llama : allow quantizing k-quants to fall back when tensor size incompatible (#3747)

* Allow quantizing k-quants to fall back when tensor size incompatible

* quantizing: Add warning when tensors were incompatible with k-quants

Clean up k-quants state passing a bit
This commit is contained in:
Kerfuffle 2023-10-28 05:54:24 -06:00 committed by GitHub
parent ee1a0ec9cb
commit bd6d9e2059
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

108
llama.cpp
View File

@ -8049,6 +8049,24 @@ struct no_init {
no_init() { /* do nothing */ }
};
struct quantize_state_internal {
const llama_model & model;
const llama_model_quantize_params * params;
#ifdef GGML_USE_K_QUANTS
int n_attention_wv = 0;
int n_feed_forward_w2 = 0;
int i_attention_wv = 0;
int i_feed_forward_w2 = 0;
int n_k_quantized = 0;
int n_fallback = 0;
#endif
quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
: model(model)
, params(params)
{}
};
static void llama_convert_tensor_internal(
struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
const size_t nelements, const int nthread
@ -8109,12 +8127,13 @@ static void llama_convert_tensor_internal(
#ifdef GGML_USE_K_QUANTS
static ggml_type get_k_quant_type(
ggml_type new_type, const ggml_tensor * tensor, const llama_model & model, llama_ftype ftype, int * i_attention_wv,
int n_attention_wv, int * i_feed_forward_w2, int n_feed_forward_w2
quantize_state_internal & qs,
ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype
) {
const std::string name = ggml_get_name(tensor);
// TODO: avoid hardcoded tensor names - use the TN_* constants
const auto tn = LLM_TN(model.arch);
const llm_arch arch = qs.model.arch;
const auto tn = LLM_TN(arch);
auto use_more_bits = [](int i_layer, int num_layers) -> bool {
return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
@ -8122,7 +8141,7 @@ static ggml_type get_k_quant_type(
if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
int nx = tensor->ne[0];
if (model.arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
new_type = GGML_TYPE_Q8_0;
}
else if (new_type != GGML_TYPE_Q8_0) {
@ -8131,46 +8150,46 @@ static ggml_type get_k_quant_type(
} else if (name.find("attn_v.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
new_type = *i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
use_more_bits(*i_attention_wv, n_attention_wv)) new_type = GGML_TYPE_Q6_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && *i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
(*i_attention_wv < n_attention_wv/8 || *i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
if (model.type == MODEL_70B) {
(qs.i_attention_wv < qs.n_attention_wv/8 || qs.i_attention_wv >= 7*qs.n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
if (qs.model.type == MODEL_70B) {
// In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
// 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
// nearly negligible increase in model size by quantizing this tensor with more bits:
if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
}
++*i_attention_wv;
++qs.i_attention_wv;
} else if (name.find("ffn_down.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
new_type = *i_feed_forward_w2 < 2 ? GGML_TYPE_Q5_K
: model.arch != LLM_ARCH_FALCON || use_more_bits(*i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q4_K
new_type = qs.i_feed_forward_w2 < 2 ? GGML_TYPE_Q5_K
: arch != LLM_ARCH_FALCON || use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2) ? GGML_TYPE_Q4_K
: GGML_TYPE_Q3_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
new_type = model.arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
if (model.arch == LLM_ARCH_FALCON) {
new_type = *i_feed_forward_w2 < 2 ? GGML_TYPE_Q6_K :
use_more_bits(*i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
if (arch == LLM_ARCH_FALCON) {
new_type = qs.i_feed_forward_w2 < 2 ? GGML_TYPE_Q6_K :
use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
} else {
if (use_more_bits(*i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
if (use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
}
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(*i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && model.arch != LLM_ARCH_FALCON && *i_feed_forward_w2 < 4) {
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && qs.i_feed_forward_w2 < 4) {
new_type = GGML_TYPE_Q5_K;
}
++*i_feed_forward_w2;
++qs.i_feed_forward_w2;
} else if (name.find("attn_output.weight") != std::string::npos) {
if (model.arch != LLM_ARCH_FALCON) {
if (arch != LLM_ARCH_FALCON) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
@ -8197,20 +8216,23 @@ static ggml_type get_k_quant_type(
int nx = tensor->ne[0];
int ny = tensor->ne[1];
if (nx % QK_K != 0) {
LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for k-quants\n", __func__, nx, ny, QK_K);
LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
convert_incompatible_tensor = true;
} else {
++qs.n_k_quantized;
}
}
if (convert_incompatible_tensor) {
if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing.
LLAMA_LOG_WARN("F16 will be used for this tensor instead.\n");
} else if (name == tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing.
LLAMA_LOG_WARN("Q4_0 will be used for this tensor instead.\n");
} else {
throw std::runtime_error("Unsupported tensor size encountered\n");
switch (new_type) {
case GGML_TYPE_Q2_K: new_type = GGML_TYPE_Q4_0; break;
case GGML_TYPE_Q3_K: new_type = GGML_TYPE_Q4_1; break;
case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
}
LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
++qs.n_fallback;
}
return new_type;
@ -8268,6 +8290,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
llm_load_arch(ml, model);
llm_load_hparams(ml, model);
struct quantize_state_internal qs(model, params);
if (params->only_copy) {
ftype = model.ftype;
}
@ -8281,9 +8305,6 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
gguf_set_val_u32(ctx_out, "general.file_type", ftype);
#ifdef GGML_USE_K_QUANTS
int n_attention_wv = 0;
int n_feed_forward_w2 = 0;
for (int i = 0; i < ml.n_tensors; ++i) {
struct ggml_tensor * meta = ml.get_tensor_meta(i);
@ -8291,19 +8312,16 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
// TODO: avoid hardcoded tensor names - use the TN_* constants
if (name.find("attn_v.weight") != std::string::npos || name.find("attn_qkv.weight") != std::string::npos) {
++n_attention_wv;
++qs.n_attention_wv;
}
else if (name.find("ffn_down.weight") != std::string::npos) {
++n_feed_forward_w2;
++qs.n_feed_forward_w2;
}
}
if (n_attention_wv != n_feed_forward_w2 || (uint32_t)n_attention_wv != model.hparams.n_layer) {
if (qs.n_attention_wv != qs.n_feed_forward_w2 || (uint32_t)qs.n_attention_wv != model.hparams.n_layer) {
LLAMA_LOG_WARN("%s ============ Strange model: n_attention_wv = %d, n_feed_forward_w2 = %d, hparams.n_layer = %d\n",
__func__, n_attention_wv, n_feed_forward_w2, model.hparams.n_layer);
__func__, qs.n_attention_wv, qs.n_feed_forward_w2, model.hparams.n_layer);
}
int i_attention_wv = 0;
int i_feed_forward_w2 = 0;
#endif
size_t total_size_org = 0;
@ -8370,9 +8388,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
if (quantize) {
new_type = quantized_type;
#ifdef GGML_USE_K_QUANTS
new_type = get_k_quant_type(
new_type, tensor, model, ftype, &i_attention_wv, n_attention_wv, &i_feed_forward_w2, n_feed_forward_w2
);
new_type = get_k_quant_type(qs, new_type, tensor, ftype);
#endif
// If we've decided to quantize to the same type the tensor is already
// in then there's nothing to do.
@ -8498,6 +8514,12 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
LLAMA_LOG_INFO("\n");
}
}
#ifdef GGML_USE_K_QUANTS
if (qs.n_fallback > 0) {
LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) incompatible with k-quants and required fallback quantization\n",
__func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
}
#endif
}
static int llama_apply_lora_from_file_internal(