mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-27 03:44:35 +00:00
refact : fix convert script + zero out KV cache to avoid nans
This commit is contained in:
parent
0e797c2fc5
commit
bdbe11719d
@ -17,33 +17,6 @@ if "NO_LOCAL_GGUF" not in os.environ:
|
|||||||
sys.path.insert(1, str(Path(__file__).parent / "gguf-py" / "gguf"))
|
sys.path.insert(1, str(Path(__file__).parent / "gguf-py" / "gguf"))
|
||||||
import gguf
|
import gguf
|
||||||
|
|
||||||
|
|
||||||
def bytes_to_unicode():
|
|
||||||
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
|
||||||
"""
|
|
||||||
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
|
||||||
The reversible bpe codes work on unicode strings.
|
|
||||||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
|
||||||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
|
||||||
This is a significant percentage of your normal, say, 32K bpe vocab.
|
|
||||||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
|
||||||
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
|
||||||
"""
|
|
||||||
bs = (
|
|
||||||
list(range(ord("!"), ord("~") + 1))
|
|
||||||
+ list(range(ord("¡"), ord("¬") + 1))
|
|
||||||
+ list(range(ord("®"), ord("ÿ") + 1))
|
|
||||||
)
|
|
||||||
cs = bs[:]
|
|
||||||
n = 0
|
|
||||||
for b in range(2**8):
|
|
||||||
if b not in bs:
|
|
||||||
bs.append(b)
|
|
||||||
cs.append(2**8 + n)
|
|
||||||
n += 1
|
|
||||||
return dict(zip(bs, (chr(n) for n in cs)))
|
|
||||||
|
|
||||||
|
|
||||||
def count_model_parts(dir_model: Path) -> int:
|
def count_model_parts(dir_model: Path) -> int:
|
||||||
num_parts = 0
|
num_parts = 0
|
||||||
for filename in os.listdir(dir_model):
|
for filename in os.listdir(dir_model):
|
||||||
@ -153,53 +126,25 @@ tokens: list[bytearray] = []
|
|||||||
scores: list[float] = []
|
scores: list[float] = []
|
||||||
toktypes: list[int] = []
|
toktypes: list[int] = []
|
||||||
|
|
||||||
tokenizer_json_file = dir_model / "tokenizer.json"
|
|
||||||
if not tokenizer_json_file.is_file():
|
|
||||||
print(f"Error: Missing {tokenizer_json_file}", file=sys.stderr)
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
# gpt2 tokenizer
|
# gpt2 tokenizer
|
||||||
gguf_writer.add_tokenizer_model("gpt2")
|
gguf_writer.add_tokenizer_model("gpt2")
|
||||||
|
|
||||||
with open(tokenizer_json_file, "r", encoding="utf-8") as f:
|
|
||||||
tokenizer_json = json.load(f)
|
|
||||||
|
|
||||||
print("gguf: get gpt2 tokenizer vocab")
|
print("gguf: get gpt2 tokenizer vocab")
|
||||||
|
|
||||||
|
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||||||
|
|
||||||
# The number of tokens in tokenizer.json can differ from the expected vocab size.
|
# The number of tokens in tokenizer.json can differ from the expected vocab size.
|
||||||
# This causes downstream issues with mismatched tensor sizes when running the inference
|
# This causes downstream issues with mismatched tensor sizes when running the inference
|
||||||
vocab_size = (
|
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
|
||||||
hparams["vocab_size"]
|
assert max(tokenizer.vocab.values()) < vocab_size
|
||||||
if "vocab_size" in hparams
|
|
||||||
else len(tokenizer_json["model"]["vocab"])
|
|
||||||
)
|
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
|
|
||||||
|
|
||||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
||||||
byte_encoder = bytes_to_unicode()
|
|
||||||
byte_decoder = {v: k for k, v in byte_encoder.items()}
|
|
||||||
|
|
||||||
for i in range(vocab_size):
|
for i in range(vocab_size):
|
||||||
if i in reverse_vocab:
|
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
|
||||||
text = reverse_vocab[i]
|
scores.append(0.0) # dummy
|
||||||
try:
|
toktypes.append(gguf.TokenType.NORMAL)
|
||||||
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
|
|
||||||
except KeyError:
|
|
||||||
text = bytearray()
|
|
||||||
for c in reverse_vocab[i]:
|
|
||||||
if ord(c) < 256: # single byte character
|
|
||||||
text.append(byte_decoder[ord(c)])
|
|
||||||
else: # multibyte special token character
|
|
||||||
text.extend(c.encode("utf-8"))
|
|
||||||
else:
|
|
||||||
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
|
|
||||||
pad_token = f"[PAD{i}]".encode("utf8")
|
|
||||||
text = bytearray(pad_token)
|
|
||||||
|
|
||||||
tokens.append(text)
|
|
||||||
scores.append(0.0) # dymmy
|
|
||||||
toktypes.append(gguf.TokenType.NORMAL) # dummy
|
|
||||||
|
|
||||||
gguf_writer.add_token_list(tokens)
|
gguf_writer.add_token_list(tokens)
|
||||||
gguf_writer.add_token_scores(scores)
|
gguf_writer.add_token_scores(scores)
|
||||||
|
@ -167,7 +167,7 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
// the max batch size is as large as the context to handle cases where we get very long input prompt from multiple
|
// the max batch size is as large as the context to handle cases where we get very long input prompt from multiple
|
||||||
// users. regardless of the size, the main loop will chunk the batch into a maximum of params.n_batch tokens at a time
|
// users. regardless of the size, the main loop will chunk the batch into a maximum of params.n_batch tokens at a time
|
||||||
llama_batch batch = llama_batch_init(params.n_ctx, 0);
|
llama_batch batch = llama_batch_init(n_ctx, 0);
|
||||||
|
|
||||||
int32_t n_total_prompt = 0;
|
int32_t n_total_prompt = 0;
|
||||||
int32_t n_total_gen = 0;
|
int32_t n_total_gen = 0;
|
||||||
|
27
ggml.c
27
ggml.c
@ -3923,6 +3923,8 @@ inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float *
|
|||||||
|
|
||||||
// Sigmoid Linear Unit (SiLU) function
|
// Sigmoid Linear Unit (SiLU) function
|
||||||
inline static float ggml_silu_f32(float x) {
|
inline static float ggml_silu_f32(float x) {
|
||||||
|
if (x == -INFINITY) return 0.0f;
|
||||||
|
|
||||||
return x/(1.0f + expf(-x));
|
return x/(1.0f + expf(-x));
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -13089,17 +13091,17 @@ static void ggml_compute_forward_alibi_f32(
|
|||||||
|
|
||||||
assert(n_past >= 0);
|
assert(n_past >= 0);
|
||||||
|
|
||||||
const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
|
const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
|
||||||
const int ne1 = src0->ne[1]; // seq_len_without_past
|
const int64_t ne1 = src0->ne[1]; // seq_len_without_past
|
||||||
const int ne2 = src0->ne[2]; // n_head -> this is k
|
const int64_t ne2 = src0->ne[2]; // n_head -> this is k
|
||||||
//const int ne3 = src0->ne[3]; // 1 -> bsz
|
//const int64_t ne3 = src0->ne[3]; // 1 -> bsz
|
||||||
|
|
||||||
const int n = ggml_nrows(src0);
|
const int64_t n = ggml_nrows(src0);
|
||||||
const int ne2_ne3 = n/ne1; // ne2*ne3
|
const int64_t ne2_ne3 = n/ne1; // ne2*ne3
|
||||||
|
|
||||||
const int nb0 = src0->nb[0];
|
const size_t nb0 = src0->nb[0];
|
||||||
const int nb1 = src0->nb[1];
|
const size_t nb1 = src0->nb[1];
|
||||||
const int nb2 = src0->nb[2];
|
const size_t nb2 = src0->nb[2];
|
||||||
//const int nb3 = src0->nb[3];
|
//const int nb3 = src0->nb[3];
|
||||||
|
|
||||||
GGML_ASSERT(nb0 == sizeof(float));
|
GGML_ASSERT(nb0 == sizeof(float));
|
||||||
@ -13111,9 +13113,9 @@ static void ggml_compute_forward_alibi_f32(
|
|||||||
const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
|
const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
|
||||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
|
||||||
|
|
||||||
for (int i = 0; i < ne0; i++) {
|
for (int64_t i = 0; i < ne0; i++) {
|
||||||
for (int j = 0; j < ne1; j++) {
|
for (int64_t j = 0; j < ne1; j++) {
|
||||||
for (int k = 0; k < ne2_ne3; k++) {
|
for (int64_t k = 0; k < ne2_ne3; k++) {
|
||||||
float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
|
float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
|
||||||
float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
|
float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
|
||||||
|
|
||||||
@ -13128,7 +13130,6 @@ static void ggml_compute_forward_alibi_f32(
|
|||||||
}
|
}
|
||||||
|
|
||||||
pdst[0] = i * m_k + src[0];
|
pdst[0] = i * m_k + src[0];
|
||||||
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -1325,7 +1325,11 @@ static bool llama_kv_cache_init(
|
|||||||
cache.cells.clear();
|
cache.cells.clear();
|
||||||
cache.cells.resize(n_ctx);
|
cache.cells.resize(n_ctx);
|
||||||
|
|
||||||
|
// TODO: this should be:
|
||||||
|
// cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*ggml_tensor_overhead());
|
||||||
|
// change it and test that it works
|
||||||
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
|
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
|
||||||
|
memset(cache.buf.data, 0, cache.buf.size);
|
||||||
|
|
||||||
struct ggml_init_params params;
|
struct ggml_init_params params;
|
||||||
params.mem_size = cache.buf.size;
|
params.mem_size = cache.buf.size;
|
||||||
|
Loading…
Reference in New Issue
Block a user