx); struct llama_context_params { @@ -73,7 +79,10 @@ extern "C" { LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16 LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // except 1d tensors - LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // except 1d tensors + // LLAMA_FTYPE_MOSTLY_Q4_3 (6) support has been removed + LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors }; LLAMA_API struct llama_context_params llama_context_default_params(); @@ -112,22 +121,27 @@ extern "C" { const char * path_base_model, int n_threads); - // Returns the KV cache that will contain the context for the - // ongoing prediction with the model. - LLAMA_API const uint8_t * llama_get_kv_cache(struct llama_context * ctx); - - // Returns the size of the KV cache - LLAMA_API size_t llama_get_kv_cache_size(struct llama_context * ctx); - // Returns the number of tokens in the KV cache - LLAMA_API int llama_get_kv_cache_token_count(struct llama_context * ctx); + LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx); - // Sets the KV cache containing the current context for the model - LLAMA_API void llama_set_kv_cache( - struct llama_context * ctx, - const uint8_t * kv_cache, - size_t n_size, - int n_token_count); + // Sets the current rng seed. + LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, int seed); + + // Returns the size in bytes of the state (rng, logits, embedding and kv_cache) + LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx); + + // Copies the state to the specified destination address. + // Destination needs to have allocated enough memory. + // Returns the number of bytes copied + LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dest); + + // Set the state reading from the specified address + // Returns the number of bytes read + LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src); + + // Save/load session file + LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out); + LLAMA_API bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count); // Run the llama inference to obtain the logits and probabilities for the next token. // tokens + n_tokens is the provided batch of new tokens to process @@ -153,9 +167,9 @@ extern "C" { int n_max_tokens, bool add_bos); - LLAMA_API int llama_n_vocab(struct llama_context * ctx); - LLAMA_API int llama_n_ctx (struct llama_context * ctx); - LLAMA_API int llama_n_embd (struct llama_context * ctx); + LLAMA_API int llama_n_vocab(const struct llama_context * ctx); + LLAMA_API int llama_n_ctx (const struct llama_context * ctx); + LLAMA_API int llama_n_embd (const struct llama_context * ctx); // Token logits obtained from the last call to llama_eval() // The logits for the last token are stored in the last row @@ -169,21 +183,57 @@ extern "C" { LLAMA_API float * llama_get_embeddings(struct llama_context * ctx); // Token Id -> String. Uses the vocabulary in the provided context - LLAMA_API const char * llama_token_to_str(struct llama_context * ctx, llama_token token); + LLAMA_API const char * llama_token_to_str(const struct llama_context * ctx, llama_token token); // Special tokens LLAMA_API llama_token llama_token_bos(); LLAMA_API llama_token llama_token_eos(); + LLAMA_API llama_token llama_token_nl(); - // TODO: improve the last_n_tokens interface ? - LLAMA_API llama_token llama_sample_top_p_top_k( - struct llama_context * ctx, - const llama_token * last_n_tokens_data, - int last_n_tokens_size, - int top_k, - float top_p, - float temp, - float repeat_penalty); + // Sampling functions + + /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix. + LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, llama_token * last_tokens, size_t last_tokens_size, float penalty); + + /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details. + LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence); + + /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits. + LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates); + + /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 + LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep = 1); + + /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 + LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep = 1); + + /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/. + LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep = 1); + + /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666. + LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep = 1); + LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp); + + /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. + /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. + /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. + /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates. + /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm. + /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal. + LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu); + + /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. + /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. + /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. + /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates. + /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal. + LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu); + + /// @details Selects the token with the highest probability. + LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates); + + /// @details Randomly selects a token from the candidates based on their probabilities. + LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates); // Performance information LLAMA_API void llama_print_timings(struct llama_context * ctx); diff --git a/scripts/build-info.cmake b/scripts/build-info.cmake new file mode 100644 index 000000000..fb46ed2b5 --- /dev/null +++ b/scripts/build-info.cmake @@ -0,0 +1,53 @@ +set(TEMPLATE_FILE "${CMAKE_BINARY_DIR}/BUILD_INFO.h.in") +set(HEADER_FILE "${CMAKE_CURRENT_SOURCE_DIR}/build-info.h") +set(BUILD_NUMBER 0) +set(BUILD_COMMIT "unknown") + +# Look for git +find_package(Git) +if(NOT Git_FOUND) + execute_process( + COMMAND which git + OUTPUT_VARIABLE GIT_EXECUTABLE + OUTPUT_STRIP_TRAILING_WHITESPACE + ) + if(NOT GIT_EXECUTABLE STREQUAL "") + set(Git_FOUND TRUE) + message(STATUS "Found Git using 'which': ${GIT_EXECUTABLE}") + else() + message(WARNING "Git not found using 'find_package' or 'which'. Build info will not be accurate. Consider installing Git or ensuring it is in the PATH.") + endif() +endif() + +# Get the commit count and hash +if(Git_FOUND) + execute_process( + COMMAND ${GIT_EXECUTABLE} rev-parse --short HEAD + WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR} + OUTPUT_VARIABLE HEAD + OUTPUT_STRIP_TRAILING_WHITESPACE + RESULT_VARIABLE GIT_HEAD_RESULT + ) + execute_process( + COMMAND ${GIT_EXECUTABLE} rev-list --count HEAD + WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR} + OUTPUT_VARIABLE COUNT + OUTPUT_STRIP_TRAILING_WHITESPACE + RESULT_VARIABLE GIT_COUNT_RESULT + ) + if(GIT_HEAD_RESULT EQUAL 0 AND GIT_COUNT_RESULT EQUAL 0) + set(BUILD_COMMIT ${HEAD}) + set(BUILD_NUMBER ${COUNT}) + endif() +endif() + +# Only write the header if it's changed to prevent unnecessary recompilation +if(EXISTS ${HEADER_FILE}) + file(STRINGS ${HEADER_FILE} CONTENTS REGEX "BUILD_COMMIT \"([^\"]*)\"") + list(GET CONTENTS 0 EXISTING) + if(NOT EXISTING STREQUAL "#define BUILD_COMMIT \"${BUILD_COMMIT}\"") + configure_file(${TEMPLATE_FILE} ${HEADER_FILE}) + endif() +else() + configure_file(${TEMPLATE_FILE} ${HEADER_FILE}) +endif() diff --git a/scripts/build-info.sh b/scripts/build-info.sh new file mode 100755 index 000000000..507d7e153 --- /dev/null +++ b/scripts/build-info.sh @@ -0,0 +1,22 @@ +#!/bin/sh + +BUILD_NUMBER="0" +BUILD_COMMIT="unknown" + +REV_LIST=$(git rev-list --count HEAD) +if [ $? -eq 0 ]; then + BUILD_NUMBER=$REV_LIST +fi + +REV_PARSE=$(git rev-parse --short HEAD) +if [ $? -eq 0 ]; then + BUILD_COMMIT=$REV_PARSE +fi + +echo "#ifndef BUILD_INFO_H" +echo "#define BUILD_INFO_H" +echo "" +echo "#define BUILD_NUMBER $BUILD_NUMBER" +echo "#define BUILD_COMMIT \"$BUILD_COMMIT\"" +echo "" +echo "#endif // BUILD_INFO_H" diff --git a/scripts/sync-ggml.sh b/scripts/sync-ggml.sh new file mode 100755 index 000000000..e6e39ff8f --- /dev/null +++ b/scripts/sync-ggml.sh @@ -0,0 +1,6 @@ +#!/bin/bash + +cp -rpv ../ggml/src/ggml.c ./ggml.c +cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu +cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h +cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h diff --git a/tests/CMakeLists.txt b/tests/CMakeLists.txt index 157d7336e..645648585 100644 --- a/tests/CMakeLists.txt +++ b/tests/CMakeLists.txt @@ -6,5 +6,7 @@ function(llama_add_test source) endfunction() # llama_add_test(test-double-float.c) # SLOW -llama_add_test(test-quantize.c) +llama_add_test(test-quantize-fns.cpp) +llama_add_test(test-quantize-perf.cpp) +llama_add_test(test-sampling.cpp) llama_add_test(test-tokenizer-0.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab.bin) diff --git a/tests/test-quantize-fns.cpp b/tests/test-quantize-fns.cpp new file mode 100644 index 000000000..a31a18827 --- /dev/null +++ b/tests/test-quantize-fns.cpp @@ -0,0 +1,154 @@ +// Unit tests for quantization specific functions - quantize, dequantize and dot product + +#include "ggml.h" + +#undef NDEBUG +#include +#include +#include +#include +#include + + +const float MAX_QUANTIZATION_REFERENCE_ERROR = 0.0001; +const float MAX_QUANTIZATION_TOTAL_ERROR = 0.002; +const float MAX_DOT_PRODUCT_ERROR = 0.02; + +const char* RESULT_STR[] = {"ok", "FAILED"}; + + +// Generate synthetic data +void generate_data(float offset, size_t n, float * dst) { + for (size_t i = 0; i < n; i++) { + dst[i] = 0.1 + 2*cosf(i + offset); + } +} + +// Calculate RMSE between two float arrays +float array_rmse(const float * a1, const float * a2, size_t n) { + double sum = 0; + for (size_t i = 0; i < n; i++) { + double diff = a1[i] - a2[i]; + sum += diff * diff; + } + return sqrtf(sum) / n; +} + +// Total quantization error on test data +float total_quantization_error(quantize_fns_t & qfns, size_t test_size, const float * test_data) { + std::vector tmp_q(2*test_size); + std::vector tmp_out(test_size); + + qfns.quantize_row_q(test_data, tmp_q.data(), test_size); + qfns.dequantize_row_q(tmp_q.data(), tmp_out.data(), test_size); + return array_rmse(test_data, tmp_out.data(), test_size); +} + +// Total quantization error on test data +float reference_quantization_error(quantize_fns_t & qfns, size_t test_size, const float * test_data) { + std::vector tmp_q(2*test_size); + std::vector tmp_out(test_size); + std::vector tmp_out_ref(test_size); + + qfns.quantize_row_q(test_data, tmp_q.data(), test_size); + qfns.dequantize_row_q(tmp_q.data(), tmp_out.data(), test_size); + + qfns.quantize_row_q_reference(test_data, tmp_q.data(), test_size); + qfns.dequantize_row_q(tmp_q.data(), tmp_out_ref.data(), test_size); + + return array_rmse(tmp_out.data(), tmp_out_ref.data(), test_size); +} + +float dot_product(const float * a1, const float * a2, size_t test_size) { + double sum = 0; + for (size_t i = 0; i < test_size; i++) { + sum += a1[i] * a2[i]; + } + return sum; +} + +// Total dot product error +float dot_product_error(quantize_fns_t & qfns, size_t test_size, const float * test_data1, const float *test_data2) { + std::vector tmp_q1(2*test_size); + std::vector tmp_q2(2*test_size); + + qfns.quantize_row_q (test_data1, tmp_q1.data(), test_size); + qfns.quantize_row_q_dot(test_data2, tmp_q2.data(), test_size); + + float result = INFINITY; + qfns.vec_dot_q(test_size, &result, tmp_q1.data(), tmp_q2.data()); + + const float dot_ref = dot_product(test_data1, test_data2, test_size); + + return fabsf(result - dot_ref) / test_size; +} + +int main(int argc, char * argv[]) { + bool verbose = false; + const size_t test_size = 32 * 128; + + std::string arg; + for (int i = 1; i < argc; i++) { + arg = argv[i]; + + if (arg == "-v") { + verbose = true; + } else { + fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); + return 1; + } + } + + std::vector test_data(test_size); + std::vector test_data2(test_size); + + generate_data(0.0, test_data.size(), test_data.data()); + generate_data(1.0, test_data2.size(), test_data2.data()); + + // Initialize GGML, ensures float conversion tables are initialized + struct ggml_init_params ggml_params = { + /* .mem_size = */ 1*1024, + /* .mem_buffer = */ NULL, + /* .no_alloc = */ true, + }; + struct ggml_context * ctx = ggml_init(ggml_params); + + int num_failed = 0; + bool failed = false; + + for (int i = 0; i < GGML_TYPE_COUNT; i++) { + ggml_type type = (ggml_type) i; + quantize_fns_t qfns = ggml_internal_get_quantize_fn(i); + + if (qfns.quantize_row_q && qfns.dequantize_row_q) { + const float total_error = total_quantization_error(qfns, test_size, test_data.data()); + failed = !(total_error < MAX_QUANTIZATION_TOTAL_ERROR); + num_failed += failed; + if (failed || verbose) { + printf("%5s absolute quantization error: %s (%f)\n", ggml_type_name(type), RESULT_STR[failed], total_error); + } + + const float reference_error = reference_quantization_error(qfns, test_size, test_data.data()); + failed = !(reference_error < MAX_QUANTIZATION_REFERENCE_ERROR); + num_failed += failed; + if (failed || verbose) { + printf("%5s reference implementation error: %s (%f)\n", ggml_type_name(type), RESULT_STR[failed], reference_error); + } + + const float vec_dot_error = dot_product_error(qfns, test_size, test_data.data(), test_data2.data()); + failed = !(vec_dot_error < MAX_DOT_PRODUCT_ERROR); + num_failed += failed; + if (failed || verbose) { + printf("%5s dot product error: %s (%f)\n", ggml_type_name(type), RESULT_STR[failed], vec_dot_error); + } + } + } + + if (num_failed || verbose) { + printf("%d tests failed\n", num_failed); + } + + ggml_free(ctx); + + return num_failed > 0; +} diff --git a/tests/test-quantize-perf.cpp b/tests/test-quantize-perf.cpp new file mode 100644 index 000000000..d5514455d --- /dev/null +++ b/tests/test-quantize-perf.cpp @@ -0,0 +1,310 @@ +// Benchmark quantization specific functions on synthetic data + +#include "ggml.h" + +#undef NDEBUG +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define MAX_ALIGNMENT 64 +#define QK 32 +#define WARMUP 5 +#define ITERATIONS 10 + +#define L1_SIZE 32*128 +#define L2_SIZE 32*2048 +#define L3_SIZE 32*20480 +#define MEM_SIZE 32*2048000 + +struct quantize_perf_params { + std::vector include_types; + std::vector test_sizes; + size_t alignment_offset = 0; + bool op_quantize_row_q_reference = false; + bool op_quantize_row_q = false; + bool op_dequantize_row_q = false; + bool op_quantize_row_q_dot = false; + bool op_vec_dot_q = false; +}; + + +#if defined(__x86_64__) || defined(__i386__) + +#include +inline int64_t cpu_cycles() { +// Rough way to detect new-ish CPUs +#ifdef __POPCNT__ + unsigned int dummy; + return __rdtscp(&dummy); +#else + return __rdtsc(); +#endif +} + +#else + +#define cpu_cycles() 0 + +#endif + + +// Generate synthetic data +void generate_data(float offset, size_t n, float * dst) { + for (size_t i = 0; i < n; i++) { + dst[i] = 0.1 + 2*cosf(i + offset); + } +} + +float gigabytes_per_second(size_t bytes, int64_t usecs) { + return bytes / (float) usecs * 1000000 / (1024*1024*1024); +} + +void * align_with_offset(void * ptr, int offset) { + size_t dummy_size = MAX_ALIGNMENT * 4; + return (char *) std::align(MAX_ALIGNMENT, MAX_ALIGNMENT, ptr, dummy_size) + offset; +} + +void benchmark_function(size_t size, size_t q_size, std::function function) { + int64_t min_time_us = INT64_MAX; + int64_t total_time_us = 0; + int64_t min_time_cycles = INT64_MAX; + int64_t total_time_cycles = 0; + + for (int i = 0; i < WARMUP; i++) { + function(); + } + + + for (int i = 0; i < ITERATIONS; i++) { + const int64_t start_time = ggml_time_us(); + const int64_t start_cycles = cpu_cycles(); + + function(); + + const int64_t end_cycles = cpu_cycles(); + const int64_t end_time = ggml_time_us(); + + total_time_cycles += end_cycles - start_cycles; + min_time_cycles = std::min(min_time_cycles, end_cycles - start_cycles); + total_time_us += end_time - start_time; + min_time_us = std::min(min_time_us, end_time - start_time); + } + + printf(" min cycles/%d vals : %9.2f\n", QK, QK * min_time_cycles / (float) size); + printf(" avg cycles/%d vals : %9.2f\n", QK, QK * total_time_cycles / (float) (size * ITERATIONS)); + printf(" float32 throughput : %9.2f GB/s\n", gigabytes_per_second(4 * size * ITERATIONS, total_time_us)); + printf(" quantized throughput : %9.2f GB/s\n", gigabytes_per_second(q_size * ITERATIONS, total_time_us)); +} + +int main(int argc, char * argv[]) { + quantize_perf_params params {}; + + // read command line + + bool invalid_param = false; + std::string arg; + for (int i = 1; i < argc; i++) { + arg = argv[i]; + + if (arg == "--size") { + if (++i >= argc) { + invalid_param = true; + break; + } + size_t size = std::stoi(argv[i]); + if (size % 32 != 0) { + fprintf(stderr, "error: size %zu not divisible by 32\n", size); + invalid_param = true; + break; + } + params.test_sizes.push_back(size); + } else if (arg == "-3") { + // quick select sizes that probably fit in CPU caches + params.test_sizes.push_back(L1_SIZE); + params.test_sizes.push_back(L2_SIZE); + params.test_sizes.push_back(L3_SIZE); + } else if (arg == "-4") { + // quick select cache sizes + memory + params.test_sizes.push_back(L1_SIZE); + params.test_sizes.push_back(L2_SIZE); + params.test_sizes.push_back(L3_SIZE); + params.test_sizes.push_back(MEM_SIZE); + } else if (arg == "--op") { + if (++i >= argc) { + invalid_param = true; + break; + } + std::string op {argv[i]}; + if (op == "quantize_row_q_reference") { + params.op_quantize_row_q_reference = true; + } else if (op == "quantize_row_q") { + params.op_quantize_row_q = true; + } else if (op == "dequantize_row_q") { + params.op_dequantize_row_q = true; + } else if (op == "quantize_row_q_dot") { + params.op_quantize_row_q_dot = true; + } else if (op == "vec_dot_q") { + params.op_vec_dot_q = true; + } else { + invalid_param = true; + break; + } + } else if (arg == "--type") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.include_types.push_back(argv[i]); + } else if (arg == "--alignment-offset") { + if (++i >= argc) { + invalid_param = true; + break; + } + int alignment = std::stoi(argv[i]); + if (alignment < 0 || alignment > MAX_ALIGNMENT) { + fprintf(stderr, "error: aligment-offset must be less than %d\n", MAX_ALIGNMENT); + invalid_param = true; + break; + } + params.alignment_offset = alignment; + } else { + fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); + return 1; + } + } + if (invalid_param) { + fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); + return 1; + } + + if (params.test_sizes.empty()) { + params.test_sizes.push_back(L1_SIZE); + } + if (!(params.op_quantize_row_q_reference || params.op_quantize_row_q || params.op_dequantize_row_q || params.op_quantize_row_q_dot || params.op_vec_dot_q)) { + params.op_quantize_row_q_reference = params.op_quantize_row_q = params.op_dequantize_row_q = params.op_quantize_row_q_dot = params.op_vec_dot_q = true; + } + + std::sort(params.test_sizes.begin(), params.test_sizes.end()); + size_t largest = params.test_sizes.back(); + + std::vector test_data1_v(largest*4 + MAX_ALIGNMENT*2); + std::vector test_data2_v(largest*4 + MAX_ALIGNMENT*2); + std::vector test_q1_v(largest*4 + MAX_ALIGNMENT*2); + std::vector test_q2_v(largest*4 + MAX_ALIGNMENT*2); + std::vector test_out_v(largest*4 + MAX_ALIGNMENT*2); + + float * test_data1 = (float *) align_with_offset(test_data1_v.data(), params.alignment_offset); + float * test_data2 = (float *) align_with_offset(test_data2_v.data(), params.alignment_offset); + float * test_q1 = (float *) align_with_offset(test_q1_v.data(), params.alignment_offset); + float * test_q2 = (float *) align_with_offset(test_q2_v.data(), params.alignment_offset); + float * test_out = (float *) align_with_offset(test_out_v.data(), params.alignment_offset); + + generate_data(0, largest, test_data1); + generate_data(1, largest, test_data2); + + + // Initialize GGML, ensures float conversion tables are initialized + struct ggml_init_params ggml_params = { + /* .mem_size = */ 1*1024, + /* .mem_buffer = */ NULL, + /* .no_alloc = */ true, + }; + struct ggml_context * ctx = ggml_init(ggml_params); + + for (int i = 0; i < GGML_TYPE_COUNT; i++) { + ggml_type type = (ggml_type) i; + quantize_fns_t qfns = ggml_internal_get_quantize_fn(i); + if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), ggml_type_name(type)) == params.include_types.end()) { + continue; + } + + if (qfns.quantize_row_q && qfns.dequantize_row_q) { + printf("%s\n", ggml_type_name(type)); + + if (params.op_quantize_row_q_reference) { + printf(" quantize_row_q_reference\n"); + for (size_t size : params.test_sizes) { + printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024)); + auto quantize_fn = [&](void ) { + qfns.quantize_row_q_reference(test_data1, test_q1, size); + return test_q1[0]; + }; + size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type); + benchmark_function(size, quantized_size, quantize_fn); + } + printf("\n"); + } + + if (params.op_quantize_row_q) { + printf(" quantize_row_q\n"); + for (size_t size : params.test_sizes) { + printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024)); + auto quantize_fn = [&](void ) { + qfns.quantize_row_q(test_data1, test_q1, size); + return test_q1[0]; + }; + size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type); + benchmark_function(size, quantized_size, quantize_fn); + } + printf("\n"); + } + + if (params.op_dequantize_row_q) { + printf(" dequantize_row_q\n"); + qfns.quantize_row_q(test_data1, test_q1, largest); + for (size_t size : params.test_sizes) { + printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024)); + auto quantize_fn = [&](void ) { + qfns.dequantize_row_q(test_q1, test_out, size); + return test_out[0]; + }; + size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type); + benchmark_function(size, quantized_size, quantize_fn); + } + printf("\n"); + } + + if (params.op_quantize_row_q_dot) { + printf(" quantize_row_q_dot\n"); + for (size_t size : params.test_sizes) { + printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024)); + auto quantize_fn = [&](void ) { + qfns.quantize_row_q_dot(test_data1, test_q1, size); + return test_q1[0]; + }; + size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type); + benchmark_function(size, quantized_size, quantize_fn); + } + printf("\n"); + } + + if (params.op_vec_dot_q) { + printf(" vec_dot_q\n"); + qfns.quantize_row_q(test_data1, test_q1, largest); + qfns.quantize_row_q(test_data2, test_q2, largest); + for (size_t size : params.test_sizes) { + printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024)); + auto quantize_fn = [&](void ) { + float result; + qfns.vec_dot_q(size, &result, test_q1, test_q2); + return result; + }; + size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type); + benchmark_function(size, quantized_size, quantize_fn); + } + printf("\n"); + } + } + } + + ggml_free(ctx); + + return 0; +} diff --git a/tests/test-quantize.c b/tests/test-quantize.c deleted file mode 100644 index 993e9dcc3..000000000 --- a/tests/test-quantize.c +++ /dev/null @@ -1,42 +0,0 @@ -#include "ggml.h" -#undef NDEBUG -#include -#include - -int main(void) { - #define QK 32 - float src[QK]; - uint8_t dst[24]; - int64_t hist[16]; - - for (int i = 0; i < QK; i++) { - src[i] = (float)(i + 1); - } - - size_t size = ggml_quantize_q4_0(src, dst, QK, QK, hist); - assert(size == 20); - float max_result = ((float *)dst)[0]; - float max_expected = src[31] / ((1 << 3) - 1); - assert(max_result == max_expected); - for (int i = 0; i < QK; i++) { - uint8_t q4_result = (i % 2) ? (dst[sizeof(float) + i/2] >> 4) : (dst[sizeof(float) + i/2] & 0xF); - uint8_t q4_expected = roundf(src[i] / max_expected) + 8; - assert(q4_result == q4_expected); - } - - size = ggml_quantize_q4_1(src, dst, QK, QK, hist); - assert(size == 24); - float delta_result = ((float *)dst)[0]; - float delta_expected = (src[31] - src[0]) / ((1 << 4) - 1); - assert(delta_result == delta_expected); - float min_result = ((float *)dst)[1]; - float min_expected = src[0]; - assert(min_result == min_expected); - for (int i = 0; i < QK; i++) { - uint8_t q4_result = (i % 2) ? (dst[sizeof(float)*2 + i/2] >> 4) : (dst[sizeof(float)*2 + i/2] & 0xF); - uint8_t q4_expected = roundf((src[i] - min_expected) / delta_expected); - assert(q4_result == q4_expected); - } - - return 0; -} diff --git a/tests/test-sampling.cpp b/tests/test-sampling.cpp new file mode 100644 index 000000000..7eee4f6d3 --- /dev/null +++ b/tests/test-sampling.cpp @@ -0,0 +1,199 @@ +#include "llama.h" +#include "ggml.h" +#include +#include +#include +#include +#include +#include +#include + + +void dump(const llama_token_data_array * candidates) { + for (size_t i = 0; i < candidates->size; i++) { + printf("%d: %f (%f)\n", candidates->data[i].id, candidates->data[i].p, candidates->data[i].logit); + } +} + +#define DUMP(__candidates) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__candidates)); printf("-\n"); } while(0) + + +void test_top_k(const std::vector & probs, + const std::vector & expected_probs, + int k) { + size_t n_vocab = probs.size(); + std::vector candidates; + candidates.reserve(n_vocab); + for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { + float logit = log(probs[token_id]); + candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); + } + + llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; + llama_sample_softmax(nullptr, &candidates_p); + DUMP(&candidates_p); + llama_sample_top_k(nullptr, &candidates_p, k); + DUMP(&candidates_p); + + assert(candidates_p.size == expected_probs.size()); + for (size_t i = 0; i < candidates_p.size; i++) { + assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-5); + } +} + + +void test_top_p(const std::vector & probs, + const std::vector & expected_probs, + float p) { + + size_t n_vocab = probs.size(); + std::vector candidates; + candidates.reserve(n_vocab); + for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { + float logit = log(probs[token_id]); + candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); + } + + llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; + llama_sample_softmax(nullptr, &candidates_p); + DUMP(&candidates_p); + llama_sample_top_p(nullptr, &candidates_p, p); + DUMP(&candidates_p); + + assert(candidates_p.size == expected_probs.size()); + for (size_t i = 0; i < candidates_p.size; i++) { + assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3); + } +} + + +void test_tfs(const std::vector & probs, + const std::vector & expected_probs, + float z) { + size_t n_vocab = probs.size(); + std::vector candidates; + candidates.reserve(n_vocab); + for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { + float logit = log(probs[token_id]); + candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); + } + + llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; + DUMP(&candidates_p); + llama_sample_tail_free(nullptr, &candidates_p, z); + DUMP(&candidates_p); + + assert(candidates_p.size == expected_probs.size()); + for (size_t i = 0; i < candidates_p.size; i++) { + assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3); + } +} + + +void test_typical(const std::vector & probs, + const std::vector & expected_probs, + float p) { + size_t n_vocab = probs.size(); + std::vector candidates; + candidates.reserve(n_vocab); + for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { + float logit = log(probs[token_id]); + candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); + } + + llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; + DUMP(&candidates_p); + llama_sample_typical(nullptr, &candidates_p, p); + DUMP(&candidates_p); + + assert(candidates_p.size == expected_probs.size()); + for (size_t i = 0; i < candidates_p.size; i++) { + assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3); + } +} + + +void test_repetition_penalty( + const std::vector & probs, + const std::vector & last_tokens, + const std::vector & expected_probs, + float penalty) { + assert(probs.size() == expected_probs.size()); + + size_t n_vocab = probs.size(); + std::vector candidates; + candidates.reserve(n_vocab); + for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { + float logit = log(probs[token_id]); + candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); + } + + llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; + llama_sample_softmax(nullptr, &candidates_p); + DUMP(&candidates_p); + llama_sample_repetition_penalty(nullptr, &candidates_p, (llama_token *)last_tokens.data(), last_tokens.size(), penalty); + llama_sample_softmax(nullptr, &candidates_p); + DUMP(&candidates_p); + + assert(candidates_p.size == expected_probs.size()); + for (size_t i = 0; i < candidates_p.size; i++) { + assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-6); + } +} + + +void test_frequency_presence_penalty( + const std::vector & probs, + const std::vector & last_tokens, + const std::vector & expected_probs, + float alpha_frequency, float alpha_presence) { + assert(probs.size() == expected_probs.size()); + + size_t n_vocab = probs.size(); + std::vector candidates; + candidates.reserve(n_vocab); + for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { + float logit = log(probs[token_id]); + candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); + } + + llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; + llama_sample_softmax(nullptr, &candidates_p); + // DUMP(&candidates_p); + llama_sample_frequency_and_presence_penalties(nullptr, &candidates_p, (llama_token *)last_tokens.data(), last_tokens.size(), alpha_frequency, alpha_presence); + llama_sample_softmax(nullptr, &candidates_p); + // DUMP(&candidates_p); + + assert(candidates_p.size == expected_probs.size()); + for (size_t i = 0; i < candidates_p.size; i++) { + assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3); + } +} + +int main(void) { + ggml_time_init(); + + test_top_k({0.1, 0.2, 0.3, 0.4}, {0.4}, 1); + test_top_k({0.1, 0.2, 0.3, 0.4}, {0.4, 0.3, 0.2}, 3); + + test_top_p({0.1, 0.2, 0.3, 0.4}, {0.4}, 0); + test_top_p({0.1, 0.2, 0.3, 0.4}, {0.4, 0.3}, 0.7); + test_top_p({0.1, 0.2, 0.3, 0.4}, {0.4, 0.3, 0.2, 0.1}, 1); + + test_tfs({0.1, 0.15, 0.2, 0.25, 0.3}, {0.3}, 0.25); + test_tfs({0.1, 0.15, 0.2, 0.25, 0.3}, {0.3, 0.25}, 0.75); + test_tfs({0.1, 0.15, 0.2, 0.25, 0.3}, {0.3, 0.25}, 0.99); + + test_typical({0.97, 0.01, 0.01, 0.01}, {0.97}, 0.5); + test_typical({0.4, 0.2, 0.2, 0.2}, {0.2, 0.2, 0.2}, 0.5); + + test_repetition_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0}, {0.25, 0.25, 0.25, 0.25, 0}, 50.0); + test_repetition_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0, 1, 2}, {0.5, 0.5, 0, 0, 0}, 50.0); + test_repetition_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0, 1, 2, 0, 0}, {0.5, 0.5, 0, 0, 0}, 50.0); + + test_frequency_presence_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0}, {0.249997, 0.249997, 0.249997, 0.249997, 0.000011}, 5.0, 5.0); + test_frequency_presence_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0, 1, 2}, {0.499966, 0.499966, 0.000023, 0.000023, 0.000023}, 5.0, 5.0); + test_frequency_presence_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0, 1, 2, 0, 0}, {0.499977, 0.499977, 0.000023, 0.000023, 0.000000}, 5.0, 5.0); + + printf("OK\n"); +}