mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 19:50:17 +00:00
Reorganize documentation pages (#8325)
* re-organize docs * add link among docs * add link to build docs * fix style * de-duplicate sections
This commit is contained in:
parent
7ed03b8974
commit
be20e7f49d
1
.gitignore
vendored
1
.gitignore
vendored
@ -47,6 +47,7 @@ build*
|
|||||||
!build-info.cpp.in
|
!build-info.cpp.in
|
||||||
!build-info.sh
|
!build-info.sh
|
||||||
!build.zig
|
!build.zig
|
||||||
|
!docs/build.md
|
||||||
/libllama.so
|
/libllama.so
|
||||||
/llama-*
|
/llama-*
|
||||||
android-ndk-*
|
android-ndk-*
|
||||||
|
676
README.md
676
README.md
@ -13,7 +13,7 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
|
|||||||
> [!IMPORTANT]
|
> [!IMPORTANT]
|
||||||
[2024 Jun 12] Binaries have been renamed w/ a `llama-` prefix. `main` is now `llama-cli`, `server` is `llama-server`, etc (https://github.com/ggerganov/llama.cpp/pull/7809)
|
[2024 Jun 12] Binaries have been renamed w/ a `llama-` prefix. `main` is now `llama-cli`, `server` is `llama-server`, etc (https://github.com/ggerganov/llama.cpp/pull/7809)
|
||||||
|
|
||||||
### Recent API changes
|
## Recent API changes
|
||||||
|
|
||||||
- [2024 Jun 26] The source code and CMake build scripts have been restructured https://github.com/ggerganov/llama.cpp/pull/8006
|
- [2024 Jun 26] The source code and CMake build scripts have been restructured https://github.com/ggerganov/llama.cpp/pull/8006
|
||||||
- [2024 Apr 21] `llama_token_to_piece` can now optionally render special tokens https://github.com/ggerganov/llama.cpp/pull/6807
|
- [2024 Apr 21] `llama_token_to_piece` can now optionally render special tokens https://github.com/ggerganov/llama.cpp/pull/6807
|
||||||
@ -24,7 +24,7 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
|
|||||||
- [2024 Mar 4] Embeddings API updated https://github.com/ggerganov/llama.cpp/pull/5796
|
- [2024 Mar 4] Embeddings API updated https://github.com/ggerganov/llama.cpp/pull/5796
|
||||||
- [2024 Mar 3] `struct llama_context_params` https://github.com/ggerganov/llama.cpp/pull/5849
|
- [2024 Mar 3] `struct llama_context_params` https://github.com/ggerganov/llama.cpp/pull/5849
|
||||||
|
|
||||||
### Hot topics
|
## Hot topics
|
||||||
|
|
||||||
- **`convert.py` has been deprecated and moved to `examples/convert_legacy_llama.py`, please use `convert_hf_to_gguf.py`** https://github.com/ggerganov/llama.cpp/pull/7430
|
- **`convert.py` has been deprecated and moved to `examples/convert_legacy_llama.py`, please use `convert_hf_to_gguf.py`** https://github.com/ggerganov/llama.cpp/pull/7430
|
||||||
- Initial Flash-Attention support: https://github.com/ggerganov/llama.cpp/pull/5021
|
- Initial Flash-Attention support: https://github.com/ggerganov/llama.cpp/pull/5021
|
||||||
@ -39,37 +39,6 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
|
|||||||
|
|
||||||
----
|
----
|
||||||
|
|
||||||
<details>
|
|
||||||
<summary>Table of Contents</summary>
|
|
||||||
<ol>
|
|
||||||
<li>
|
|
||||||
<a href="#description">Description</a>
|
|
||||||
</li>
|
|
||||||
<li>
|
|
||||||
<a href="#usage">Usage</a>
|
|
||||||
<ul>
|
|
||||||
<li><a href="#get-the-code">Get the Code</a></li>
|
|
||||||
<li><a href="#build">Build</a></li>
|
|
||||||
<li><a href="#blas-build">BLAS Build</a></li>
|
|
||||||
<li><a href="#prepare-and-quantize">Prepare and Quantize</a></li>
|
|
||||||
<li><a href="#run-the-quantized-model">Run the quantized model</a></li>
|
|
||||||
<li><a href="#memorydisk-requirements">Memory/Disk Requirements</a></li>
|
|
||||||
<li><a href="#quantization">Quantization</a></li>
|
|
||||||
<li><a href="#interactive-mode">Interactive mode</a></li>
|
|
||||||
<li><a href="#constrained-output-with-grammars">Constrained output with grammars</a></li>
|
|
||||||
<li><a href="#obtaining-and-using-the-facebook-llama-2-model">Obtaining and using the Facebook LLaMA 2 model</a></li>
|
|
||||||
<li><a href="#seminal-papers-and-background-on-the-models">Seminal papers and background on the models</a></li>
|
|
||||||
<li><a href="#perplexity-measuring-model-quality">Perplexity (measuring model quality)</a></li>
|
|
||||||
<li><a href="#android">Android</a></li>
|
|
||||||
<li><a href="#docker">Docker</a></li>
|
|
||||||
</ul>
|
|
||||||
</li>
|
|
||||||
<li><a href="#contributing">Contributing</a></li>
|
|
||||||
<li><a href="#coding-guidelines">Coding guidelines</a></li>
|
|
||||||
<li><a href="#docs">Docs</a></li>
|
|
||||||
</ol>
|
|
||||||
</details>
|
|
||||||
|
|
||||||
## Description
|
## Description
|
||||||
|
|
||||||
The main goal of `llama.cpp` is to enable LLM inference with minimal setup and state-of-the-art performance on a wide
|
The main goal of `llama.cpp` is to enable LLM inference with minimal setup and state-of-the-art performance on a wide
|
||||||
@ -87,14 +56,6 @@ Since its [inception](https://github.com/ggerganov/llama.cpp/issues/33#issuecomm
|
|||||||
improved significantly thanks to many contributions. It is the main playground for developing new features for the
|
improved significantly thanks to many contributions. It is the main playground for developing new features for the
|
||||||
[ggml](https://github.com/ggerganov/ggml) library.
|
[ggml](https://github.com/ggerganov/ggml) library.
|
||||||
|
|
||||||
**Supported platforms:**
|
|
||||||
|
|
||||||
- [X] Mac OS
|
|
||||||
- [X] Linux
|
|
||||||
- [X] Windows (via CMake)
|
|
||||||
- [X] Docker
|
|
||||||
- [X] FreeBSD
|
|
||||||
|
|
||||||
**Supported models:**
|
**Supported models:**
|
||||||
|
|
||||||
Typically finetunes of the base models below are supported as well.
|
Typically finetunes of the base models below are supported as well.
|
||||||
@ -150,12 +111,6 @@ Typically finetunes of the base models below are supported as well.
|
|||||||
- [x] [Moondream](https://huggingface.co/vikhyatk/moondream2)
|
- [x] [Moondream](https://huggingface.co/vikhyatk/moondream2)
|
||||||
- [x] [Bunny](https://github.com/BAAI-DCAI/Bunny)
|
- [x] [Bunny](https://github.com/BAAI-DCAI/Bunny)
|
||||||
|
|
||||||
**HTTP server**
|
|
||||||
|
|
||||||
[llama.cpp web server](./examples/server) is a lightweight [OpenAI API](https://github.com/openai/openai-openapi) compatible HTTP server that can be used to serve local models and easily connect them to existing clients.
|
|
||||||
|
|
||||||
[simplechat](./examples/server/public_simplechat) is a simple chat client, which can be used to chat with the model exposed using above web server (use --path to point to simplechat), from a local web browser.
|
|
||||||
|
|
||||||
**Bindings:**
|
**Bindings:**
|
||||||
|
|
||||||
- Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
|
- Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
|
||||||
@ -224,9 +179,10 @@ Unless otherwise noted these projects are open-source with permissive licensing:
|
|||||||
|
|
||||||
- [Paddler](https://github.com/distantmagic/paddler) - Stateful load balancer custom-tailored for llama.cpp
|
- [Paddler](https://github.com/distantmagic/paddler) - Stateful load balancer custom-tailored for llama.cpp
|
||||||
|
|
||||||
---
|
## Demo
|
||||||
|
|
||||||
Here is a typical run using LLaMA v2 13B on M2 Ultra:
|
<details>
|
||||||
|
<summary>Typical run using LLaMA v2 13B on M2 Ultra</summary>
|
||||||
|
|
||||||
```
|
```
|
||||||
$ make -j && ./llama-cli -m models/llama-13b-v2/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e
|
$ make -j && ./llama-cli -m models/llama-13b-v2/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e
|
||||||
@ -306,454 +262,85 @@ llama_print_timings: eval time = 24513.59 ms / 399 runs ( 61.44 ms
|
|||||||
llama_print_timings: total time = 25431.49 ms
|
llama_print_timings: total time = 25431.49 ms
|
||||||
```
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>Demo of running both LLaMA-7B and whisper.cpp on a single M1 Pro MacBook</summary>
|
||||||
|
|
||||||
And here is another demo of running both LLaMA-7B and [whisper.cpp](https://github.com/ggerganov/whisper.cpp) on a single M1 Pro MacBook:
|
And here is another demo of running both LLaMA-7B and [whisper.cpp](https://github.com/ggerganov/whisper.cpp) on a single M1 Pro MacBook:
|
||||||
|
|
||||||
https://user-images.githubusercontent.com/1991296/224442907-7693d4be-acaa-4e01-8b4f-add84093ffff.mp4
|
https://user-images.githubusercontent.com/1991296/224442907-7693d4be-acaa-4e01-8b4f-add84093ffff.mp4
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
## Usage
|
## Usage
|
||||||
|
|
||||||
Here are the end-to-end binary build and model conversion steps for most supported models.
|
Here are the end-to-end binary build and model conversion steps for most supported models.
|
||||||
|
|
||||||
### Get the Code
|
### Basic usage
|
||||||
|
|
||||||
|
Firstly, you need to get the binary. There are different methods that you can follow:
|
||||||
|
- Method 1: Clone this repository and build locally, see [how to build](./docs/build.md)
|
||||||
|
- Method 2: If you are using MacOS or Linux, you can install llama.cpp via [brew, flox or nix](./docs/install.md)
|
||||||
|
- Method 3: Use a Docker image, see [documentation for Docker](./docs/docker.md)
|
||||||
|
- Method 4: Download pre-built binary from [releases](https://github.com/ggerganov/llama.cpp/releases)
|
||||||
|
|
||||||
|
You can run a basic completion using this command:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
git clone https://github.com/ggerganov/llama.cpp
|
llama-cli -m your_model.gguf -p "I believe the meaning of life is" -n 128
|
||||||
cd llama.cpp
|
|
||||||
|
# Output:
|
||||||
|
# I believe the meaning of life is to find your own truth and to live in accordance with it. For me, this means being true to myself and following my passions, even if they don't align with societal expectations. I think that's what I love about yoga – it's not just a physical practice, but a spiritual one too. It's about connecting with yourself, listening to your inner voice, and honoring your own unique journey.
|
||||||
```
|
```
|
||||||
|
|
||||||
### Build
|
See [this page](./examples/main/README.md) for a full list of parameters.
|
||||||
|
|
||||||
In order to build llama.cpp you have four different options.
|
### Conversation mode
|
||||||
|
|
||||||
- Using `make`:
|
If you want a more ChatGPT-like experience, you can run in conversation mode by passing `-cnv` as a parameter:
|
||||||
- On Linux or MacOS:
|
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
make
|
llama-cli -m your_model.gguf -p "You are a helpful assistant" -cnv
|
||||||
|
|
||||||
|
# Output:
|
||||||
|
# > hi, who are you?
|
||||||
|
# Hi there! I'm your helpful assistant! I'm an AI-powered chatbot designed to assist and provide information to users like you. I'm here to help answer your questions, provide guidance, and offer support on a wide range of topics. I'm a friendly and knowledgeable AI, and I'm always happy to help with anything you need. What's on your mind, and how can I assist you today?
|
||||||
|
#
|
||||||
|
# > what is 1+1?
|
||||||
|
# Easy peasy! The answer to 1+1 is... 2!
|
||||||
```
|
```
|
||||||
|
|
||||||
- On Windows:
|
By default, the chat template will be taken from the input model. If you want to use another chat template, pass `--chat-template NAME` as a parameter. See the list of [supported templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template)
|
||||||
|
|
||||||
1. Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases).
|
|
||||||
2. Extract `w64devkit` on your pc.
|
|
||||||
3. Run `w64devkit.exe`.
|
|
||||||
4. Use the `cd` command to reach the `llama.cpp` folder.
|
|
||||||
5. From here you can run:
|
|
||||||
```bash
|
|
||||||
make
|
|
||||||
```
|
|
||||||
|
|
||||||
- Notes:
|
|
||||||
- For faster compilation, add the `-j` argument to run multiple jobs in parallel. For example, `make -j 8` will run 8 jobs in parallel.
|
|
||||||
- For faster repeated compilation, install [ccache](https://ccache.dev/).
|
|
||||||
- For debug builds, run `make LLAMA_DEBUG=1`
|
|
||||||
|
|
||||||
- Using `CMake`:
|
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
cmake -B build
|
./llama-cli -m your_model.gguf -p "You are a helpful assistant" -cnv --chat-template chatml
|
||||||
cmake --build build --config Release
|
|
||||||
```
|
```
|
||||||
|
|
||||||
**Notes**:
|
You can also use your own template via in-prefix, in-suffix and reverse-prompt parameters:
|
||||||
|
|
||||||
- For faster compilation, add the `-j` argument to run multiple jobs in parallel. For example, `cmake --build build --config Release -j 8` will run 8 jobs in parallel.
|
|
||||||
- For faster repeated compilation, install [ccache](https://ccache.dev/).
|
|
||||||
- For debug builds, there are two cases:
|
|
||||||
|
|
||||||
1. Single-config generators (e.g. default = `Unix Makefiles`; note that they just ignore the `--config` flag):
|
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
cmake -B build -DCMAKE_BUILD_TYPE=Debug
|
./llama-cli -m your_model.gguf -p "You are a helpful assistant" -cnv --in-prefix 'User: ' --reverse-prompt 'User:'
|
||||||
cmake --build build
|
|
||||||
```
|
```
|
||||||
|
|
||||||
2. Multi-config generators (`-G` param set to Visual Studio, XCode...):
|
### Web server
|
||||||
|
|
||||||
|
[llama.cpp web server](./examples/server/README.md) is a lightweight [OpenAI API](https://github.com/openai/openai-openapi) compatible HTTP server that can be used to serve local models and easily connect them to existing clients.
|
||||||
|
|
||||||
|
Example usage:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
cmake -B build -G "Xcode"
|
./llama-server -m your_model.gguf --port 8080
|
||||||
cmake --build build --config Debug
|
|
||||||
|
# Basic web UI can be accessed via browser: http://localhost:8080
|
||||||
|
# Chat completion endpoint: http://localhost:8080/v1/chat/completions
|
||||||
```
|
```
|
||||||
|
|
||||||
- Using `gmake` (FreeBSD):
|
|
||||||
|
|
||||||
1. Install and activate [DRM in FreeBSD](https://wiki.freebsd.org/Graphics)
|
|
||||||
2. Add your user to **video** group
|
|
||||||
3. Install compilation dependencies.
|
|
||||||
|
|
||||||
```bash
|
|
||||||
sudo pkg install gmake automake autoconf pkgconf llvm15 openblas
|
|
||||||
|
|
||||||
gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j4
|
|
||||||
```
|
|
||||||
|
|
||||||
### Homebrew
|
|
||||||
|
|
||||||
On Mac and Linux, the homebrew package manager can be used via
|
|
||||||
```
|
|
||||||
brew install llama.cpp
|
|
||||||
```
|
|
||||||
The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggerganov/llama.cpp/discussions/7668
|
|
||||||
|
|
||||||
### Nix
|
|
||||||
|
|
||||||
On Mac and Linux, the Nix package manager can be used via
|
|
||||||
```
|
|
||||||
nix profile install nixpkgs#llama-cpp
|
|
||||||
```
|
|
||||||
For flake enabled installs.
|
|
||||||
|
|
||||||
Or
|
|
||||||
```
|
|
||||||
nix-env --file '<nixpkgs>' --install --attr llama-cpp
|
|
||||||
```
|
|
||||||
For non-flake enabled installs.
|
|
||||||
|
|
||||||
This expression is automatically updated within the [nixpkgs repo](https://github.com/NixOS/nixpkgs/blob/nixos-24.05/pkgs/by-name/ll/llama-cpp/package.nix#L164).
|
|
||||||
|
|
||||||
#### Flox
|
|
||||||
|
|
||||||
On Mac and Linux, Flox can be used to install llama.cpp within a Flox environment via
|
|
||||||
```
|
|
||||||
flox install llama-cpp
|
|
||||||
```
|
|
||||||
Flox follows the nixpkgs build of llama.cpp.
|
|
||||||
|
|
||||||
### Metal Build
|
|
||||||
|
|
||||||
On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU.
|
|
||||||
To disable the Metal build at compile time use the `GGML_NO_METAL=1` flag or the `GGML_METAL=OFF` cmake option.
|
|
||||||
|
|
||||||
When built with Metal support, you can explicitly disable GPU inference with the `--n-gpu-layers|-ngl 0` command-line
|
|
||||||
argument.
|
|
||||||
|
|
||||||
### BLAS Build
|
|
||||||
|
|
||||||
Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). Support with CPU-only BLAS implementations doesn't affect the normal generation performance. We may see generation performance improvements with GPU-involved BLAS implementations, e.g. cuBLAS, hipBLAS. There are currently several different BLAS implementations available for build and use:
|
|
||||||
|
|
||||||
- #### Accelerate Framework:
|
|
||||||
|
|
||||||
This is only available on Mac PCs and it's enabled by default. You can just build using the normal instructions.
|
|
||||||
|
|
||||||
- #### OpenBLAS:
|
|
||||||
|
|
||||||
This provides BLAS acceleration using only the CPU. Make sure to have OpenBLAS installed on your machine.
|
|
||||||
|
|
||||||
- Using `make`:
|
|
||||||
- On Linux:
|
|
||||||
```bash
|
|
||||||
make GGML_OPENBLAS=1
|
|
||||||
```
|
|
||||||
|
|
||||||
- On Windows:
|
|
||||||
|
|
||||||
1. Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases).
|
|
||||||
2. Download the latest version of [OpenBLAS for Windows](https://github.com/xianyi/OpenBLAS/releases).
|
|
||||||
3. Extract `w64devkit` on your pc.
|
|
||||||
4. From the OpenBLAS zip that you just downloaded copy `libopenblas.a`, located inside the `lib` folder, inside `w64devkit\x86_64-w64-mingw32\lib`.
|
|
||||||
5. From the same OpenBLAS zip copy the content of the `include` folder inside `w64devkit\x86_64-w64-mingw32\include`.
|
|
||||||
6. Run `w64devkit.exe`.
|
|
||||||
7. Use the `cd` command to reach the `llama.cpp` folder.
|
|
||||||
8. From here you can run:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
make GGML_OPENBLAS=1
|
|
||||||
```
|
|
||||||
|
|
||||||
- Using `CMake` on Linux:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
cmake -B build -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS
|
|
||||||
cmake --build build --config Release
|
|
||||||
```
|
|
||||||
|
|
||||||
- #### BLIS
|
|
||||||
|
|
||||||
Check [BLIS.md](docs/BLIS.md) for more information.
|
|
||||||
|
|
||||||
- #### SYCL
|
|
||||||
SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators.
|
|
||||||
|
|
||||||
llama.cpp based on SYCL is used to **support Intel GPU** (Data Center Max series, Flex series, Arc series, Built-in GPU and iGPU).
|
|
||||||
|
|
||||||
For detailed info, please refer to [llama.cpp for SYCL](README-sycl.md).
|
|
||||||
|
|
||||||
- #### Intel oneMKL
|
|
||||||
Building through oneAPI compilers will make avx_vnni instruction set available for intel processors that do not support avx512 and avx512_vnni. Please note that this build config **does not support Intel GPU**. For Intel GPU support, please refer to [llama.cpp for SYCL](./README-sycl.md).
|
|
||||||
|
|
||||||
- Using manual oneAPI installation:
|
|
||||||
By default, `GGML_BLAS_VENDOR` is set to `Generic`, so if you already sourced intel environment script and assign `-DGGML_BLAS=ON` in cmake, the mkl version of Blas will automatically been selected. Otherwise please install oneAPI and follow the below steps:
|
|
||||||
```bash
|
|
||||||
source /opt/intel/oneapi/setvars.sh # You can skip this step if in oneapi-basekit docker image, only required for manual installation
|
|
||||||
cmake -B build -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_NATIVE=ON
|
|
||||||
cmake --build build --config Release
|
|
||||||
```
|
|
||||||
|
|
||||||
- Using oneAPI docker image:
|
|
||||||
If you do not want to source the environment vars and install oneAPI manually, you can also build the code using intel docker container: [oneAPI-basekit](https://hub.docker.com/r/intel/oneapi-basekit). Then, you can use the commands given above.
|
|
||||||
|
|
||||||
Check [Optimizing and Running LLaMA2 on Intel® CPU](https://www.intel.com/content/www/us/en/content-details/791610/optimizing-and-running-llama2-on-intel-cpu.html) for more information.
|
|
||||||
|
|
||||||
- #### CUDA
|
|
||||||
|
|
||||||
This provides GPU acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. `apt install nvidia-cuda-toolkit`) or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads).
|
|
||||||
|
|
||||||
For Jetson user, if you have Jetson Orin, you can try this: [Offical Support](https://www.jetson-ai-lab.com/tutorial_text-generation.html). If you are using an old model(nano/TX2), need some additional operations before compiling.
|
|
||||||
|
|
||||||
- Using `make`:
|
|
||||||
```bash
|
|
||||||
make GGML_CUDA=1
|
|
||||||
```
|
|
||||||
- Using `CMake`:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
cmake -B build -DGGML_CUDA=ON
|
|
||||||
cmake --build build --config Release
|
|
||||||
```
|
|
||||||
|
|
||||||
The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) can be used to specify which GPU(s) will be used. The following compilation options are also available to tweak performance:
|
|
||||||
|
|
||||||
| Option | Legal values | Default | Description |
|
|
||||||
|-------------------------------|------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|
||||||
| GGML_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. |
|
|
||||||
| GGML_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
|
|
||||||
| GGML_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. |
|
|
||||||
| GGML_CUDA_FORCE_MMQ | Boolean | false | Force the use of custom matrix multiplication kernels for quantized models instead of FP16 cuBLAS even if there is no int8 tensor core implementation available (affects V100, RDNA3). MMQ kernels are enabled by default on GPUs with int8 tensor core support. With MMQ force enabled, speed for large batch sizes will be worse but VRAM consumption will be lower. |
|
|
||||||
| GGML_CUDA_FORCE_CUBLAS | Boolean | false | Force the use of FP16 cuBLAS instead of custom matrix multiplication kernels for quantized models |
|
|
||||||
| GGML_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
|
|
||||||
| GGML_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
|
|
||||||
| GGML_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
|
|
||||||
| GGML_CUDA_FA_ALL_QUANTS | Boolean | false | Compile support for all KV cache quantization type (combinations) for the FlashAttention CUDA kernels. More fine-grained control over KV cache size but compilation takes much longer. |
|
|
||||||
|
|
||||||
- #### hipBLAS
|
|
||||||
|
|
||||||
This provides BLAS acceleration on HIP-supported AMD GPUs.
|
|
||||||
Make sure to have ROCm installed.
|
|
||||||
You can download it from your Linux distro's package manager or from here: [ROCm Quick Start (Linux)](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/tutorial/quick-start.html#rocm-install-quick).
|
|
||||||
|
|
||||||
- Using `make`:
|
|
||||||
```bash
|
|
||||||
make GGML_HIPBLAS=1
|
|
||||||
```
|
|
||||||
- Using `CMake` for Linux (assuming a gfx1030-compatible AMD GPU):
|
|
||||||
```bash
|
|
||||||
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
|
|
||||||
cmake -S . -B build -DGGML_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
|
|
||||||
&& cmake --build build --config Release -- -j 16
|
|
||||||
```
|
|
||||||
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DGGML_HIP_UMA=ON`.
|
|
||||||
However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
|
|
||||||
|
|
||||||
Note that if you get the following error:
|
|
||||||
```
|
|
||||||
clang: error: cannot find ROCm device library; provide its path via '--rocm-path' or '--rocm-device-lib-path', or pass '-nogpulib' to build without ROCm device library
|
|
||||||
```
|
|
||||||
Try searching for a directory under `HIP_PATH` that contains the file
|
|
||||||
`oclc_abi_version_400.bc`. Then, add the following to the start of the
|
|
||||||
command: `HIP_DEVICE_LIB_PATH=<directory-you-just-found>`, so something
|
|
||||||
like:
|
|
||||||
```bash
|
|
||||||
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -p)" \
|
|
||||||
HIP_DEVICE_LIB_PATH=<directory-you-just-found> \
|
|
||||||
cmake -S . -B build -DGGML_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
|
|
||||||
&& cmake --build build -- -j 16
|
|
||||||
```
|
|
||||||
|
|
||||||
- Using `make` (example for target gfx1030, build with 16 CPU threads):
|
|
||||||
```bash
|
|
||||||
make -j16 GGML_HIPBLAS=1 GGML_HIP_UMA=1 AMDGPU_TARGETS=gfx1030
|
|
||||||
```
|
|
||||||
|
|
||||||
- Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS, and assuming a gfx1100-compatible AMD GPU):
|
|
||||||
```bash
|
|
||||||
set PATH=%HIP_PATH%\bin;%PATH%
|
|
||||||
cmake -S . -B build -G Ninja -DAMDGPU_TARGETS=gfx1100 -DGGML_HIPBLAS=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release
|
|
||||||
cmake --build build
|
|
||||||
```
|
|
||||||
Make sure that `AMDGPU_TARGETS` is set to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
|
|
||||||
Find your gpu version string by matching the most significant version information from `rocminfo | grep gfx | head -1 | awk '{print $2}'` with the list of processors, e.g. `gfx1035` maps to `gfx1030`.
|
|
||||||
|
|
||||||
|
|
||||||
The environment variable [`HIP_VISIBLE_DEVICES`](https://rocm.docs.amd.com/en/latest/understand/gpu_isolation.html#hip-visible-devices) can be used to specify which GPU(s) will be used.
|
|
||||||
If your GPU is not officially supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 (e.g. gfx1030, gfx1031, or gfx1035) or 11.0.0 on RDNA3.
|
|
||||||
The following compilation options are also available to tweak performance (yes, they refer to CUDA, not HIP, because it uses the same code as the cuBLAS version above):
|
|
||||||
|
|
||||||
| Option | Legal values | Default | Description |
|
|
||||||
|------------------------|------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|
||||||
| GGML_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the HIP dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
|
|
||||||
| GGML_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the HIP mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. |
|
|
||||||
| GGML_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per HIP thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
|
|
||||||
|
|
||||||
- #### Vulkan
|
|
||||||
|
|
||||||
**With docker**:
|
|
||||||
|
|
||||||
You don't need to install Vulkan SDK. It will be installed inside the container.
|
|
||||||
|
|
||||||
```sh
|
|
||||||
# Build the image
|
|
||||||
docker build -t llama-cpp-vulkan -f .devops/llama-cli-vulkan.Dockerfile .
|
|
||||||
|
|
||||||
# Then, use it:
|
|
||||||
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-vulkan -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
|
|
||||||
```
|
|
||||||
|
|
||||||
**Without docker**:
|
|
||||||
|
|
||||||
Firstly, you need to make sure you have installed [Vulkan SDK](https://vulkan.lunarg.com/doc/view/latest/linux/getting_started_ubuntu.html)
|
|
||||||
|
|
||||||
For example, on Ubuntu 22.04 (jammy), use the command below:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add -
|
|
||||||
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
|
|
||||||
apt update -y
|
|
||||||
apt-get install -y vulkan-sdk
|
|
||||||
# To verify the installation, use the command below:
|
|
||||||
vulkaninfo
|
|
||||||
```
|
|
||||||
|
|
||||||
Alternatively your package manager might be able to provide the appropriate libraries.
|
|
||||||
For example for Ubuntu 22.04 you can install `libvulkan-dev` instead.
|
|
||||||
For Fedora 40, you can install `vulkan-devel`, `glslc` and `glslang` packages.
|
|
||||||
|
|
||||||
Then, build llama.cpp using the cmake command below:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
cmake -B build -DGGML_VULKAN=1
|
|
||||||
cmake --build build --config Release
|
|
||||||
# Test the output binary (with "-ngl 33" to offload all layers to GPU)
|
|
||||||
./bin/llama-cli -m "PATH_TO_MODEL" -p "Hi you how are you" -n 50 -e -ngl 33 -t 4
|
|
||||||
|
|
||||||
# You should see in the output, ggml_vulkan detected your GPU. For example:
|
|
||||||
# ggml_vulkan: Using Intel(R) Graphics (ADL GT2) | uma: 1 | fp16: 1 | warp size: 32
|
|
||||||
```
|
|
||||||
|
|
||||||
### Prepare and Quantize
|
|
||||||
|
|
||||||
> [!NOTE]
|
|
||||||
> You can use the [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space on Hugging Face to quantise your model weights without any setup too. It is synced from `llama.cpp` main every 6 hours.
|
|
||||||
|
|
||||||
To obtain the official LLaMA 2 weights please see the <a href="#obtaining-and-using-the-facebook-llama-2-model">Obtaining and using the Facebook LLaMA 2 model</a> section. There is also a large selection of pre-quantized `gguf` models available on Hugging Face.
|
|
||||||
|
|
||||||
Note: `convert.py` has been moved to `examples/convert_legacy_llama.py` and shouldn't be used for anything other than `Llama/Llama2/Mistral` models and their derivatives.
|
|
||||||
It does not support LLaMA 3, you can use `convert_hf_to_gguf.py` with LLaMA 3 downloaded from Hugging Face.
|
|
||||||
|
|
||||||
```bash
|
|
||||||
# obtain the official LLaMA model weights and place them in ./models
|
|
||||||
ls ./models
|
|
||||||
llama-2-7b tokenizer_checklist.chk tokenizer.model
|
|
||||||
# [Optional] for models using BPE tokenizers
|
|
||||||
ls ./models
|
|
||||||
<folder containing weights and tokenizer json> vocab.json
|
|
||||||
# [Optional] for PyTorch .bin models like Mistral-7B
|
|
||||||
ls ./models
|
|
||||||
<folder containing weights and tokenizer json>
|
|
||||||
|
|
||||||
# install Python dependencies
|
|
||||||
python3 -m pip install -r requirements.txt
|
|
||||||
|
|
||||||
# convert the model to ggml FP16 format
|
|
||||||
python3 convert_hf_to_gguf.py models/mymodel/
|
|
||||||
|
|
||||||
# quantize the model to 4-bits (using Q4_K_M method)
|
|
||||||
./llama-quantize ./models/mymodel/ggml-model-f16.gguf ./models/mymodel/ggml-model-Q4_K_M.gguf Q4_K_M
|
|
||||||
|
|
||||||
# update the gguf filetype to current version if older version is now unsupported
|
|
||||||
./llama-quantize ./models/mymodel/ggml-model-Q4_K_M.gguf ./models/mymodel/ggml-model-Q4_K_M-v2.gguf COPY
|
|
||||||
```
|
|
||||||
|
|
||||||
### Run the quantized model
|
|
||||||
|
|
||||||
```bash
|
|
||||||
# start inference on a gguf model
|
|
||||||
./llama-cli -m ./models/mymodel/ggml-model-Q4_K_M.gguf -n 128
|
|
||||||
```
|
|
||||||
|
|
||||||
When running the larger models, make sure you have enough disk space to store all the intermediate files.
|
|
||||||
|
|
||||||
### Running on Windows with prebuilt binaries
|
|
||||||
|
|
||||||
You will find prebuilt Windows binaries on the release page.
|
|
||||||
|
|
||||||
Simply download and extract the latest zip package of choice: (e.g. `llama-b1380-bin-win-avx2-x64.zip`)
|
|
||||||
|
|
||||||
From the unzipped folder, open a terminal/cmd window here and place a pre-converted `.gguf` model file. Test out the main example like so:
|
|
||||||
|
|
||||||
```
|
|
||||||
.\main -m llama-2-7b.Q4_0.gguf -n 128
|
|
||||||
```
|
|
||||||
|
|
||||||
### Memory/Disk Requirements
|
|
||||||
|
|
||||||
As the models are currently fully loaded into memory, you will need adequate disk space to save them and sufficient RAM to load them. At the moment, memory and disk requirements are the same.
|
|
||||||
|
|
||||||
| Model | Original size | Quantized size (Q4_0) |
|
|
||||||
|------:|--------------:|----------------------:|
|
|
||||||
| 7B | 13 GB | 3.9 GB |
|
|
||||||
| 13B | 24 GB | 7.8 GB |
|
|
||||||
| 30B | 60 GB | 19.5 GB |
|
|
||||||
| 65B | 120 GB | 38.5 GB |
|
|
||||||
|
|
||||||
### Quantization
|
|
||||||
|
|
||||||
Several quantization methods are supported. They differ in the resulting model disk size and inference speed.
|
|
||||||
|
|
||||||
*(outdated)*
|
|
||||||
|
|
||||||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q5_0 | Q5_1 | Q8_0 |
|
|
||||||
|------:|--------------|-------:|-------:|-------:|-------:|-------:|-------:|
|
|
||||||
| 7B | perplexity | 5.9066 | 6.1565 | 6.0912 | 5.9862 | 5.9481 | 5.9070 |
|
|
||||||
| 7B | file size | 13.0G | 3.5G | 3.9G | 4.3G | 4.7G | 6.7G |
|
|
||||||
| 7B | ms/tok @ 4th | 127 | 55 | 54 | 76 | 83 | 72 |
|
|
||||||
| 7B | ms/tok @ 8th | 122 | 43 | 45 | 52 | 56 | 67 |
|
|
||||||
| 7B | bits/weight | 16.0 | 4.5 | 5.0 | 5.5 | 6.0 | 8.5 |
|
|
||||||
| 13B | perplexity | 5.2543 | 5.3860 | 5.3608 | 5.2856 | 5.2706 | 5.2548 |
|
|
||||||
| 13B | file size | 25.0G | 6.8G | 7.6G | 8.3G | 9.1G | 13G |
|
|
||||||
| 13B | ms/tok @ 4th | - | 103 | 105 | 148 | 160 | 131 |
|
|
||||||
| 13B | ms/tok @ 8th | - | 73 | 82 | 98 | 105 | 128 |
|
|
||||||
| 13B | bits/weight | 16.0 | 4.5 | 5.0 | 5.5 | 6.0 | 8.5 |
|
|
||||||
|
|
||||||
- [k-quants](https://github.com/ggerganov/llama.cpp/pull/1684)
|
|
||||||
- recent k-quants improvements and new i-quants
|
|
||||||
- [#2707](https://github.com/ggerganov/llama.cpp/pull/2707)
|
|
||||||
- [#2807](https://github.com/ggerganov/llama.cpp/pull/2807)
|
|
||||||
- [#4773 - 2-bit i-quants (inference)](https://github.com/ggerganov/llama.cpp/pull/4773)
|
|
||||||
- [#4856 - 2-bit i-quants (inference)](https://github.com/ggerganov/llama.cpp/pull/4856)
|
|
||||||
- [#4861 - importance matrix](https://github.com/ggerganov/llama.cpp/pull/4861)
|
|
||||||
- [#4872 - MoE models](https://github.com/ggerganov/llama.cpp/pull/4872)
|
|
||||||
- [#4897 - 2-bit quantization](https://github.com/ggerganov/llama.cpp/pull/4897)
|
|
||||||
- [#4930 - imatrix for all k-quants](https://github.com/ggerganov/llama.cpp/pull/4930)
|
|
||||||
- [#4951 - imatrix on the GPU](https://github.com/ggerganov/llama.cpp/pull/4957)
|
|
||||||
- [#4969 - imatrix for legacy quants](https://github.com/ggerganov/llama.cpp/pull/4969)
|
|
||||||
- [#4996 - k-qunats tuning](https://github.com/ggerganov/llama.cpp/pull/4996)
|
|
||||||
- [#5060 - Q3_K_XS](https://github.com/ggerganov/llama.cpp/pull/5060)
|
|
||||||
- [#5196 - 3-bit i-quants](https://github.com/ggerganov/llama.cpp/pull/5196)
|
|
||||||
- [quantization tuning](https://github.com/ggerganov/llama.cpp/pull/5320), [another one](https://github.com/ggerganov/llama.cpp/pull/5334), and [another one](https://github.com/ggerganov/llama.cpp/pull/5361)
|
|
||||||
|
|
||||||
### Perplexity (measuring model quality)
|
|
||||||
|
|
||||||
You can use the `perplexity` example to measure perplexity over a given prompt (lower perplexity is better).
|
|
||||||
For more information, see [https://huggingface.co/docs/transformers/perplexity](https://huggingface.co/docs/transformers/perplexity).
|
|
||||||
|
|
||||||
The perplexity measurements in table above are done against the `wikitext2` test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512.
|
|
||||||
The time per token is measured on a MacBook M1 Pro 32GB RAM using 4 and 8 threads.
|
|
||||||
|
|
||||||
#### How to run
|
|
||||||
|
|
||||||
1. Download/extract: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
|
|
||||||
2. Run `./llama-perplexity -m models/7B/ggml-model-q4_0.gguf -f wiki.test.raw`
|
|
||||||
3. Output:
|
|
||||||
```
|
|
||||||
perplexity : calculating perplexity over 655 chunks
|
|
||||||
24.43 seconds per pass - ETA 4.45 hours
|
|
||||||
[1]4.5970,[2]5.1807,[3]6.0382,...
|
|
||||||
```
|
|
||||||
And after 4.45 hours, you will have the final perplexity.
|
|
||||||
|
|
||||||
### Interactive mode
|
### Interactive mode
|
||||||
|
|
||||||
If you want a more ChatGPT-like experience, you can run in interactive mode by passing `-i` as a parameter.
|
> [!NOTE]
|
||||||
|
> If you prefer basic usage, please consider using conversation mode instead of interactive mode
|
||||||
|
|
||||||
In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a *reverse prompt* with the parameter `-r "reverse prompt string"`. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMA emulate a chat between multiple users, say Alice and Bob, and pass `-r "Alice:"`.
|
In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a *reverse prompt* with the parameter `-r "reverse prompt string"`. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMA emulate a chat between multiple users, say Alice and Bob, and pass `-r "Alice:"`.
|
||||||
|
|
||||||
Here is an example of a few-shot interaction, invoked with the command
|
Here is an example of a few-shot interaction, invoked with the command
|
||||||
@ -827,150 +414,28 @@ If your issue is with model generation quality, then please at least scan the fo
|
|||||||
- [Aligning language models to follow instructions](https://openai.com/research/instruction-following)
|
- [Aligning language models to follow instructions](https://openai.com/research/instruction-following)
|
||||||
- [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155)
|
- [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155)
|
||||||
|
|
||||||
### Android
|
## Tools
|
||||||
|
|
||||||
#### Build on Android using Termux
|
### Prepare and Quantize
|
||||||
[Termux](https://github.com/termux/termux-app#installation) is a method to execute `llama.cpp` on an Android device (no root required).
|
|
||||||
```
|
|
||||||
apt update && apt upgrade -y
|
|
||||||
apt install git make cmake
|
|
||||||
```
|
|
||||||
|
|
||||||
It's recommended to move your model inside the `~/` directory for best performance:
|
> [!NOTE]
|
||||||
```
|
> You can use the [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space on Hugging Face to quantise your model weights without any setup too. It is synced from `llama.cpp` main every 6 hours.
|
||||||
cd storage/downloads
|
|
||||||
mv model.gguf ~/
|
|
||||||
```
|
|
||||||
|
|
||||||
[Get the code](https://github.com/ggerganov/llama.cpp#get-the-code) & [follow the Linux build instructions](https://github.com/ggerganov/llama.cpp#build) to build `llama.cpp`.
|
To obtain the official LLaMA 2 weights please see the <a href="#obtaining-and-using-the-facebook-llama-2-model">Obtaining and using the Facebook LLaMA 2 model</a> section. There is also a large selection of pre-quantized `gguf` models available on Hugging Face.
|
||||||
|
|
||||||
#### Building the Project using Android NDK
|
Note: `convert.py` has been moved to `examples/convert_legacy_llama.py` and shouldn't be used for anything other than `Llama/Llama2/Mistral` models and their derivatives.
|
||||||
Obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake.
|
It does not support LLaMA 3, you can use `convert_hf_to_gguf.py` with LLaMA 3 downloaded from Hugging Face.
|
||||||
|
|
||||||
Execute the following commands on your computer to avoid downloading the NDK to your mobile. Alternatively, you can also do this in Termux:
|
To learn more about quantizing model, [read this documentation](./examples/quantize/README.md)
|
||||||
```
|
|
||||||
$ mkdir build-android
|
|
||||||
$ cd build-android
|
|
||||||
$ export NDK=<your_ndk_directory>
|
|
||||||
$ cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod ..
|
|
||||||
$ make
|
|
||||||
```
|
|
||||||
|
|
||||||
Install [termux](https://github.com/termux/termux-app#installation) on your device and run `termux-setup-storage` to get access to your SD card (if Android 11+ then run the command twice).
|
### Perplexity (measuring model quality)
|
||||||
|
|
||||||
Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission:
|
You can use the `perplexity` example to measure perplexity over a given prompt (lower perplexity is better).
|
||||||
|
For more information, see [https://huggingface.co/docs/transformers/perplexity](https://huggingface.co/docs/transformers/perplexity).
|
||||||
|
|
||||||
(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`)
|
To learn more how to measure perplexity using llama.cpp, [read this documentation](./examples/perplexity/README.md)
|
||||||
```
|
|
||||||
$cp -r /sdcard/llama.cpp/bin /data/data/com.termux/files/home/
|
|
||||||
$cd /data/data/com.termux/files/home/bin
|
|
||||||
$chmod +x ./*
|
|
||||||
```
|
|
||||||
|
|
||||||
Download model [llama-2-7b-chat.Q4_K_M.gguf](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/blob/main/llama-2-7b-chat.Q4_K_M.gguf), and push it to `/sdcard/llama.cpp/`, then move it to `/data/data/com.termux/files/home/model/`
|
## Contributing
|
||||||
|
|
||||||
```
|
|
||||||
$mv /sdcard/llama.cpp/llama-2-7b-chat.Q4_K_M.gguf /data/data/com.termux/files/home/model/
|
|
||||||
```
|
|
||||||
|
|
||||||
Now, you can start chatting:
|
|
||||||
```
|
|
||||||
$cd /data/data/com.termux/files/home/bin
|
|
||||||
$./llama-cli -m ../model/llama-2-7b-chat.Q4_K_M.gguf -n 128 -cml
|
|
||||||
```
|
|
||||||
|
|
||||||
Here's a demo of an interactive session running on Pixel 5 phone:
|
|
||||||
|
|
||||||
https://user-images.githubusercontent.com/271616/225014776-1d567049-ad71-4ef2-b050-55b0b3b9274c.mp4
|
|
||||||
|
|
||||||
### Docker
|
|
||||||
|
|
||||||
#### Prerequisites
|
|
||||||
* Docker must be installed and running on your system.
|
|
||||||
* Create a folder to store big models & intermediate files (ex. /llama/models)
|
|
||||||
|
|
||||||
#### Images
|
|
||||||
We have three Docker images available for this project:
|
|
||||||
|
|
||||||
1. `ghcr.io/ggerganov/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`)
|
|
||||||
2. `ghcr.io/ggerganov/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`)
|
|
||||||
3. `ghcr.io/ggerganov/llama.cpp:server`: This image only includes the server executable file. (platforms: `linux/amd64`, `linux/arm64`)
|
|
||||||
|
|
||||||
Additionally, there the following images, similar to the above:
|
|
||||||
|
|
||||||
- `ghcr.io/ggerganov/llama.cpp:full-cuda`: Same as `full` but compiled with CUDA support. (platforms: `linux/amd64`)
|
|
||||||
- `ghcr.io/ggerganov/llama.cpp:light-cuda`: Same as `light` but compiled with CUDA support. (platforms: `linux/amd64`)
|
|
||||||
- `ghcr.io/ggerganov/llama.cpp:server-cuda`: Same as `server` but compiled with CUDA support. (platforms: `linux/amd64`)
|
|
||||||
- `ghcr.io/ggerganov/llama.cpp:full-rocm`: Same as `full` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
|
||||||
- `ghcr.io/ggerganov/llama.cpp:light-rocm`: Same as `light` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
|
||||||
- `ghcr.io/ggerganov/llama.cpp:server-rocm`: Same as `server` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
|
||||||
|
|
||||||
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](.github/workflows/docker.yml). If you need different settings (for example, a different CUDA or ROCm library, you'll need to build the images locally for now).
|
|
||||||
|
|
||||||
#### Usage
|
|
||||||
|
|
||||||
The easiest way to download the models, convert them to ggml and optimize them is with the --all-in-one command which includes the full docker image.
|
|
||||||
|
|
||||||
Replace `/path/to/models` below with the actual path where you downloaded the models.
|
|
||||||
|
|
||||||
```bash
|
|
||||||
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --all-in-one "/models/" 7B
|
|
||||||
```
|
|
||||||
|
|
||||||
On completion, you are ready to play!
|
|
||||||
|
|
||||||
```bash
|
|
||||||
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
|
|
||||||
```
|
|
||||||
|
|
||||||
or with a light image:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
|
|
||||||
```
|
|
||||||
|
|
||||||
or with a server image:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
docker run -v /path/to/models:/models -p 8000:8000 ghcr.io/ggerganov/llama.cpp:server -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512
|
|
||||||
```
|
|
||||||
|
|
||||||
### Docker With CUDA
|
|
||||||
|
|
||||||
Assuming one has the [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia-container-toolkit) properly installed on Linux, or is using a GPU enabled cloud, `cuBLAS` should be accessible inside the container.
|
|
||||||
|
|
||||||
#### Building Locally
|
|
||||||
|
|
||||||
```bash
|
|
||||||
docker build -t local/llama.cpp:full-cuda -f .devops/full-cuda.Dockerfile .
|
|
||||||
docker build -t local/llama.cpp:light-cuda -f .devops/llama-cli-cuda.Dockerfile .
|
|
||||||
docker build -t local/llama.cpp:server-cuda -f .devops/llama-server-cuda.Dockerfile .
|
|
||||||
```
|
|
||||||
|
|
||||||
You may want to pass in some different `ARGS`, depending on the CUDA environment supported by your container host, as well as the GPU architecture.
|
|
||||||
|
|
||||||
The defaults are:
|
|
||||||
|
|
||||||
- `CUDA_VERSION` set to `11.7.1`
|
|
||||||
- `CUDA_DOCKER_ARCH` set to `all`
|
|
||||||
|
|
||||||
The resulting images, are essentially the same as the non-CUDA images:
|
|
||||||
|
|
||||||
1. `local/llama.cpp:full-cuda`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
|
|
||||||
2. `local/llama.cpp:light-cuda`: This image only includes the main executable file.
|
|
||||||
3. `local/llama.cpp:server-cuda`: This image only includes the server executable file.
|
|
||||||
|
|
||||||
#### Usage
|
|
||||||
|
|
||||||
After building locally, Usage is similar to the non-CUDA examples, but you'll need to add the `--gpus` flag. You will also want to use the `--n-gpu-layers` flag.
|
|
||||||
|
|
||||||
```bash
|
|
||||||
docker run --gpus all -v /path/to/models:/models local/llama.cpp:full-cuda --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
|
|
||||||
docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
|
|
||||||
docker run --gpus all -v /path/to/models:/models local/llama.cpp:server-cuda -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512 --n-gpu-layers 1
|
|
||||||
```
|
|
||||||
|
|
||||||
### Contributing
|
|
||||||
|
|
||||||
- Contributors can open PRs
|
- Contributors can open PRs
|
||||||
- Collaborators can push to branches in the `llama.cpp` repo and merge PRs into the `master` branch
|
- Collaborators can push to branches in the `llama.cpp` repo and merge PRs into the `master` branch
|
||||||
@ -981,12 +446,17 @@ docker run --gpus all -v /path/to/models:/models local/llama.cpp:server-cuda -m
|
|||||||
- Make sure to read this: [Inference at the edge](https://github.com/ggerganov/llama.cpp/discussions/205)
|
- Make sure to read this: [Inference at the edge](https://github.com/ggerganov/llama.cpp/discussions/205)
|
||||||
- A bit of backstory for those who are interested: [Changelog podcast](https://changelog.com/podcast/532)
|
- A bit of backstory for those who are interested: [Changelog podcast](https://changelog.com/podcast/532)
|
||||||
|
|
||||||
### Docs
|
## Other documentations
|
||||||
|
|
||||||
- [main (cli)](./examples/main/README.md)
|
- [main (cli)](./examples/main/README.md)
|
||||||
- [server](./examples/server/README.md)
|
- [server](./examples/server/README.md)
|
||||||
- [jeopardy](./examples/jeopardy/README.md)
|
- [jeopardy](./examples/jeopardy/README.md)
|
||||||
- [BLIS](./docs/BLIS.md)
|
- [GBNF grammars](./grammars/README.md)
|
||||||
|
|
||||||
|
**Development documentations**
|
||||||
|
|
||||||
|
- [How to build](./docs/build.md)
|
||||||
|
- [Running on Docker](./docs/docker.md)
|
||||||
|
- [Build on Android](./docs/android.md)
|
||||||
- [Performance troubleshooting](./docs/token_generation_performance_tips.md)
|
- [Performance troubleshooting](./docs/token_generation_performance_tips.md)
|
||||||
- [GGML tips & tricks](https://github.com/ggerganov/llama.cpp/wiki/GGML-Tips-&-Tricks)
|
- [GGML tips & tricks](https://github.com/ggerganov/llama.cpp/wiki/GGML-Tips-&-Tricks)
|
||||||
- [GBNF grammars](./grammars/README.md)
|
|
||||||
|
56
docs/android.md
Normal file
56
docs/android.md
Normal file
@ -0,0 +1,56 @@
|
|||||||
|
|
||||||
|
# Android
|
||||||
|
|
||||||
|
## Build on Android using Termux
|
||||||
|
[Termux](https://github.com/termux/termux-app#installation) is a method to execute `llama.cpp` on an Android device (no root required).
|
||||||
|
```
|
||||||
|
apt update && apt upgrade -y
|
||||||
|
apt install git make cmake
|
||||||
|
```
|
||||||
|
|
||||||
|
It's recommended to move your model inside the `~/` directory for best performance:
|
||||||
|
```
|
||||||
|
cd storage/downloads
|
||||||
|
mv model.gguf ~/
|
||||||
|
```
|
||||||
|
|
||||||
|
[Get the code](https://github.com/ggerganov/llama.cpp#get-the-code) & [follow the Linux build instructions](https://github.com/ggerganov/llama.cpp#build) to build `llama.cpp`.
|
||||||
|
|
||||||
|
## Building the Project using Android NDK
|
||||||
|
Obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake.
|
||||||
|
|
||||||
|
Execute the following commands on your computer to avoid downloading the NDK to your mobile. Alternatively, you can also do this in Termux:
|
||||||
|
```
|
||||||
|
$ mkdir build-android
|
||||||
|
$ cd build-android
|
||||||
|
$ export NDK=<your_ndk_directory>
|
||||||
|
$ cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod ..
|
||||||
|
$ make
|
||||||
|
```
|
||||||
|
|
||||||
|
Install [termux](https://github.com/termux/termux-app#installation) on your device and run `termux-setup-storage` to get access to your SD card (if Android 11+ then run the command twice).
|
||||||
|
|
||||||
|
Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission:
|
||||||
|
|
||||||
|
(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`)
|
||||||
|
```
|
||||||
|
$cp -r /sdcard/llama.cpp/bin /data/data/com.termux/files/home/
|
||||||
|
$cd /data/data/com.termux/files/home/bin
|
||||||
|
$chmod +x ./*
|
||||||
|
```
|
||||||
|
|
||||||
|
Download model [llama-2-7b-chat.Q4_K_M.gguf](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/blob/main/llama-2-7b-chat.Q4_K_M.gguf), and push it to `/sdcard/llama.cpp/`, then move it to `/data/data/com.termux/files/home/model/`
|
||||||
|
|
||||||
|
```
|
||||||
|
$mv /sdcard/llama.cpp/llama-2-7b-chat.Q4_K_M.gguf /data/data/com.termux/files/home/model/
|
||||||
|
```
|
||||||
|
|
||||||
|
Now, you can start chatting:
|
||||||
|
```
|
||||||
|
$cd /data/data/com.termux/files/home/bin
|
||||||
|
$./llama-cli -m ../model/llama-2-7b-chat.Q4_K_M.gguf -n 128 -cml
|
||||||
|
```
|
||||||
|
|
||||||
|
Here's a demo of an interactive session running on Pixel 5 phone:
|
||||||
|
|
||||||
|
https://user-images.githubusercontent.com/271616/225014776-1d567049-ad71-4ef2-b050-55b0b3b9274c.mp4
|
288
docs/build.md
Normal file
288
docs/build.md
Normal file
@ -0,0 +1,288 @@
|
|||||||
|
# Build llama.cpp locally
|
||||||
|
|
||||||
|
**To get the Code:**
|
||||||
|
|
||||||
|
```bash
|
||||||
|
git clone https://github.com/ggerganov/llama.cpp
|
||||||
|
cd llama.cpp
|
||||||
|
```
|
||||||
|
|
||||||
|
In order to build llama.cpp you have four different options.
|
||||||
|
|
||||||
|
- Using `make`:
|
||||||
|
- On Linux or MacOS:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
make
|
||||||
|
```
|
||||||
|
|
||||||
|
- On Windows:
|
||||||
|
|
||||||
|
1. Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases).
|
||||||
|
2. Extract `w64devkit` on your pc.
|
||||||
|
3. Run `w64devkit.exe`.
|
||||||
|
4. Use the `cd` command to reach the `llama.cpp` folder.
|
||||||
|
5. From here you can run:
|
||||||
|
```bash
|
||||||
|
make
|
||||||
|
```
|
||||||
|
|
||||||
|
- Notes:
|
||||||
|
- For faster compilation, add the `-j` argument to run multiple jobs in parallel. For example, `make -j 8` will run 8 jobs in parallel.
|
||||||
|
- For faster repeated compilation, install [ccache](https://ccache.dev/).
|
||||||
|
- For debug builds, run `make LLAMA_DEBUG=1`
|
||||||
|
|
||||||
|
- Using `CMake`:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cmake -B build
|
||||||
|
cmake --build build --config Release
|
||||||
|
```
|
||||||
|
|
||||||
|
**Notes**:
|
||||||
|
|
||||||
|
- For faster compilation, add the `-j` argument to run multiple jobs in parallel. For example, `cmake --build build --config Release -j 8` will run 8 jobs in parallel.
|
||||||
|
- For faster repeated compilation, install [ccache](https://ccache.dev/).
|
||||||
|
- For debug builds, there are two cases:
|
||||||
|
|
||||||
|
1. Single-config generators (e.g. default = `Unix Makefiles`; note that they just ignore the `--config` flag):
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cmake -B build -DCMAKE_BUILD_TYPE=Debug
|
||||||
|
cmake --build build
|
||||||
|
```
|
||||||
|
|
||||||
|
2. Multi-config generators (`-G` param set to Visual Studio, XCode...):
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cmake -B build -G "Xcode"
|
||||||
|
cmake --build build --config Debug
|
||||||
|
```
|
||||||
|
|
||||||
|
- Using `gmake` (FreeBSD):
|
||||||
|
|
||||||
|
1. Install and activate [DRM in FreeBSD](https://wiki.freebsd.org/Graphics)
|
||||||
|
2. Add your user to **video** group
|
||||||
|
3. Install compilation dependencies.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
sudo pkg install gmake automake autoconf pkgconf llvm15 openblas
|
||||||
|
|
||||||
|
gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j4
|
||||||
|
```
|
||||||
|
|
||||||
|
## Metal Build
|
||||||
|
|
||||||
|
On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU.
|
||||||
|
To disable the Metal build at compile time use the `GGML_NO_METAL=1` flag or the `GGML_METAL=OFF` cmake option.
|
||||||
|
|
||||||
|
When built with Metal support, you can explicitly disable GPU inference with the `--n-gpu-layers|-ngl 0` command-line
|
||||||
|
argument.
|
||||||
|
|
||||||
|
## BLAS Build
|
||||||
|
|
||||||
|
Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). Support with CPU-only BLAS implementations doesn't affect the normal generation performance. We may see generation performance improvements with GPU-involved BLAS implementations, e.g. cuBLAS, hipBLAS. There are currently several different BLAS implementations available for build and use:
|
||||||
|
|
||||||
|
### Accelerate Framework:
|
||||||
|
|
||||||
|
This is only available on Mac PCs and it's enabled by default. You can just build using the normal instructions.
|
||||||
|
|
||||||
|
### OpenBLAS:
|
||||||
|
|
||||||
|
This provides BLAS acceleration using only the CPU. Make sure to have OpenBLAS installed on your machine.
|
||||||
|
|
||||||
|
- Using `make`:
|
||||||
|
- On Linux:
|
||||||
|
```bash
|
||||||
|
make GGML_OPENBLAS=1
|
||||||
|
```
|
||||||
|
|
||||||
|
- On Windows:
|
||||||
|
|
||||||
|
1. Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases).
|
||||||
|
2. Download the latest version of [OpenBLAS for Windows](https://github.com/xianyi/OpenBLAS/releases).
|
||||||
|
3. Extract `w64devkit` on your pc.
|
||||||
|
4. From the OpenBLAS zip that you just downloaded copy `libopenblas.a`, located inside the `lib` folder, inside `w64devkit\x86_64-w64-mingw32\lib`.
|
||||||
|
5. From the same OpenBLAS zip copy the content of the `include` folder inside `w64devkit\x86_64-w64-mingw32\include`.
|
||||||
|
6. Run `w64devkit.exe`.
|
||||||
|
7. Use the `cd` command to reach the `llama.cpp` folder.
|
||||||
|
8. From here you can run:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
make GGML_OPENBLAS=1
|
||||||
|
```
|
||||||
|
|
||||||
|
- Using `CMake` on Linux:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cmake -B build -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS
|
||||||
|
cmake --build build --config Release
|
||||||
|
```
|
||||||
|
|
||||||
|
### BLIS
|
||||||
|
|
||||||
|
Check [BLIS.md](./backend/BLIS.md) for more information.
|
||||||
|
|
||||||
|
### SYCL
|
||||||
|
|
||||||
|
SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators.
|
||||||
|
|
||||||
|
llama.cpp based on SYCL is used to **support Intel GPU** (Data Center Max series, Flex series, Arc series, Built-in GPU and iGPU).
|
||||||
|
|
||||||
|
For detailed info, please refer to [llama.cpp for SYCL](./backend/SYCL.md).
|
||||||
|
|
||||||
|
### Intel oneMKL
|
||||||
|
|
||||||
|
Building through oneAPI compilers will make avx_vnni instruction set available for intel processors that do not support avx512 and avx512_vnni. Please note that this build config **does not support Intel GPU**. For Intel GPU support, please refer to [llama.cpp for SYCL](./backend/SYCL.md).
|
||||||
|
|
||||||
|
- Using manual oneAPI installation:
|
||||||
|
By default, `GGML_BLAS_VENDOR` is set to `Generic`, so if you already sourced intel environment script and assign `-DGGML_BLAS=ON` in cmake, the mkl version of Blas will automatically been selected. Otherwise please install oneAPI and follow the below steps:
|
||||||
|
```bash
|
||||||
|
source /opt/intel/oneapi/setvars.sh # You can skip this step if in oneapi-basekit docker image, only required for manual installation
|
||||||
|
cmake -B build -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_NATIVE=ON
|
||||||
|
cmake --build build --config Release
|
||||||
|
```
|
||||||
|
|
||||||
|
- Using oneAPI docker image:
|
||||||
|
If you do not want to source the environment vars and install oneAPI manually, you can also build the code using intel docker container: [oneAPI-basekit](https://hub.docker.com/r/intel/oneapi-basekit). Then, you can use the commands given above.
|
||||||
|
|
||||||
|
Check [Optimizing and Running LLaMA2 on Intel® CPU](https://www.intel.com/content/www/us/en/content-details/791610/optimizing-and-running-llama2-on-intel-cpu.html) for more information.
|
||||||
|
|
||||||
|
### CUDA
|
||||||
|
|
||||||
|
This provides GPU acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. `apt install nvidia-cuda-toolkit`) or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads).
|
||||||
|
|
||||||
|
For Jetson user, if you have Jetson Orin, you can try this: [Offical Support](https://www.jetson-ai-lab.com/tutorial_text-generation.html). If you are using an old model(nano/TX2), need some additional operations before compiling.
|
||||||
|
|
||||||
|
- Using `make`:
|
||||||
|
```bash
|
||||||
|
make GGML_CUDA=1
|
||||||
|
```
|
||||||
|
- Using `CMake`:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cmake -B build -DGGML_CUDA=ON
|
||||||
|
cmake --build build --config Release
|
||||||
|
```
|
||||||
|
|
||||||
|
The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) can be used to specify which GPU(s) will be used. The following compilation options are also available to tweak performance:
|
||||||
|
|
||||||
|
| Option | Legal values | Default | Description |
|
||||||
|
|-------------------------------|------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||||
|
| GGML_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. |
|
||||||
|
| GGML_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
|
||||||
|
| GGML_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. |
|
||||||
|
| GGML_CUDA_FORCE_MMQ | Boolean | false | Force the use of custom matrix multiplication kernels for quantized models instead of FP16 cuBLAS even if there is no int8 tensor core implementation available (affects V100, RDNA3). MMQ kernels are enabled by default on GPUs with int8 tensor core support. With MMQ force enabled, speed for large batch sizes will be worse but VRAM consumption will be lower. |
|
||||||
|
| GGML_CUDA_FORCE_CUBLAS | Boolean | false | Force the use of FP16 cuBLAS instead of custom matrix multiplication kernels for quantized models |
|
||||||
|
| GGML_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
|
||||||
|
| GGML_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
|
||||||
|
| GGML_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
|
||||||
|
| GGML_CUDA_FA_ALL_QUANTS | Boolean | false | Compile support for all KV cache quantization type (combinations) for the FlashAttention CUDA kernels. More fine-grained control over KV cache size but compilation takes much longer. |
|
||||||
|
|
||||||
|
### hipBLAS
|
||||||
|
|
||||||
|
This provides BLAS acceleration on HIP-supported AMD GPUs.
|
||||||
|
Make sure to have ROCm installed.
|
||||||
|
You can download it from your Linux distro's package manager or from here: [ROCm Quick Start (Linux)](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/tutorial/quick-start.html#rocm-install-quick).
|
||||||
|
|
||||||
|
- Using `make`:
|
||||||
|
```bash
|
||||||
|
make GGML_HIPBLAS=1
|
||||||
|
```
|
||||||
|
- Using `CMake` for Linux (assuming a gfx1030-compatible AMD GPU):
|
||||||
|
```bash
|
||||||
|
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
|
||||||
|
cmake -S . -B build -DGGML_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
|
||||||
|
&& cmake --build build --config Release -- -j 16
|
||||||
|
```
|
||||||
|
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DGGML_HIP_UMA=ON`.
|
||||||
|
However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
|
||||||
|
|
||||||
|
Note that if you get the following error:
|
||||||
|
```
|
||||||
|
clang: error: cannot find ROCm device library; provide its path via '--rocm-path' or '--rocm-device-lib-path', or pass '-nogpulib' to build without ROCm device library
|
||||||
|
```
|
||||||
|
Try searching for a directory under `HIP_PATH` that contains the file
|
||||||
|
`oclc_abi_version_400.bc`. Then, add the following to the start of the
|
||||||
|
command: `HIP_DEVICE_LIB_PATH=<directory-you-just-found>`, so something
|
||||||
|
like:
|
||||||
|
```bash
|
||||||
|
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -p)" \
|
||||||
|
HIP_DEVICE_LIB_PATH=<directory-you-just-found> \
|
||||||
|
cmake -S . -B build -DGGML_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
|
||||||
|
&& cmake --build build -- -j 16
|
||||||
|
```
|
||||||
|
|
||||||
|
- Using `make` (example for target gfx1030, build with 16 CPU threads):
|
||||||
|
```bash
|
||||||
|
make -j16 GGML_HIPBLAS=1 GGML_HIP_UMA=1 AMDGPU_TARGETS=gfx1030
|
||||||
|
```
|
||||||
|
|
||||||
|
- Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS, and assuming a gfx1100-compatible AMD GPU):
|
||||||
|
```bash
|
||||||
|
set PATH=%HIP_PATH%\bin;%PATH%
|
||||||
|
cmake -S . -B build -G Ninja -DAMDGPU_TARGETS=gfx1100 -DGGML_HIPBLAS=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release
|
||||||
|
cmake --build build
|
||||||
|
```
|
||||||
|
Make sure that `AMDGPU_TARGETS` is set to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
|
||||||
|
Find your gpu version string by matching the most significant version information from `rocminfo | grep gfx | head -1 | awk '{print $2}'` with the list of processors, e.g. `gfx1035` maps to `gfx1030`.
|
||||||
|
|
||||||
|
|
||||||
|
The environment variable [`HIP_VISIBLE_DEVICES`](https://rocm.docs.amd.com/en/latest/understand/gpu_isolation.html#hip-visible-devices) can be used to specify which GPU(s) will be used.
|
||||||
|
If your GPU is not officially supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 (e.g. gfx1030, gfx1031, or gfx1035) or 11.0.0 on RDNA3.
|
||||||
|
The following compilation options are also available to tweak performance (yes, they refer to CUDA, not HIP, because it uses the same code as the cuBLAS version above):
|
||||||
|
|
||||||
|
| Option | Legal values | Default | Description |
|
||||||
|
|------------------------|------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||||
|
| GGML_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the HIP dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
|
||||||
|
| GGML_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the HIP mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. |
|
||||||
|
| GGML_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per HIP thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
|
||||||
|
|
||||||
|
### Vulkan
|
||||||
|
|
||||||
|
**With docker**:
|
||||||
|
|
||||||
|
You don't need to install Vulkan SDK. It will be installed inside the container.
|
||||||
|
|
||||||
|
```sh
|
||||||
|
# Build the image
|
||||||
|
docker build -t llama-cpp-vulkan -f .devops/llama-cli-vulkan.Dockerfile .
|
||||||
|
|
||||||
|
# Then, use it:
|
||||||
|
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-vulkan -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
|
||||||
|
```
|
||||||
|
|
||||||
|
**Without docker**:
|
||||||
|
|
||||||
|
Firstly, you need to make sure you have installed [Vulkan SDK](https://vulkan.lunarg.com/doc/view/latest/linux/getting_started_ubuntu.html)
|
||||||
|
|
||||||
|
For example, on Ubuntu 22.04 (jammy), use the command below:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add -
|
||||||
|
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
|
||||||
|
apt update -y
|
||||||
|
apt-get install -y vulkan-sdk
|
||||||
|
# To verify the installation, use the command below:
|
||||||
|
vulkaninfo
|
||||||
|
```
|
||||||
|
|
||||||
|
Alternatively your package manager might be able to provide the appropriate libraries.
|
||||||
|
For example for Ubuntu 22.04 you can install `libvulkan-dev` instead.
|
||||||
|
For Fedora 40, you can install `vulkan-devel`, `glslc` and `glslang` packages.
|
||||||
|
|
||||||
|
Then, build llama.cpp using the cmake command below:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cmake -B build -DGGML_VULKAN=1
|
||||||
|
cmake --build build --config Release
|
||||||
|
# Test the output binary (with "-ngl 33" to offload all layers to GPU)
|
||||||
|
./bin/llama-cli -m "PATH_TO_MODEL" -p "Hi you how are you" -n 50 -e -ngl 33 -t 4
|
||||||
|
|
||||||
|
# You should see in the output, ggml_vulkan detected your GPU. For example:
|
||||||
|
# ggml_vulkan: Using Intel(R) Graphics (ADL GT2) | uma: 1 | fp16: 1 | warp size: 32
|
||||||
|
```
|
||||||
|
|
||||||
|
### Android
|
||||||
|
|
||||||
|
To read documentation for how to build on Android, [click here](./android.md)
|
@ -1,4 +1,4 @@
|
|||||||
## Add a new model architecture to `llama.cpp`
|
# Add a new model architecture to `llama.cpp`
|
||||||
|
|
||||||
Adding a model requires few steps:
|
Adding a model requires few steps:
|
||||||
|
|
86
docs/docker.md
Normal file
86
docs/docker.md
Normal file
@ -0,0 +1,86 @@
|
|||||||
|
# Docker
|
||||||
|
|
||||||
|
## Prerequisites
|
||||||
|
* Docker must be installed and running on your system.
|
||||||
|
* Create a folder to store big models & intermediate files (ex. /llama/models)
|
||||||
|
|
||||||
|
## Images
|
||||||
|
We have three Docker images available for this project:
|
||||||
|
|
||||||
|
1. `ghcr.io/ggerganov/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`)
|
||||||
|
2. `ghcr.io/ggerganov/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`)
|
||||||
|
3. `ghcr.io/ggerganov/llama.cpp:server`: This image only includes the server executable file. (platforms: `linux/amd64`, `linux/arm64`)
|
||||||
|
|
||||||
|
Additionally, there the following images, similar to the above:
|
||||||
|
|
||||||
|
- `ghcr.io/ggerganov/llama.cpp:full-cuda`: Same as `full` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||||||
|
- `ghcr.io/ggerganov/llama.cpp:light-cuda`: Same as `light` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||||||
|
- `ghcr.io/ggerganov/llama.cpp:server-cuda`: Same as `server` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||||||
|
- `ghcr.io/ggerganov/llama.cpp:full-rocm`: Same as `full` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||||
|
- `ghcr.io/ggerganov/llama.cpp:light-rocm`: Same as `light` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||||
|
- `ghcr.io/ggerganov/llama.cpp:server-rocm`: Same as `server` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||||
|
|
||||||
|
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](.github/workflows/docker.yml). If you need different settings (for example, a different CUDA or ROCm library, you'll need to build the images locally for now).
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
The easiest way to download the models, convert them to ggml and optimize them is with the --all-in-one command which includes the full docker image.
|
||||||
|
|
||||||
|
Replace `/path/to/models` below with the actual path where you downloaded the models.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --all-in-one "/models/" 7B
|
||||||
|
```
|
||||||
|
|
||||||
|
On completion, you are ready to play!
|
||||||
|
|
||||||
|
```bash
|
||||||
|
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
|
||||||
|
```
|
||||||
|
|
||||||
|
or with a light image:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
|
||||||
|
```
|
||||||
|
|
||||||
|
or with a server image:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
docker run -v /path/to/models:/models -p 8000:8000 ghcr.io/ggerganov/llama.cpp:server -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512
|
||||||
|
```
|
||||||
|
|
||||||
|
## Docker With CUDA
|
||||||
|
|
||||||
|
Assuming one has the [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia-container-toolkit) properly installed on Linux, or is using a GPU enabled cloud, `cuBLAS` should be accessible inside the container.
|
||||||
|
|
||||||
|
## Building Docker locally
|
||||||
|
|
||||||
|
```bash
|
||||||
|
docker build -t local/llama.cpp:full-cuda -f .devops/full-cuda.Dockerfile .
|
||||||
|
docker build -t local/llama.cpp:light-cuda -f .devops/llama-cli-cuda.Dockerfile .
|
||||||
|
docker build -t local/llama.cpp:server-cuda -f .devops/llama-server-cuda.Dockerfile .
|
||||||
|
```
|
||||||
|
|
||||||
|
You may want to pass in some different `ARGS`, depending on the CUDA environment supported by your container host, as well as the GPU architecture.
|
||||||
|
|
||||||
|
The defaults are:
|
||||||
|
|
||||||
|
- `CUDA_VERSION` set to `11.7.1`
|
||||||
|
- `CUDA_DOCKER_ARCH` set to `all`
|
||||||
|
|
||||||
|
The resulting images, are essentially the same as the non-CUDA images:
|
||||||
|
|
||||||
|
1. `local/llama.cpp:full-cuda`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
|
||||||
|
2. `local/llama.cpp:light-cuda`: This image only includes the main executable file.
|
||||||
|
3. `local/llama.cpp:server-cuda`: This image only includes the server executable file.
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
After building locally, Usage is similar to the non-CUDA examples, but you'll need to add the `--gpus` flag. You will also want to use the `--n-gpu-layers` flag.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
docker run --gpus all -v /path/to/models:/models local/llama.cpp:full-cuda --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
|
||||||
|
docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
|
||||||
|
docker run --gpus all -v /path/to/models:/models local/llama.cpp:server-cuda -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512 --n-gpu-layers 1
|
||||||
|
```
|
39
docs/install.md
Normal file
39
docs/install.md
Normal file
@ -0,0 +1,39 @@
|
|||||||
|
# Install pre-built version of llama.cpp
|
||||||
|
|
||||||
|
## Homebrew
|
||||||
|
|
||||||
|
On Mac and Linux, the homebrew package manager can be used via
|
||||||
|
|
||||||
|
```sh
|
||||||
|
brew install llama.cpp
|
||||||
|
```
|
||||||
|
The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggerganov/llama.cpp/discussions/7668
|
||||||
|
|
||||||
|
## Nix
|
||||||
|
|
||||||
|
On Mac and Linux, the Nix package manager can be used via
|
||||||
|
|
||||||
|
```sh
|
||||||
|
nix profile install nixpkgs#llama-cpp
|
||||||
|
```
|
||||||
|
For flake enabled installs.
|
||||||
|
|
||||||
|
Or
|
||||||
|
|
||||||
|
```sh
|
||||||
|
nix-env --file '<nixpkgs>' --install --attr llama-cpp
|
||||||
|
```
|
||||||
|
|
||||||
|
For non-flake enabled installs.
|
||||||
|
|
||||||
|
This expression is automatically updated within the [nixpkgs repo](https://github.com/NixOS/nixpkgs/blob/nixos-24.05/pkgs/by-name/ll/llama-cpp/package.nix#L164).
|
||||||
|
|
||||||
|
## Flox
|
||||||
|
|
||||||
|
On Mac and Linux, Flox can be used to install llama.cpp within a Flox environment via
|
||||||
|
|
||||||
|
```sh
|
||||||
|
flox install llama-cpp
|
||||||
|
```
|
||||||
|
|
||||||
|
Flox follows the nixpkgs build of llama.cpp.
|
@ -4,7 +4,89 @@ You can also use the [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-
|
|||||||
|
|
||||||
Note: It is synced from llama.cpp `main` every 6 hours.
|
Note: It is synced from llama.cpp `main` every 6 hours.
|
||||||
|
|
||||||
## Llama 2 7B
|
Example usage:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# obtain the official LLaMA model weights and place them in ./models
|
||||||
|
ls ./models
|
||||||
|
llama-2-7b tokenizer_checklist.chk tokenizer.model
|
||||||
|
# [Optional] for models using BPE tokenizers
|
||||||
|
ls ./models
|
||||||
|
<folder containing weights and tokenizer json> vocab.json
|
||||||
|
# [Optional] for PyTorch .bin models like Mistral-7B
|
||||||
|
ls ./models
|
||||||
|
<folder containing weights and tokenizer json>
|
||||||
|
|
||||||
|
# install Python dependencies
|
||||||
|
python3 -m pip install -r requirements.txt
|
||||||
|
|
||||||
|
# convert the model to ggml FP16 format
|
||||||
|
python3 convert_hf_to_gguf.py models/mymodel/
|
||||||
|
|
||||||
|
# quantize the model to 4-bits (using Q4_K_M method)
|
||||||
|
./llama-quantize ./models/mymodel/ggml-model-f16.gguf ./models/mymodel/ggml-model-Q4_K_M.gguf Q4_K_M
|
||||||
|
|
||||||
|
# update the gguf filetype to current version if older version is now unsupported
|
||||||
|
./llama-quantize ./models/mymodel/ggml-model-Q4_K_M.gguf ./models/mymodel/ggml-model-Q4_K_M-v2.gguf COPY
|
||||||
|
```
|
||||||
|
|
||||||
|
Run the quantized model:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# start inference on a gguf model
|
||||||
|
./llama-cli -m ./models/mymodel/ggml-model-Q4_K_M.gguf -n 128
|
||||||
|
```
|
||||||
|
|
||||||
|
When running the larger models, make sure you have enough disk space to store all the intermediate files.
|
||||||
|
|
||||||
|
## Memory/Disk Requirements
|
||||||
|
|
||||||
|
As the models are currently fully loaded into memory, you will need adequate disk space to save them and sufficient RAM to load them. At the moment, memory and disk requirements are the same.
|
||||||
|
|
||||||
|
| Model | Original size | Quantized size (Q4_0) |
|
||||||
|
|------:|--------------:|----------------------:|
|
||||||
|
| 7B | 13 GB | 3.9 GB |
|
||||||
|
| 13B | 24 GB | 7.8 GB |
|
||||||
|
| 30B | 60 GB | 19.5 GB |
|
||||||
|
| 65B | 120 GB | 38.5 GB |
|
||||||
|
|
||||||
|
## Quantization
|
||||||
|
|
||||||
|
Several quantization methods are supported. They differ in the resulting model disk size and inference speed.
|
||||||
|
|
||||||
|
*(outdated)*
|
||||||
|
|
||||||
|
| Model | Measure | F16 | Q4_0 | Q4_1 | Q5_0 | Q5_1 | Q8_0 |
|
||||||
|
|------:|--------------|-------:|-------:|-------:|-------:|-------:|-------:|
|
||||||
|
| 7B | perplexity | 5.9066 | 6.1565 | 6.0912 | 5.9862 | 5.9481 | 5.9070 |
|
||||||
|
| 7B | file size | 13.0G | 3.5G | 3.9G | 4.3G | 4.7G | 6.7G |
|
||||||
|
| 7B | ms/tok @ 4th | 127 | 55 | 54 | 76 | 83 | 72 |
|
||||||
|
| 7B | ms/tok @ 8th | 122 | 43 | 45 | 52 | 56 | 67 |
|
||||||
|
| 7B | bits/weight | 16.0 | 4.5 | 5.0 | 5.5 | 6.0 | 8.5 |
|
||||||
|
| 13B | perplexity | 5.2543 | 5.3860 | 5.3608 | 5.2856 | 5.2706 | 5.2548 |
|
||||||
|
| 13B | file size | 25.0G | 6.8G | 7.6G | 8.3G | 9.1G | 13G |
|
||||||
|
| 13B | ms/tok @ 4th | - | 103 | 105 | 148 | 160 | 131 |
|
||||||
|
| 13B | ms/tok @ 8th | - | 73 | 82 | 98 | 105 | 128 |
|
||||||
|
| 13B | bits/weight | 16.0 | 4.5 | 5.0 | 5.5 | 6.0 | 8.5 |
|
||||||
|
|
||||||
|
- [k-quants](https://github.com/ggerganov/llama.cpp/pull/1684)
|
||||||
|
- recent k-quants improvements and new i-quants
|
||||||
|
- [#2707](https://github.com/ggerganov/llama.cpp/pull/2707)
|
||||||
|
- [#2807](https://github.com/ggerganov/llama.cpp/pull/2807)
|
||||||
|
- [#4773 - 2-bit i-quants (inference)](https://github.com/ggerganov/llama.cpp/pull/4773)
|
||||||
|
- [#4856 - 2-bit i-quants (inference)](https://github.com/ggerganov/llama.cpp/pull/4856)
|
||||||
|
- [#4861 - importance matrix](https://github.com/ggerganov/llama.cpp/pull/4861)
|
||||||
|
- [#4872 - MoE models](https://github.com/ggerganov/llama.cpp/pull/4872)
|
||||||
|
- [#4897 - 2-bit quantization](https://github.com/ggerganov/llama.cpp/pull/4897)
|
||||||
|
- [#4930 - imatrix for all k-quants](https://github.com/ggerganov/llama.cpp/pull/4930)
|
||||||
|
- [#4951 - imatrix on the GPU](https://github.com/ggerganov/llama.cpp/pull/4957)
|
||||||
|
- [#4969 - imatrix for legacy quants](https://github.com/ggerganov/llama.cpp/pull/4969)
|
||||||
|
- [#4996 - k-qunats tuning](https://github.com/ggerganov/llama.cpp/pull/4996)
|
||||||
|
- [#5060 - Q3_K_XS](https://github.com/ggerganov/llama.cpp/pull/5060)
|
||||||
|
- [#5196 - 3-bit i-quants](https://github.com/ggerganov/llama.cpp/pull/5196)
|
||||||
|
- [quantization tuning](https://github.com/ggerganov/llama.cpp/pull/5320), [another one](https://github.com/ggerganov/llama.cpp/pull/5334), and [another one](https://github.com/ggerganov/llama.cpp/pull/5361)
|
||||||
|
|
||||||
|
**Llama 2 7B**
|
||||||
|
|
||||||
| Quantization | Bits per Weight (BPW) |
|
| Quantization | Bits per Weight (BPW) |
|
||||||
|--------------|-----------------------|
|
|--------------|-----------------------|
|
||||||
@ -18,7 +100,8 @@ Note: It is synced from llama.cpp `main` every 6 hours.
|
|||||||
| Q5_K_M | 5.68 |
|
| Q5_K_M | 5.68 |
|
||||||
| Q6_K | 6.56 |
|
| Q6_K | 6.56 |
|
||||||
|
|
||||||
## Llama 2 13B
|
**Llama 2 13B**
|
||||||
|
|
||||||
Quantization | Bits per Weight (BPW)
|
Quantization | Bits per Weight (BPW)
|
||||||
-- | --
|
-- | --
|
||||||
Q2_K | 3.34
|
Q2_K | 3.34
|
||||||
@ -31,7 +114,7 @@ Q5_K_S | 5.51
|
|||||||
Q5_K_M | 5.67
|
Q5_K_M | 5.67
|
||||||
Q6_K | 6.56
|
Q6_K | 6.56
|
||||||
|
|
||||||
# Llama 2 70B
|
**Llama 2 70B**
|
||||||
|
|
||||||
Quantization | Bits per Weight (BPW)
|
Quantization | Bits per Weight (BPW)
|
||||||
-- | --
|
-- | --
|
||||||
|
Loading…
Reference in New Issue
Block a user