mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-27 03:44:35 +00:00
imatrix : allow processing multiple chunks per batch
* perplexity : simplify filling the batch
This commit is contained in:
parent
90db8146d5
commit
bce54642c8
@ -432,10 +432,9 @@ static void process_logits(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static bool compute_imatrix(llama_context * ctx, const gpt_params & params) {
|
static bool compute_imatrix(llama_context * ctx, const gpt_params & params, const int32_t n_ctx) {
|
||||||
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
|
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
|
||||||
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
|
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
|
||||||
const int n_ctx = llama_n_ctx(ctx);
|
|
||||||
|
|
||||||
auto tim1 = std::chrono::high_resolution_clock::now();
|
auto tim1 = std::chrono::high_resolution_clock::now();
|
||||||
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
||||||
@ -479,22 +478,28 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params) {
|
|||||||
double nll = 0.0;
|
double nll = 0.0;
|
||||||
double nll2 = 0.0;
|
double nll2 = 0.0;
|
||||||
|
|
||||||
fprintf(stderr, "%s: computing over %d chunks with batch_size %d\n", __func__, n_chunk, n_batch);
|
|
||||||
|
|
||||||
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
|
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
|
||||||
|
|
||||||
const int num_batches = (n_ctx + n_batch - 1) / n_batch;
|
const int num_batches = (n_ctx + n_batch - 1) / n_batch;
|
||||||
|
const int n_seq = std::max(1, n_batch / n_ctx);
|
||||||
|
|
||||||
|
GGML_ASSERT(n_batch < n_ctx || n_batch % n_ctx == 0);
|
||||||
|
GGML_ASSERT(params.n_ctx == n_seq * n_ctx);
|
||||||
|
|
||||||
|
llama_batch batch = llama_batch_init(std::min(n_batch, n_ctx*n_seq), 0, 1);
|
||||||
|
|
||||||
std::vector<float> logits;
|
std::vector<float> logits;
|
||||||
if (params.compute_ppl && num_batches > 1) {
|
if (params.compute_ppl && num_batches > 1) {
|
||||||
logits.reserve((size_t)n_ctx * n_vocab);
|
logits.reserve((size_t)n_ctx * n_vocab);
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int i = 0; i < n_chunk; ++i) {
|
fprintf(stderr, "%s: computing over %d chunks, n_ctx=%d, batch_size=%d, n_seq=%d\n", __func__, n_chunk, n_ctx, n_batch, n_seq);
|
||||||
|
|
||||||
|
for (int i = 0; i < n_chunk; i += n_seq) {
|
||||||
const int start = i * n_ctx;
|
const int start = i * n_ctx;
|
||||||
const int end = start + n_ctx;
|
const int end = start + n_ctx;
|
||||||
|
|
||||||
std::vector<float> logits;
|
const int n_seq_batch = std::min(n_seq, n_chunk - i);
|
||||||
|
|
||||||
const auto t_start = std::chrono::high_resolution_clock::now();
|
const auto t_start = std::chrono::high_resolution_clock::now();
|
||||||
|
|
||||||
@ -505,35 +510,50 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params) {
|
|||||||
const int batch_start = start + j * n_batch;
|
const int batch_start = start + j * n_batch;
|
||||||
const int batch_size = std::min(end - batch_start, n_batch);
|
const int batch_size = std::min(end - batch_start, n_batch);
|
||||||
|
|
||||||
// save original token and restore it after eval
|
// clear the batch
|
||||||
const auto token_org = tokens[batch_start];
|
llama_batch_clear(batch);
|
||||||
|
|
||||||
// add BOS token for the first batch of each chunk
|
for (int seq = 0; seq < n_seq_batch; seq++) {
|
||||||
if (add_bos && j == 0) {
|
int seq_start = batch_start + seq*n_ctx;
|
||||||
tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
|
|
||||||
|
// save original token and restore it after eval
|
||||||
|
const auto token_org = tokens[seq_start];
|
||||||
|
|
||||||
|
// add BOS token for the first batch of each chunk
|
||||||
|
if (add_bos && j == 0) {
|
||||||
|
tokens[seq_start] = llama_token_bos(llama_get_model(ctx));
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int k = 0; k < batch_size; ++k) {
|
||||||
|
// NOTE: specifying all logits to get activations for the output.weight tensor
|
||||||
|
// and also for the perplexity calculation.
|
||||||
|
// TODO: only get outputs when (params.process_output || params.compute_ppl)
|
||||||
|
// (not possible when this skips FFN computation of the last layer)
|
||||||
|
llama_batch_add(batch, tokens[seq_start + k], j*n_batch + k, { seq }, true);
|
||||||
|
}
|
||||||
|
|
||||||
|
// restore the original token in case it was set to BOS
|
||||||
|
tokens[seq_start] = token_org;
|
||||||
}
|
}
|
||||||
|
|
||||||
// TODO: use batch.logits to save computations instead of relying on logits_all == true
|
if (llama_decode(ctx, batch)) {
|
||||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
|
|
||||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
// restore the original token in case it was set to BOS
|
|
||||||
tokens[batch_start] = token_org;
|
|
||||||
|
|
||||||
if (params.compute_ppl && num_batches > 1) {
|
if (params.compute_ppl && num_batches > 1) {
|
||||||
const auto * batch_logits = llama_get_logits(ctx);
|
const auto * batch_logits = llama_get_logits(ctx);
|
||||||
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
|
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
const auto t_end = std::chrono::high_resolution_clock::now();
|
|
||||||
|
|
||||||
if (i == 0) {
|
if (i == 0) {
|
||||||
|
llama_synchronize(ctx);
|
||||||
|
const auto t_end = std::chrono::high_resolution_clock::now();
|
||||||
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
|
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
|
||||||
fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
|
fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
|
||||||
int total_seconds = (int)(t_total * n_chunk);
|
int total_seconds = (int)(t_total*n_chunk/n_seq);
|
||||||
if (total_seconds >= 60*60) {
|
if (total_seconds >= 60*60) {
|
||||||
fprintf(stderr, "%d hours ", total_seconds / (60*60));
|
fprintf(stderr, "%d hours ", total_seconds / (60*60));
|
||||||
total_seconds = total_seconds % (60*60);
|
total_seconds = total_seconds % (60*60);
|
||||||
@ -543,12 +563,21 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params) {
|
|||||||
|
|
||||||
if (params.compute_ppl) {
|
if (params.compute_ppl) {
|
||||||
const int first = n_ctx/2;
|
const int first = n_ctx/2;
|
||||||
const auto all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
|
for (int seq = 0; seq < n_seq_batch; seq++) {
|
||||||
process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
|
const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits_ith(ctx, seq*n_ctx + first);
|
||||||
workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
|
|
||||||
count += n_ctx - first - 1;
|
|
||||||
|
|
||||||
printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
|
llama_token * tokens_data = tokens.data() + start + seq*n_ctx + first;
|
||||||
|
|
||||||
|
process_logits(n_vocab, all_logits + first*n_vocab,
|
||||||
|
tokens_data, n_ctx - 1 - first,
|
||||||
|
workers, nll, nll2,
|
||||||
|
logit_history.data() + start + seq*n_ctx + first,
|
||||||
|
prob_history.data() + start + seq*n_ctx + first);
|
||||||
|
|
||||||
|
count += n_ctx - first - 1;
|
||||||
|
|
||||||
|
printf("[%d]%.4lf,", i + seq + 1, std::exp(nll / count));
|
||||||
|
}
|
||||||
fflush(stdout);
|
fflush(stdout);
|
||||||
|
|
||||||
logits.clear();
|
logits.clear();
|
||||||
@ -584,7 +613,22 @@ int main(int argc, char ** argv) {
|
|||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
params.n_batch = std::min(params.n_batch, params.n_ctx);
|
const int32_t n_ctx = params.n_ctx;
|
||||||
|
|
||||||
|
if (n_ctx <= 0) {
|
||||||
|
fprintf(stderr, "%s: imatrix tool requires '--ctx-size' > 0\n", __func__);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
{
|
||||||
|
const int32_t n_seq = std::max(1, params.n_batch / n_ctx);
|
||||||
|
const int32_t n_kv = n_seq * n_ctx;
|
||||||
|
|
||||||
|
params.n_parallel = n_seq;
|
||||||
|
params.n_ctx = n_kv;
|
||||||
|
|
||||||
|
params.n_batch = std::min(params.n_batch, n_kv);
|
||||||
|
}
|
||||||
|
|
||||||
g_collector.set_params(params);
|
g_collector.set_params(params);
|
||||||
|
|
||||||
@ -632,7 +676,7 @@ int main(int argc, char ** argv) {
|
|||||||
fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
|
fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
|
||||||
}
|
}
|
||||||
|
|
||||||
if (!compute_imatrix(ctx, params)) {
|
if (!compute_imatrix(ctx, params, n_ctx)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -583,7 +583,9 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
|||||||
|
|
||||||
int n_outputs = 0;
|
int n_outputs = 0;
|
||||||
|
|
||||||
batch.n_tokens = 0;
|
// clear the batch
|
||||||
|
llama_batch_clear(batch);
|
||||||
|
|
||||||
for (int seq = 0; seq < n_seq_batch; seq++) {
|
for (int seq = 0; seq < n_seq_batch; seq++) {
|
||||||
int seq_start = batch_start + seq*n_ctx;
|
int seq_start = batch_start + seq*n_ctx;
|
||||||
|
|
||||||
@ -596,16 +598,10 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
|||||||
}
|
}
|
||||||
|
|
||||||
for (int k = 0; k < batch_size; ++k) {
|
for (int k = 0; k < batch_size; ++k) {
|
||||||
const int idx = seq*n_ctx + k;
|
llama_pos pos = j*n_batch + k;
|
||||||
batch.token [idx] = tokens[seq_start + k];
|
llama_batch_add(batch, tokens[seq_start + k], pos, { seq }, pos >= first);
|
||||||
batch.pos [idx] = j*n_batch + k;
|
n_outputs += (int) (pos >= first);
|
||||||
batch.n_seq_id[idx] = 1;
|
|
||||||
batch.seq_id [idx][0] = seq;
|
|
||||||
batch.logits [idx] = batch.pos[idx] >= first ? 1 : 0;
|
|
||||||
|
|
||||||
n_outputs += batch.logits[idx] != 0;
|
|
||||||
}
|
}
|
||||||
batch.n_tokens += batch_size;
|
|
||||||
|
|
||||||
// restore the original token in case it was set to BOS
|
// restore the original token in case it was set to BOS
|
||||||
tokens[seq_start] = token_org;
|
tokens[seq_start] = token_org;
|
||||||
|
Loading…
Reference in New Issue
Block a user