mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-24 10:24:35 +00:00
Vulkan MMQ Fix (#8479)
* Fix incoherence by adding missing LOAD_VEC_A parameter * Fix Vulkan op result checker build error
This commit is contained in:
parent
090fca7a07
commit
bda62d7999
@ -6561,7 +6561,7 @@ static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tenso
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||
|
||||
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
|
||||
ggml_vk_buffer_read(ctx, buffer_gpu, extra->offset + tensor->view_offs, tensor_data, tensor_size);
|
||||
ggml_vk_buffer_read(buffer_gpu, extra->offset + tensor->view_offs, tensor_data, tensor_size);
|
||||
}
|
||||
|
||||
std::cerr << "TENSOR CHECK " << name << " (" << tensor->name << "): " << ggml_op_name(tensor->op) << std::endl;
|
||||
@ -6645,7 +6645,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor *
|
||||
for (int i3 = 0; i3 < src0->ne[3]; i3++) {
|
||||
for (int i2 = 0; i2 < src0->ne[2]; i2++) {
|
||||
const int idx = i3*src0->ne[2] + i2;
|
||||
ggml_vk_buffer_read(ctx, buffer_gpu, offset + idx * src0->nb[2], ((char *)src0_clone->data + idx * src0_clone->nb[2]), src0->ne[1] * src0->nb[1]);
|
||||
ggml_vk_buffer_read(buffer_gpu, offset + idx * src0->nb[2], ((char *)src0_clone->data + idx * src0_clone->nb[2]), src0->ne[1] * src0->nb[1]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -6658,7 +6658,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor *
|
||||
if (offset + src0_size >= buffer_gpu->size) {
|
||||
src0_size = buffer_gpu->size - offset;
|
||||
}
|
||||
ggml_vk_buffer_read(ctx, buffer_gpu, offset, src0_clone->data, src0_size);
|
||||
ggml_vk_buffer_read(buffer_gpu, offset, src0_clone->data, src0_size);
|
||||
memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
||||
}
|
||||
} else {
|
||||
@ -6687,7 +6687,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor *
|
||||
for (int i3 = 0; i3 < src1->ne[3]; i3++) {
|
||||
for (int i2 = 0; i2 < src1->ne[2]; i2++) {
|
||||
const int idx = i3*src1->ne[2] + i2;
|
||||
ggml_vk_buffer_read(ctx, buffer_gpu, offset + idx * src1->nb[2], ((char *)src1_clone->data + idx * src1_clone->nb[2]), src1->ne[1] * src1->nb[1]);
|
||||
ggml_vk_buffer_read(buffer_gpu, offset + idx * src1->nb[2], ((char *)src1_clone->data + idx * src1_clone->nb[2]), src1->ne[1] * src1->nb[1]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -6700,7 +6700,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor *
|
||||
if (offset + src1_size >= buffer_gpu->size) {
|
||||
src1_size = buffer_gpu->size - offset;
|
||||
}
|
||||
ggml_vk_buffer_read(ctx, buffer_gpu, offset, src1_clone->data, src1_size);
|
||||
ggml_vk_buffer_read(buffer_gpu, offset, src1_clone->data, src1_size);
|
||||
memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
||||
}
|
||||
} else {
|
||||
@ -6745,7 +6745,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor *
|
||||
for (int i3 = 0; i3 < src2->ne[3]; i3++) {
|
||||
for (int i2 = 0; i2 < src2->ne[2]; i2++) {
|
||||
const int idx = i3*src2->ne[2] + i2;
|
||||
ggml_vk_buffer_read(ctx, buffer_gpu, offset + idx * src2->nb[2], ((char *)src2_clone->data + idx * src2_clone->nb[2]), src2->ne[1] * src2->nb[1]);
|
||||
ggml_vk_buffer_read(buffer_gpu, offset + idx * src2->nb[2], ((char *)src2_clone->data + idx * src2_clone->nb[2]), src2->ne[1] * src2->nb[1]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -6758,7 +6758,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor *
|
||||
if (offset + src2_size >= buffer_gpu->size) {
|
||||
src2_size = buffer_gpu->size - offset;
|
||||
}
|
||||
ggml_vk_buffer_read(ctx, buffer_gpu, offset, src2_clone->data, src2_size);
|
||||
ggml_vk_buffer_read(buffer_gpu, offset, src2_clone->data, src2_size);
|
||||
memcpy(src2_clone->nb, src2->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
||||
}
|
||||
} else {
|
||||
@ -6922,7 +6922,7 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_tensor *
|
||||
tensor_size = buffer_gpu->size - (extra->offset + tensor->view_offs);
|
||||
}
|
||||
|
||||
ggml_vk_buffer_read(ctx, buffer_gpu, extra->offset + tensor->view_offs, tensor_data, tensor_size);
|
||||
ggml_vk_buffer_read(buffer_gpu, extra->offset + tensor->view_offs, tensor_data, tensor_size);
|
||||
}
|
||||
|
||||
float first_error_result = -1.0f;
|
||||
|
@ -270,10 +270,10 @@ void matmul_shaders(std::vector<std::future<void>>& tasks, bool fp16, bool matmu
|
||||
std::string data_a_key = "DATA_A_" + to_uppercase(tname);
|
||||
std::string load_vec_a = (tname == "f32" || tname == "f16") ? load_vec : "2";
|
||||
tasks.push_back(std::async(std::launch::async, [=] {
|
||||
string_to_spv(shader_name + "_" + tname + "_f32", "mul_mm.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}), fp16);
|
||||
string_to_spv(shader_name + "_" + tname + "_f32", "mul_mm.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}), fp16);
|
||||
}));
|
||||
tasks.push_back(std::async(std::launch::async, [=] {
|
||||
string_to_spv(shader_name + "_" + tname + "_f32_aligned", "mul_mm.comp", merge_maps(base_dict, {{data_a_key, "2"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f32}, {"D_TYPE", "float"}}), fp16);
|
||||
string_to_spv(shader_name + "_" + tname + "_f32_aligned", "mul_mm.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f32}, {"D_TYPE", "float"}}), fp16);
|
||||
}));
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user