examples : remove finetune and train-text-from-scratch (#8669)

* examples : remove finetune and train-text-from-scratch

* fix build

* update help message

* fix small typo for export-lora
This commit is contained in:
Xuan Son Nguyen 2024-07-25 10:39:04 +02:00 committed by GitHub
parent 4b0eff3df5
commit be6d7c0791
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
15 changed files with 14 additions and 4299 deletions

View File

@ -10,7 +10,6 @@
"llama-embedding" "llama-embedding"
"llama-server" "llama-server"
"llama-quantize" "llama-quantize"
"llama-train-text-from-scratch"
]; ];
mkApp = name: { mkApp = name: {
type = "app"; type = "app";

View File

@ -13,8 +13,6 @@ elif [[ "$arg1" == '--quantize' || "$arg1" == '-q' ]]; then
./llama-quantize "$@" ./llama-quantize "$@"
elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then
./llama-cli "$@" ./llama-cli "$@"
elif [[ "$arg1" == '--finetune' || "$arg1" == '-f' ]]; then
./llama-finetune "$@"
elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then
echo "Converting PTH to GGML..." echo "Converting PTH to GGML..."
for i in `ls $1/$2/ggml-model-f16.bin*`; do for i in `ls $1/$2/ggml-model-f16.bin*`; do
@ -36,8 +34,6 @@ else
echo " ex: --outtype f16 \"/models/7B/\" " echo " ex: --outtype f16 \"/models/7B/\" "
echo " --quantize (-q): Optimize with quantization process ggml" echo " --quantize (-q): Optimize with quantization process ggml"
echo " ex: \"/models/7B/ggml-model-f16.bin\" \"/models/7B/ggml-model-q4_0.bin\" 2" echo " ex: \"/models/7B/ggml-model-f16.bin\" \"/models/7B/ggml-model-q4_0.bin\" 2"
echo " --finetune (-f): Run finetune command to create a lora finetune of the model"
echo " See documentation for finetune for command-line parameters"
echo " --all-in-one (-a): Execute --convert & --quantize" echo " --all-in-one (-a): Execute --convert & --quantize"
echo " ex: \"/models/\" 7B" echo " ex: \"/models/\" 7B"
echo " --server (-s): Run a model on the server" echo " --server (-s): Run a model on the server"

View File

@ -11,7 +11,6 @@ BUILD_TARGETS = \
llama-embedding \ llama-embedding \
llama-eval-callback \ llama-eval-callback \
llama-export-lora \ llama-export-lora \
llama-finetune \
llama-gbnf-validator \ llama-gbnf-validator \
llama-gguf \ llama-gguf \
llama-gguf-hash \ llama-gguf-hash \
@ -37,7 +36,6 @@ BUILD_TARGETS = \
llama-simple \ llama-simple \
llama-speculative \ llama-speculative \
llama-tokenize \ llama-tokenize \
llama-train-text-from-scratch \
llama-vdot \ llama-vdot \
llama-cvector-generator \ llama-cvector-generator \
tests/test-c.o tests/test-c.o
@ -64,13 +62,13 @@ TEST_TARGETS = \
tests/test-tokenizer-1-spm tests/test-tokenizer-1-spm
# Legacy build targets that were renamed in #7809, but should still be removed when the project is cleaned # Legacy build targets that were renamed in #7809, but should still be removed when the project is cleaned
LEGACY_TARGETS_CLEAN = main quantize quantize-stats perplexity imatrix embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \ LEGACY_TARGETS_CLEAN = main quantize quantize-stats perplexity imatrix embedding vdot q8dot convert-llama2c-to-ggml \
simple batched batched-bench save-load-state server gguf gguf-split eval-callback llama-bench libllava.a llava-cli baby-llama \ simple batched batched-bench save-load-state server gguf gguf-split eval-callback llama-bench libllava.a llava-cli baby-llama \
retrieval speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead lookup passkey gritlm retrieval speculative infill tokenize benchmark-matmult parallel export-lora lookahead lookup passkey gritlm
# Legacy build targets that were renamed in #7809, but we want to build binaries that for them that output a deprecation warning if people try to use them. # Legacy build targets that were renamed in #7809, but we want to build binaries that for them that output a deprecation warning if people try to use them.
# We don't want to clutter things too much, so we only build replacements for the most commonly used binaries. # We don't want to clutter things too much, so we only build replacements for the most commonly used binaries.
LEGACY_TARGETS_BUILD = main quantize perplexity embedding server finetune LEGACY_TARGETS_BUILD = main quantize perplexity embedding server
# Deprecation aliases # Deprecation aliases
ifdef LLAMA_CUBLAS ifdef LLAMA_CUBLAS
@ -1296,11 +1294,6 @@ llama-cvector-generator: examples/cvector-generator/cvector-generator.cpp \
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp \ llama-convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp \
$(OBJ_GGML) $(OBJ_LLAMA) $(OBJ_GGML) $(OBJ_LLAMA)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
@ -1316,11 +1309,6 @@ llama-baby-llama: examples/baby-llama/baby-llama.cpp \
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-finetune: examples/finetune/finetune.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-export-lora: examples/export-lora/export-lora.cpp \ llama-export-lora: examples/export-lora/export-lora.cpp \
$(OBJ_ALL) $(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
@ -1578,7 +1566,7 @@ llama-q8dot: pocs/vdot/q8dot.cpp ggml/src/ggml.o \
# Deprecated binaries that we want to keep around long enough for people to migrate to the new filenames, then these can be removed. # Deprecated binaries that we want to keep around long enough for people to migrate to the new filenames, then these can be removed.
# #
# Mark legacy binary targets as .PHONY so that they are always checked. # Mark legacy binary targets as .PHONY so that they are always checked.
.PHONY: main quantize perplexity embedding server finetune .PHONY: main quantize perplexity embedding server
# NOTE: We currently will always build the deprecation-warning `main` and `server` binaries to help users migrate. # NOTE: We currently will always build the deprecation-warning `main` and `server` binaries to help users migrate.
# Eventually we will want to remove these target from building all the time. # Eventually we will want to remove these target from building all the time.
@ -1621,13 +1609,3 @@ ifneq (,$(wildcard embedding))
@echo " Remove the 'embedding' binary to remove this warning." @echo " Remove the 'embedding' binary to remove this warning."
@echo "#########" @echo "#########"
endif endif
finetune: examples/deprecation-warning/deprecation-warning.cpp
ifneq (,$(wildcard finetune))
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
@echo "#########"
@echo "WARNING: The 'finetune' binary is deprecated. Please use 'llama-finetune' instead."
@echo " Remove the 'finetune' binary to remove this warning."
@echo "#########"
endif

View File

@ -21,7 +21,6 @@ else()
add_subdirectory(embedding) add_subdirectory(embedding)
add_subdirectory(eval-callback) add_subdirectory(eval-callback)
add_subdirectory(export-lora) add_subdirectory(export-lora)
add_subdirectory(finetune)
add_subdirectory(gbnf-validator) add_subdirectory(gbnf-validator)
add_subdirectory(gguf-hash) add_subdirectory(gguf-hash)
add_subdirectory(gguf-split) add_subdirectory(gguf-split)
@ -53,5 +52,4 @@ else()
add_subdirectory(simple) add_subdirectory(simple)
add_subdirectory(speculative) add_subdirectory(speculative)
add_subdirectory(tokenize) add_subdirectory(tokenize)
add_subdirectory(train-text-from-scratch)
endif() endif()

View File

@ -13,7 +13,6 @@ Please update all scripts and workflows to use the new binary names.
| server | llama-server | | server | llama-server |
| llama-bench | llama-bench | | llama-bench | llama-bench |
| embedding | llama-embedding | | embedding | llama-embedding |
| finetune | llama-finetune |
| quantize | llama-quantize | | quantize | llama-quantize |
| tokenize | llama-tokenize | | tokenize | llama-tokenize |
| export-lora | llama-export-lora | | export-lora | llama-export-lora |
@ -45,7 +44,6 @@ Please update all scripts and workflows to use the new binary names.
| save-load-state | llama-save-load-state | | save-load-state | llama-save-load-state |
| simple | llama-simple | | simple | llama-simple |
| speculative | llama-speculative | | speculative | llama-speculative |
| train-text-from-scratch | llama-train-text-from-scratch |
| vdot | llama-vdot | | vdot | llama-vdot |
| tests/test-c.o | tests/test-c.o | | tests/test-c.o | tests/test-c.o |

View File

@ -19,7 +19,15 @@ For example:
./bin/llama-export-lora \ ./bin/llama-export-lora \
-m open-llama-3b-v2-q8_0.gguf \ -m open-llama-3b-v2-q8_0.gguf \
-o open-llama-3b-v2-q8_0-english2tokipona-chat.gguf \ -o open-llama-3b-v2-q8_0-english2tokipona-chat.gguf \
--lora lora-open-llama-3b-v2-q8_0-english2tokipona-chat-LATEST.bin --lora lora-open-llama-3b-v2-q8_0-english2tokipona-chat-LATEST.gguf
``` ```
Multiple LORA adapters can be applied by passing multiple `--lora FNAME` or `--lora-scaled FNAME S` command line parameters. Multiple LORA adapters can be applied by passing multiple `--lora FNAME` or `--lora-scaled FNAME S` command line parameters:
```bash
./bin/llama-export-lora \
-m your_base_model.gguf \
-o your_merged_model.gguf \
--lora-scaled lora_task_A.gguf 0.5 \
--lora-scaled lora_task_B.gguf 0.5
```

View File

@ -1,5 +0,0 @@
set(TARGET llama-finetune)
add_executable(${TARGET} finetune.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View File

@ -1,90 +0,0 @@
# finetune
Basic usage instructions:
```bash
# get training data
wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/shakespeare.txt
# finetune LORA adapter
./bin/llama-finetune \
--model-base open-llama-3b-v2-q8_0.gguf \
--checkpoint-in chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf \
--checkpoint-out chk-lora-open-llama-3b-v2-q8_0-shakespeare-ITERATION.gguf \
--lora-out lora-open-llama-3b-v2-q8_0-shakespeare-ITERATION.bin \
--train-data "shakespeare.txt" \
--save-every 10 \
--threads 6 --adam-iter 30 --batch 4 --ctx 64 \
--use-checkpointing
# predict
./bin/llama-cli -m open-llama-3b-v2-q8_0.gguf --lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
```
**Only llama based models are supported!** The output files will be saved every N iterations (config with `--save-every N`).
The pattern 'ITERATION' in the output filenames will be replaced with the iteration number and with 'LATEST' for the latest output.
So in above example after 10 iterations these files will be written:
- chk-lora-open-llama-3b-v2-q8_0-shakespeare-10.gguf
- chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf
- lora-open-llama-3b-v2-q8_0-shakespeare-10.bin
- lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
After 10 more iterations:
- chk-lora-open-llama-3b-v2-q8_0-shakespeare-20.gguf
- chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf
- lora-open-llama-3b-v2-q8_0-shakespeare-20.bin
- lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
Checkpoint files (`--checkpoint-in FN`, `--checkpoint-out FN`) store the training process. When the input checkpoint file does not exist, it will begin finetuning a new randomly initialized adapter.
llama.cpp compatible LORA adapters will be saved with filename specified by `--lora-out FN`.
These LORA adapters can then be used by `llama-cli` together with the base model, like in the 'predict' example command above.
In `llama-cli` you can also load multiple LORA adapters, which will then be mixed together.
For example if you have two LORA adapters `lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin` and `lora-open-llama-3b-v2-q8_0-bible-LATEST.bin`, you can mix them together like this:
```bash
./bin/llama-cli -m open-llama-3b-v2-q8_0.gguf \
--lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin \
--lora lora-open-llama-3b-v2-q8_0-bible-LATEST.bin
```
You can change how strong each LORA adapter is applied to the base model by using `--lora-scaled FN SCALE` instead of `--lora FN`.
For example to apply 40% of the 'shakespeare' LORA adapter, 80% of the 'bible' LORA adapter and 100% of yet another one:
```bash
./bin/llama-cli -m open-llama-3b-v2-q8_0.gguf \
--lora-scaled lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin 0.4 \
--lora-scaled lora-open-llama-3b-v2-q8_0-bible-LATEST.bin 0.8 \
--lora lora-open-llama-3b-v2-q8_0-yet-another-one-LATEST.bin
```
The scale numbers don't need to add up to one, and you can also use numbers greater than 1 to further increase the influence of an adapter. But making the values too big will sometimes result in worse output. Play around to find good values.
Gradient checkpointing reduces the memory requirements by ~50% but increases the runtime.
If you have enough RAM, you can make finetuning a bit faster by disabling checkpointing with `--no-checkpointing`.
The default LORA rank can be specified with `--lora-r N`.
The LORA rank can be configured for each model tensor type separately with these command line options:
```bash
--lora-r N LORA r: default rank. Also specifies resulting scaling together with lora-alpha. (default 4)
--rank-att-norm N LORA rank for attention norm tensor (default 1)
--rank-ffn-norm N LORA rank for feed-forward norm tensor (default 1)
--rank-out-norm N LORA rank for output norm tensor (default 1)
--rank-tok-embd N LORA rank for token embeddings tensor (default 4)
--rank-out N LORA rank for output tensor (default 4)
--rank-wq N LORA rank for wq tensor (default 4)
--rank-wk N LORA rank for wk tensor (default 4)
--rank-wv N LORA rank for wv tensor (default 4)
--rank-wo N LORA rank for wo tensor (default 4)
--rank-ffn_gate N LORA rank for ffn_gate tensor (default 4)
--rank-ffn_down N LORA rank for ffn_down tensor (default 4)
--rank-ffn_up N LORA rank for ffn_up tensor (default 4)
```
The LORA rank of 'norm' tensors should always be 1.
To see all available options use `llama-finetune --help`.

View File

@ -1,487 +0,0 @@
#!/usr/bin/env python3
# finetune checkpoint --> gguf conversion
import argparse
import gguf
import struct
import numpy as np
from pathlib import Path
# gguf constants
LLM_KV_OPTIMIZER_TYPE = "optimizer.type"
LLM_KV_OPTIMIZER_TYPE_ADAM = "adam"
LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs"
LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version"
LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count"
LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count"
LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count"
LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized"
LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss"
LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss"
LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count"
LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count"
LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss"
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step"
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j"
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k"
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end"
LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count"
LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments"
LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments"
LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values"
LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters"
LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters"
LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients"
LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients"
LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction"
LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values"
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha"
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys"
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s"
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y"
LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model"
LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora"
LLM_KV_TRAINING_TYPE = "training.type"
LLM_KV_TRAINING_FILE_VERSION = "training.file_version"
LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"
LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"
LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"
LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD = "training.lora.rank.token_embd"
LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM = "training.lora.rank.output_norm"
LLM_KV_TRAINING_LORA_RANK_OUTPUT = "training.lora.rank.output"
LLM_KV_TRAINING_LORA_RANK_ATTN_NORM = "training.lora.rank.attn_norm"
LLM_KV_TRAINING_LORA_RANK_ATTN_Q = "training.lora.rank.attn_q"
LLM_KV_TRAINING_LORA_RANK_ATTN_K = "training.lora.rank.attn_k"
LLM_KV_TRAINING_LORA_RANK_ATTN_V = "training.lora.rank.attn_v"
LLM_KV_TRAINING_LORA_RANK_ATTN_OUT = "training.lora.rank.attn_output"
LLM_KV_TRAINING_LORA_RANK_FFN_NORM = "training.lora.rank.ffn_norm"
LLM_KV_TRAINING_LORA_RANK_FFN_GATE = "training.lora.rank.ffn_gate"
LLM_KV_TRAINING_LORA_RANK_FFN_DOWN = "training.lora.rank.ffn_down"
LLM_KV_TRAINING_LORA_RANK_FFN_UP = "training.lora.rank.ffn_up"
class Tensor:
def __init__(self, dtype='f', ne=None):
if ne is None:
ne = []
self.dtype = dtype
self.ne = ne
self.nbytes = 0
if self.dtype == 'f':
if len(self.ne) == 0:
self.nbytes = 0
else:
self.nbytes = int(np.prod(self.ne)) * 4
else:
raise ValueError(f"Unhandled data type '{self.dtype}'")
def load(self, data, offset):
nd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
namelen = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
dtype = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
assert(nd == len(self.ne))
ne = []
for d in range(nd):
n = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
ne.append(n)
if tuple(ne) != tuple(self.ne):
raise ValueError(f"Tensor.load: Expected number of elements {str(self.ne)} does not match what is read from file {str(ne)}")
if self.dtype == 'f':
assert(dtype == 0)
else:
raise ValueError(f"Unhandled data type '{self.dtype}'")
self.name = bytes(data[offset:offset+namelen]); offset += namelen
# 32-byte alignment
offset += (0 - offset) & 31
self.data = data[offset:offset+self.nbytes]
offset += self.nbytes
return offset
def max_storage_size(self):
result = 0
result += 4 # nd
result += 4 # namelen
result += 4 # dtype
result += len(self.ne)*8 # ne
result += 48 # name (maximum as of commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9)
result += 31 # 32-byte alignment
result += self.nbytes
return result
def save_gguf(self, gguf_writer, name):
gguf_writer.add_tensor(
name=name,
tensor=self.data,
raw_shape=np.array(list(reversed(self.ne))),
raw_dtype=gguf.GGMLQuantizationType.F32)
class OptimizationContext:
def __init__(self):
pass
def load(self, data, offset):
self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]
offset += 4
if self.version != 1:
raise ValueError('Invalid version of optimization context in checkpoint file')
self.past = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
self.lbfgs_m = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
self.nx = struct.unpack('N', bytes(data[offset:offset + 8]))[0]; offset += 8
self.iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
self.just_initialized = bool(struct.unpack('<i', bytes(data[offset:offset + 4]))[0]); offset += 4
self.adam_m = Tensor('f', [self.nx])
self.adam_v = Tensor('f', [self.nx])
self.adam_pf = Tensor('f', [self.past] if self.past > 0 else [])
self.lbfgs_x = Tensor('f', [self.nx])
self.lbfgs_xp = Tensor('f', [self.nx])
self.lbfgs_g = Tensor('f', [self.nx])
self.lbfgs_gp = Tensor('f', [self.nx])
self.lbfgs_d = Tensor('f', [self.nx])
self.lbfgs_pf = Tensor('f', [self.past] if self.past > 0 else [])
self.lbfgs_lmal = Tensor('f', [self.lbfgs_m])
self.lbfgs_lmys = Tensor('f', [self.lbfgs_m])
self.lbfgs_lms = Tensor('f', [self.nx, self.lbfgs_m])
self.lbfgs_lmy = Tensor('f', [self.nx, self.lbfgs_m])
# forgot to save type in version 1:
# guess self.type from number of remaining bytes
size_type_0 = 12 + sum([t.max_storage_size() for t in
[self.adam_m, self.adam_v]
+([self.adam_pf] if (self.past > 0) else [])])
size_type_1 = 24 + sum([t.max_storage_size() for t in
[self.lbfgs_x, self.lbfgs_xp, self.lbfgs_g,
self.lbfgs_gp, self.lbfgs_d, self.lbfgs_pf,
self.lbfgs_lmal, self.lbfgs_lmys,
self.lbfgs_lms, self.lbfgs_lmy]
+([self.lbfgs_pf] if (self.past > 0) else [])])
# due to alignment padding the size might not by exact
# but the difference in size for both types is significant,
# so we can just use whichever is closest
remaining = len(data) - offset
if abs(remaining - size_type_0) < abs(remaining - size_type_1):
self.type = 0
else:
self.type = 1
if self.type == 0:
offset = self.adam_m.load(data, offset)
offset = self.adam_v.load(data, offset)
offset = self.adam_pf.load(data,offset)
self.adam_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
self.adam_fx_prev = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
self.adam_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
elif self.type == 1:
offset = self.lbfgs_x.load(data, offset)
offset = self.lbfgs_xp.load(data, offset)
offset = self.lbfgs_g.load(data, offset)
offset = self.lbfgs_gp.load(data, offset)
offset = self.lbfgs_d.load(data, offset)
offset = self.lbfgs_pf.load(data, offset)
offset = self.lbfgs_lmal.load(data, offset)
offset = self.lbfgs_lmys.load(data, offset)
offset = self.lbfgs_lms.load(data, offset)
offset = self.lbfgs_lmy.load(data, offset)
self.lbfgs_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
self.lbfgs_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
self.lbfgs_j = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
self.lbfgs_k = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
self.lbfgs_end = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
self.lbfgs_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
else:
raise ValueError(f"Invalid optimizer type '{self.type}'")
return offset
def save_gguf(self, gguf_writer):
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_FILE_VERSION, 0)
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, self.past)
gguf_writer.add_uint64(LLM_KV_OPTIMIZER_PARAMETER_COUNT, self.nx)
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ITERATION_COUNT, self.iter)
gguf_writer.add_bool(LLM_KV_OPTIMIZER_JUST_INITIALIZED, self.just_initialized)
if self.type == 0:
gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM)
gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, self.adam_fx_best)
gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, self.adam_fx_prev)
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, self.adam_n_no_improvement)
self.adam_m.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS)
self.adam_v.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS)
if self.past > 0:
self.adam_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES)
elif self.type == 1:
gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS)
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, self.lbfgs_m)
gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, self.lbfgs_fx_best)
gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, self.lbfgs_step)
gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, self.lbfgs_j)
gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, self.lbfgs_k)
gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, self.lbfgs_end)
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, self.lbfgs_n_no_improvement)
self.lbfgs_x.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS)
self.lbfgs_xp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS)
self.lbfgs_g.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS)
self.lbfgs_gp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS)
self.lbfgs_d.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION)
if self.past > 0:
self.lbfgs_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES)
self.lbfgs_lmal.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA)
self.lbfgs_lmys.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS)
self.lbfgs_lms.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S)
self.lbfgs_lmy.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y)
else:
raise ValueError('Unknown optimizer type')
class LoraParams:
def __init__(self):
pass
def load(self, data, offset):
self.n_rank_attention_norm = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
self.n_rank_wq = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
self.n_rank_wk = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
self.n_rank_wv = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
self.n_rank_wo = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
self.n_rank_ffn_norm = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
self.n_rank_w1 = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
self.n_rank_w2 = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
self.n_rank_w3 = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
self.n_rank_tok_embeddings = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
self.n_rank_norm = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
self.n_rank_output = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
return offset
def save_gguf(self, gguf_writer):
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD, self.n_rank_tok_embeddings)
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM, self.n_rank_norm)
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_OUTPUT, self.n_rank_output)
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_NORM, self.n_rank_attention_norm)
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_Q, self.n_rank_wq)
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_K, self.n_rank_wk)
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_V, self.n_rank_wv)
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_OUT, self.n_rank_wo)
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_NORM, self.n_rank_ffn_norm)
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_GATE, self.n_rank_w1)
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_DOWN, self.n_rank_w2)
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_UP, self.n_rank_w3)
class ModelParams:
def __init__(self, n_ff = None):
self.n_ff = n_ff
def load(self, data, offset):
self.n_vocab = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
self.n_embd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
self.n_mult = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
self.n_head = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
self.n_layer = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
self.n_rot = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
return offset
def get_n_ff(self):
if self.n_ff is None:
# struct my_llama_model::get_n_ff in train-text-from-scratch.cpp commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9
return ((2*(4*self.n_embd)//3 + self.n_mult - 1)//self.n_mult)*self.n_mult
else:
return self.n_ff
def save_gguf(self, gguf_writer):
# self.n_vocab not saved
gguf_writer.add_embedding_length(self.n_embd)
gguf_writer.add_head_count(self.n_head)
gguf_writer.add_block_count(self.n_layer)
gguf_writer.add_rope_dimension_count(self.n_rot)
gguf_writer.add_feed_forward_length(self.get_n_ff())
def tensor_name(key, bid=None, suffix=".weight"):
return gguf.TENSOR_NAMES[key].format(bid=bid) + suffix
class Layer:
def __init__(self, params, lora_params, bid):
self.bid = bid
self.att_norm_a = Tensor('f', [lora_params.n_rank_attention_norm, params.n_embd])
self.att_norm_b = Tensor('f', [lora_params.n_rank_attention_norm, 1])
self.wq_a = Tensor('f', [lora_params.n_rank_wq, params.n_embd])
self.wq_b = Tensor('f', [lora_params.n_rank_wq, params.n_embd])
self.wk_a = Tensor('f', [lora_params.n_rank_wk, params.n_embd])
self.wk_b = Tensor('f', [lora_params.n_rank_wk, params.n_embd])
self.wv_a = Tensor('f', [lora_params.n_rank_wv, params.n_embd])
self.wv_b = Tensor('f', [lora_params.n_rank_wv, params.n_embd])
self.wo_a = Tensor('f', [lora_params.n_rank_wo, params.n_embd])
self.wo_b = Tensor('f', [lora_params.n_rank_wo, params.n_embd])
self.ffn_norm_a = Tensor('f', [lora_params.n_rank_ffn_norm, params.n_embd])
self.ffn_norm_b = Tensor('f', [lora_params.n_rank_ffn_norm, 1])
self.w1_a = Tensor('f', [lora_params.n_rank_w1, params.n_embd])
self.w1_b = Tensor('f', [lora_params.n_rank_w1, params.get_n_ff()])
self.w2_a = Tensor('f', [lora_params.n_rank_w2, params.get_n_ff()])
self.w2_b = Tensor('f', [lora_params.n_rank_w2, params.n_embd])
self.w3_a = Tensor('f', [lora_params.n_rank_w3, params.n_embd])
self.w3_b = Tensor('f', [lora_params.n_rank_w3, params.get_n_ff()])
def load(self, data, offset):
offset = self.att_norm_a.load(data, offset)
offset = self.att_norm_b.load(data, offset)
offset = self.wq_a.load(data, offset)
offset = self.wq_b.load(data, offset)
offset = self.wk_a.load(data, offset)
offset = self.wk_b.load(data, offset)
offset = self.wv_a.load(data, offset)
offset = self.wv_b.load(data, offset)
offset = self.wo_a.load(data, offset)
offset = self.wo_b.load(data, offset)
offset = self.ffn_norm_a.load(data, offset)
offset = self.ffn_norm_b.load(data, offset)
offset = self.w1_a.load(data, offset)
offset = self.w1_b.load(data, offset)
offset = self.w2_a.load(data, offset)
offset = self.w2_b.load(data, offset)
offset = self.w3_a.load(data, offset)
offset = self.w3_b.load(data, offset)
return offset
def save_gguf(self, gguf_writer):
self.att_norm_a.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_NORM, self.bid, ".weight.lora_a"))
self.att_norm_b.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_NORM, self.bid, ".weight.lora_b"))
self.wq_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_Q, self.bid, ".weight.lora_a"))
self.wq_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_Q, self.bid, ".weight.lora_b"))
self.wk_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_K, self.bid, ".weight.lora_a"))
self.wk_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_K, self.bid, ".weight.lora_b"))
self.wv_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_V, self.bid, ".weight.lora_a"))
self.wv_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_V, self.bid, ".weight.lora_b"))
self.wo_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, self.bid, ".weight.lora_a"))
self.wo_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, self.bid, ".weight.lora_b"))
self.ffn_norm_a.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_NORM, self.bid, ".weight.lora_a"))
self.ffn_norm_b.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_NORM, self.bid, ".weight.lora_b"))
self.w1_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_GATE, self.bid, ".weight.lora_a"))
self.w1_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_GATE, self.bid, ".weight.lora_b"))
self.w2_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, self.bid, ".weight.lora_a"))
self.w2_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, self.bid, ".weight.lora_b"))
self.w3_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_UP, self.bid, ".weight.lora_a"))
self.w3_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_UP, self.bid, ".weight.lora_b"))
class LoraModel:
def __init__(self, n_ff = None):
self.params = ModelParams(n_ff = n_ff)
self.lora_params = LoraParams()
self.layers = []
def load(self, data, offset):
offset = self.params.load(data, offset)
offset = self.lora_params.load(data, offset)
self.tok_embd_a = Tensor('f', [self.lora_params.n_rank_tok_embeddings, self.params.n_embd])
self.tok_embd_b = Tensor('f', [self.lora_params.n_rank_tok_embeddings, self.params.n_vocab])
self.norm_a = Tensor('f', [self.lora_params.n_rank_norm, self.params.n_embd])
self.norm_b = Tensor('f', [self.lora_params.n_rank_norm, 1])
self.output_a = Tensor('f', [self.lora_params.n_rank_output, self.params.n_embd])
self.output_b = Tensor('f', [self.lora_params.n_rank_output, self.params.n_vocab])
offset = self.tok_embd_a.load(data, offset)
offset = self.tok_embd_b.load(data, offset)
offset = self.norm_a.load(data, offset)
offset = self.norm_b.load(data, offset)
offset = self.output_a.load(data, offset)
offset = self.output_b.load(data, offset)
self.layers.clear()
for bid in range(self.params.n_layer):
layer = Layer(self.params, self.lora_params, bid)
offset = layer.load(data, offset)
self.layers.append(layer)
return offset
def save_gguf(self, gguf_writer):
self.params.save_gguf(gguf_writer)
self.lora_params.save_gguf(gguf_writer)
self.tok_embd_a.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD, suffix=".weight.lora_a"))
self.tok_embd_b.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD, suffix=".weight.lora_b"))
self.norm_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT_NORM, suffix=".weight.lora_a"))
self.norm_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT_NORM, suffix=".weight.lora_b"))
self.output_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT, suffix=".weight.lora_a"))
self.output_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT, suffix=".weight.lora_b"))
for layer in self.layers:
layer.save_gguf(gguf_writer)
class LoraCheckpoint:
def __init__(self, n_ff = None):
self.model = LoraModel(n_ff = n_ff)
self.opt_ctx = OptimizationContext()
def load(self, data, offset):
magic = bytes(reversed(data[offset:offset + 4])); offset += 4
if magic != b'ggcl':
raise ValueError(f"File header magic indicates, that this is no finetune-lora checkpoint file. Expected 'ggcl', Got '{str(magic)}'")
self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
if self.version != 0:
raise ValueError('Invalid version of checkpoint file')
self.train_its = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
self.train_samples = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
self.train_tokens = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
offset = self.model.load(data, offset)
offset = self.opt_ctx.load(data, offset)
return offset
def save_gguf(self, gguf_writer):
gguf_writer.add_file_type(gguf.GGMLQuantizationType.F32)
gguf_writer.add_layer_norm_rms_eps(1e-5)
gguf_writer.add_uint32(LLM_KV_TRAINING_FILE_VERSION, 0)
gguf_writer.add_string(LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_FINETUNE_LORA)
gguf_writer.add_uint32(LLM_KV_TRAINING_ITERATION_COUNT, self.train_its)
gguf_writer.add_uint32(LLM_KV_TRAINING_SAMPLE_COUNT, self.train_samples)
gguf_writer.add_uint32(LLM_KV_TRAINING_TOKEN_COUNT, self.train_tokens)
self.model.save_gguf(gguf_writer)
self.opt_ctx.save_gguf(gguf_writer)
def handle_args():
parser = argparse.ArgumentParser(description = 'Convert finetune checkpoints to GGUF')
parser.add_argument('--input', '-i', type = Path, help = 'Input finetune checkpoint filename', required=True)
parser.add_argument('--output', '-o', type = Path, help = 'Output GGUF filename', required=True)
parser.add_argument('--ff', type = int, help = "Feedforward size, if not provided compute from n_mult. Provide this if you get 'ValueError: Tensor.load: Expected number of elements does not match what is read from file'", required=False)
return parser.parse_args()
def main():
cfg = handle_args()
print(cfg)
data = np.memmap(cfg.input, mode = 'r')
chk = LoraCheckpoint(n_ff = cfg.ff)
offset = 0
offset = chk.load(data, offset)
# we should have read all available data
assert(offset == len(data))
gguf_writer = gguf.GGUFWriter(cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False)
chk.save_gguf(gguf_writer)
print(" gguf: write header")
gguf_writer.write_header_to_file()
print(" gguf: write metadata")
gguf_writer.write_kv_data_to_file()
print(" gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
if __name__ == '__main__':
main()

File diff suppressed because it is too large Load Diff

View File

@ -1,34 +0,0 @@
#!/bin/bash
cd `dirname $0`
cd ../..
EXE="./llama-finetune"
if [[ ! $LLAMA_MODEL_DIR ]]; then LLAMA_MODEL_DIR="./models"; fi
if [[ ! $LLAMA_TRAINING_DIR ]]; then LLAMA_TRAINING_DIR="."; fi
# MODEL="$LLAMA_MODEL_DIR/openllama-3b-v2-q8_0.gguf" # This is the model the readme uses.
MODEL="$LLAMA_MODEL_DIR/openllama-3b-v2.gguf" # An f16 model. Note in this case with "-g", you get an f32-format .BIN file that isn't yet supported if you use it with "llama-cli --lora" with GPU inferencing.
while getopts "dg" opt; do
case $opt in
d)
DEBUGGER="gdb --args"
;;
g)
EXE="./build/bin/Release/finetune"
GPUARG="--gpu-layers 25"
;;
esac
done
$DEBUGGER $EXE \
--model-base $MODEL \
$GPUARG \
--checkpoint-in chk-ol3b-shakespeare-LATEST.gguf \
--checkpoint-out chk-ol3b-shakespeare-ITERATION.gguf \
--lora-out lora-ol3b-shakespeare-ITERATION.bin \
--train-data "$LLAMA_TRAINING_DIR\shakespeare.txt" \
--save-every 10 \
--threads 10 --adam-iter 30 --batch 4 --ctx 64 \
--use-checkpointing

View File

@ -1,5 +0,0 @@
set(TARGET llama-train-text-from-scratch)
add_executable(${TARGET} train-text-from-scratch.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View File

@ -1,27 +0,0 @@
# train-text-from-scratch
Basic usage instructions:
```bash
# get training data
wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/shakespeare.txt
# train
./bin/llama-train-text-from-scratch \
--vocab-model ../models/ggml-vocab-llama.gguf \
--ctx 64 --embd 256 --head 8 --layer 16 \
--checkpoint-in chk-shakespeare-256x16-LATEST.gguf \
--checkpoint-out chk-shakespeare-256x16-ITERATION.gguf \
--model-out ggml-shakespeare-256x16-f32-ITERATION.gguf \
--train-data "shakespeare.txt" \
-t 6 -b 16 --seed 1 --adam-iter 256 \
--no-checkpointing
# predict
./bin/llama-cli -m ggml-shakespeare-256x16-f32.gguf
```
Output files will be saved every N iterations (config with `--save-every N`).
The pattern "ITERATION" in the output filenames will be replaced with the iteration number and "LATEST" for the latest output.
To train GGUF models just pass them to `--checkpoint-in FN`.

View File

@ -1,499 +0,0 @@
#!/usr/bin/env python3
# train-text-from-scratch checkpoint --> gguf conversion
import argparse
import os
import struct
import sys
import numpy as np
from pathlib import Path
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / '..' / '..' / 'gguf-py'))
import gguf
# gguf constants
LLM_KV_OPTIMIZER_TYPE = "optimizer.type"
LLM_KV_OPTIMIZER_TYPE_ADAM = "adam"
LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs"
LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version"
LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count"
LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count"
LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count"
LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized"
LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss"
LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss"
LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count"
LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count"
LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss"
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step"
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j"
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k"
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end"
LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count"
LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments"
LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments"
LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values"
LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters"
LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters"
LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients"
LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients"
LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction"
LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values"
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha"
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys"
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s"
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y"
LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model"
LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora"
LLM_KV_TRAINING_TYPE = "training.type"
LLM_KV_TRAINING_FILE_VERSION = "training.file_version"
LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"
LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"
LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"
class Tensor:
def __init__(self, dtype='f', ne=None):
if ne is None:
ne = []
self.dtype = dtype
self.ne = ne
self.nbytes = 0
if self.dtype == 'f':
if len(self.ne) == 0:
self.nbytes = 0
else:
self.nbytes = int(np.prod(self.ne)) * 4
else:
raise ValueError(f"Unhandled data type '{self.dtype}'")
def load(self, data, offset):
nd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
namelen = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
dtype = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
assert(nd == len(self.ne))
ne = []
for d in range(nd):
n = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
ne.append(n)
assert(tuple(ne) == tuple(self.ne))
if self.dtype == 'f':
assert(dtype == 0)
else:
raise ValueError(f"Unhandled data type '{self.dtype}'")
self.name = bytes(data[offset:offset+namelen]); offset += namelen
# 32-byte alignment
offset += (0 - offset) & 31
self.data = data[offset:offset+self.nbytes]
offset += self.nbytes
return offset
def max_storage_size(self):
result = 0
result += 4 # nd
result += 4 # namelen
result += 4 # dtype
result += len(self.ne)*8 # ne
result += 48 # name (maximum as of commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9)
result += 31 # 32-byte alignment
result += self.nbytes
return result
def save_gguf(self, gguf_writer, name):
gguf_writer.add_tensor(
name=name,
tensor=self.data,
raw_shape=np.array(list(reversed(self.ne))),
raw_dtype=gguf.GGMLQuantizationType.F32)
class OptimizationParamsV0:
def __init__(self):
pass
def load(self, data, offset):
self.type = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
self.n_threads = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
self.past = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
self.delta = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
self.print_forward_graph = struct.unpack('<?', bytes(data[offset:offset + 1]))[0]; offset += 4 # 32bit-aligned
self.print_backward_graph = struct.unpack('<?', bytes(data[offset:offset + 1]))[0]; offset += 4 # 32bit-aligned
self.adam_n_iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
self.adam_sched = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
self.adam_decay = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
self.adam_alpha = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
self.adam_beta1 = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
self.adam_beta2 = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
self.adam_eps = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
self.adam_eps_f = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
self.adam_eps_g = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
self.lbfgs_m = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
self.lbfgs_n_iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
self.lbfgs_max_linesearch = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
self.lbfgs_eps = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
self.lbfgs_ftol = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
self.lbfgs_wolfe = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
self.lbfgs_min_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
self.lbfgs_max_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
self.lbfgs_linesearch = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
return offset
class OptimizationContext:
def __init__(self):
pass
def load(self, data, offset):
self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]
offset += 4
if self.version == 0:
params = OptimizationParamsV0()
offset = params.load(data, offset)
self.past = params.past
self.lbfgs_m = params.lbfgs_m
self.nx = struct.unpack('N', bytes(data[offset:offset + 8]))[0]; offset += 8
self.iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
self.just_initialized = bool(struct.unpack('<i', bytes(data[offset:offset + 4]))[0]); offset += 4
self.type = params.type
self.adam_m = Tensor('f', [self.nx])
self.adam_v = Tensor('f', [self.nx])
self.adam_pf = Tensor('f', [self.past] if self.past > 0 else [])
self.lbfgs_x = Tensor('f', [self.nx])
self.lbfgs_xp = Tensor('f', [self.nx])
self.lbfgs_g = Tensor('f', [self.nx])
self.lbfgs_gp = Tensor('f', [self.nx])
self.lbfgs_d = Tensor('f', [self.nx])
self.lbfgs_pf = Tensor('f', [self.past] if self.past > 0 else [])
self.lbfgs_lmal = Tensor('f', [self.lbfgs_m])
self.lbfgs_lmys = Tensor('f', [self.lbfgs_m])
self.lbfgs_lms = Tensor('f', [self.nx, self.lbfgs_m])
self.lbfgs_lmy = Tensor('f', [self.nx, self.lbfgs_m])
if self.type == 0:
# these tensors are stored, but we don't need their data
x = Tensor('f', [self.nx])
g = Tensor('f', [self.nx])
g2 = Tensor('f', [self.nx])
mh = Tensor('f', [self.nx])
vh = Tensor('f', [self.nx])
offset = x.load(data, offset)
offset = g.load(data, offset)
offset = g2.load(data, offset)
offset = self.adam_m.load(data, offset)
offset = self.adam_v.load(data, offset)
offset = mh.load(data, offset)
offset = vh.load(data, offset)
offset = self.adam_pf.load(data, offset)
self.adam_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
self.adam_fx_prev = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
self.adam_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
elif self.type == 1:
offset = self.lbfgs_x.load(data, offset)
offset = self.lbfgs_xp.load(data, offset)
offset = self.lbfgs_g.load(data, offset)
offset = self.lbfgs_gp.load(data, offset)
offset = self.lbfgs_d.load(data, offset)
offset = self.lbfgs_pf.load(data, offset)
offset = self.lbfgs_lmal.load(data, offset)
offset = self.lbfgs_lmys.load(data, offset)
offset = self.lbfgs_lms.load(data, offset)
offset = self.lbfgs_lmy.load(data, offset)
self.lbfgs_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
self.lbfgs_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
self.lbfgs_j = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
self.lbfgs_k = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
self.lbfgs_end = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
self.lbfgs_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
else:
raise ValueError('Unknown optimizer type')
elif self.version == 1:
self.past = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
self.lbfgs_m = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
self.nx = struct.unpack('N', bytes(data[offset:offset + 8]))[0]; offset += 8
self.iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
self.just_initialized = bool(struct.unpack('<i', bytes(data[offset:offset + 4]))[0]); offset += 4
self.adam_m = Tensor('f', [self.nx])
self.adam_v = Tensor('f', [self.nx])
self.adam_pf = Tensor('f', [self.past] if self.past > 0 else [])
self.lbfgs_x = Tensor('f', [self.nx])
self.lbfgs_xp = Tensor('f', [self.nx])
self.lbfgs_g = Tensor('f', [self.nx])
self.lbfgs_gp = Tensor('f', [self.nx])
self.lbfgs_d = Tensor('f', [self.nx])
self.lbfgs_pf = Tensor('f', [self.past] if self.past > 0 else [])
self.lbfgs_lmal = Tensor('f', [self.lbfgs_m])
self.lbfgs_lmys = Tensor('f', [self.lbfgs_m])
self.lbfgs_lms = Tensor('f', [self.nx, self.lbfgs_m])
self.lbfgs_lmy = Tensor('f', [self.nx, self.lbfgs_m])
# forgot to save type in version 1:
# guess self.type from number of remaining bytes
size_type_0 = 12 + sum([t.max_storage_size() for t in
[self.adam_m, self.adam_v]
+([self.adam_pf] if (self.past > 0) else [])])
size_type_1 = 24 + sum([t.max_storage_size() for t in
[self.lbfgs_x, self.lbfgs_xp, self.lbfgs_g,
self.lbfgs_gp, self.lbfgs_d, self.lbfgs_pf,
self.lbfgs_lmal, self.lbfgs_lmys,
self.lbfgs_lms, self.lbfgs_lmy]
+([self.lbfgs_pf] if (self.past > 0) else [])])
# due to alignment padding the size might not by exact
# but the difference in size for both types is significant,
# so we can just use whichever is closest
remaining = len(data) - offset
if abs(remaining - size_type_0) < abs(remaining - size_type_1):
self.type = 0
else:
self.type = 1
if self.type == 0:
offset = self.adam_m.load(data, offset)
offset = self.adam_v.load(data, offset)
offset = self.adam_pf.load(data,offset)
self.adam_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
self.adam_fx_prev = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
self.adam_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
elif self.type == 1:
offset = self.lbfgs_x.load(data, offset)
offset = self.lbfgs_xp.load(data, offset)
offset = self.lbfgs_g.load(data, offset)
offset = self.lbfgs_gp.load(data, offset)
offset = self.lbfgs_d.load(data, offset)
offset = self.lbfgs_pf.load(data, offset)
offset = self.lbfgs_lmal.load(data, offset)
offset = self.lbfgs_lmys.load(data, offset)
offset = self.lbfgs_lms.load(data, offset)
offset = self.lbfgs_lmy.load(data, offset)
self.lbfgs_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
self.lbfgs_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
self.lbfgs_j = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
self.lbfgs_k = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
self.lbfgs_end = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
self.lbfgs_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
else:
raise ValueError('Invalid version of checkpoint file')
return offset
def save_gguf(self, gguf_writer):
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_FILE_VERSION, 0)
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, self.past)
gguf_writer.add_uint64(LLM_KV_OPTIMIZER_PARAMETER_COUNT, self.nx)
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ITERATION_COUNT, self.iter)
gguf_writer.add_bool(LLM_KV_OPTIMIZER_JUST_INITIALIZED, self.just_initialized)
if self.type == 0:
gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM)
gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, self.adam_fx_best)
gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, self.adam_fx_prev)
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, self.adam_n_no_improvement)
self.adam_m.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS)
self.adam_v.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS)
if self.past > 0:
self.adam_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES)
elif self.type == 1:
gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS)
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, self.lbfgs_m)
gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, self.lbfgs_fx_best)
gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, self.lbfgs_step)
gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, self.lbfgs_j)
gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, self.lbfgs_k)
gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, self.lbfgs_end)
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, self.lbfgs_n_no_improvement)
self.lbfgs_x.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS)
self.lbfgs_xp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS)
self.lbfgs_g.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS)
self.lbfgs_gp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS)
self.lbfgs_d.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION)
if self.past > 0:
self.lbfgs_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES)
self.lbfgs_lmal.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA)
self.lbfgs_lmys.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS)
self.lbfgs_lms.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S)
self.lbfgs_lmy.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y)
else:
raise ValueError('Unknown optimizer type')
class ModelParams:
def __init__(self):
pass
def load(self, data, offset):
self.n_vocab = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
self.n_embd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
self.n_mult = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
self.n_head = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
self.n_layer = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
self.n_rot = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
return offset
def get_n_ff(self):
# struct my_llama_model::get_n_ff in train-text-from-scratch.cpp commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9
return ((2*(4*self.n_embd)//3 + self.n_mult - 1)//self.n_mult)*self.n_mult
def save_gguf(self, gguf_writer):
# self.n_vocab not saved
gguf_writer.add_embedding_length(self.n_embd)
gguf_writer.add_head_count(self.n_head)
gguf_writer.add_block_count(self.n_layer)
gguf_writer.add_rope_dimension_count(self.n_rot)
gguf_writer.add_feed_forward_length(self.get_n_ff())
def tensor_name(key, bid=None):
return gguf.TENSOR_NAMES[key].format(bid=bid) + ".weight"
class Layer:
def __init__(self, params, bid):
self.bid = bid
self.att_norm = Tensor('f', [params.n_embd])
self.wq = Tensor('f', [params.n_embd, params.n_embd])
self.wk = Tensor('f', [params.n_embd, params.n_embd])
self.wv = Tensor('f', [params.n_embd, params.n_embd])
self.wo = Tensor('f', [params.n_embd, params.n_embd])
self.ffn_norm = Tensor('f', [params.n_embd])
self.w1 = Tensor('f', [params.n_embd, params.get_n_ff()])
self.w2 = Tensor('f', [params.get_n_ff(), params.n_embd])
self.w3 = Tensor('f', [params.n_embd, params.get_n_ff()])
def load(self, data, offset):
offset = self.att_norm.load(data, offset)
offset = self.wq.load(data, offset)
offset = self.wk.load(data, offset)
offset = self.wv.load(data, offset)
offset = self.wo.load(data, offset)
offset = self.ffn_norm.load(data, offset)
offset = self.w1.load(data, offset)
offset = self.w2.load(data, offset)
offset = self.w3.load(data, offset)
return offset
def save_gguf(self, gguf_writer):
self.att_norm.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_NORM, self.bid))
self.wq.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_Q, self.bid))
self.wk.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_K, self.bid))
self.wv.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_V, self.bid))
self.wo.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, self.bid))
self.ffn_norm.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_NORM, self.bid))
self.w1.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_GATE, self.bid))
self.w2.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, self.bid))
self.w3.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_UP, self.bid))
class Model:
def __init__(self):
self.params = ModelParams()
self.layers = []
def load(self, data, offset):
offset = self.params.load(data, offset)
self.tok_embd = Tensor('f', [self.params.n_embd, self.params.n_vocab])
self.norm = Tensor('f', [self.params.n_embd])
self.output = Tensor('f', [self.params.n_embd, self.params.n_vocab])
offset = self.tok_embd.load(data, offset)
offset = self.norm.load(data, offset)
offset = self.output.load(data, offset)
self.layers.clear()
for bid in range(self.params.n_layer):
layer = Layer(self.params, bid)
offset = layer.load(data, offset)
self.layers.append(layer)
return offset
def save_gguf(self, gguf_writer):
self.params.save_gguf(gguf_writer)
self.tok_embd.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD))
self.norm.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT_NORM))
self.output.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT))
for layer in self.layers:
layer.save_gguf(gguf_writer)
class Checkpoint:
def __init__(self):
self.model = Model()
self.opt_ctx = OptimizationContext()
def load(self, data, offset):
magic = bytes(reversed(data[offset:offset + 4])); offset += 4
if magic != b'ggcp':
raise ValueError(f"File header magic indicates, that this is no checkpoint file. Expected 'ggcp', Got '{str(magic)}'")
self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
if self.version != 0:
raise ValueError('Invalid version of checkpoint file')
self.train_its = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
self.train_samples = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
self.train_tokens = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
offset = self.model.load(data, offset)
offset = self.opt_ctx.load(data, offset)
return offset
def save_gguf(self, gguf_writer):
gguf_writer.add_file_type(gguf.GGMLQuantizationType.F32)
gguf_writer.add_layer_norm_rms_eps(1e-5)
gguf_writer.add_uint32(LLM_KV_TRAINING_FILE_VERSION, 0)
gguf_writer.add_string(LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_TRAIN_MODEL)
gguf_writer.add_uint32(LLM_KV_TRAINING_ITERATION_COUNT, self.train_its)
gguf_writer.add_uint32(LLM_KV_TRAINING_SAMPLE_COUNT, self.train_samples)
gguf_writer.add_uint32(LLM_KV_TRAINING_TOKEN_COUNT, self.train_tokens)
self.model.save_gguf(gguf_writer)
self.opt_ctx.save_gguf(gguf_writer)
def handle_args():
parser = argparse.ArgumentParser(description = 'Convert train-text-from-scratch checkpoints to GGUF')
parser.add_argument('--input', '-i', type = Path, help = 'Input train checkpoint filename', required=True)
parser.add_argument('--output', '-o', type = Path, help ='Output GGUF filename', required=True)
return parser.parse_args()
def main():
cfg = handle_args()
data = np.memmap(cfg.input, mode = 'r')
chk = Checkpoint()
offset = 0
offset = chk.load(data, offset)
# we should have read all available data
assert(offset == len(data))
gguf_writer = gguf.GGUFWriter(cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False)
chk.save_gguf(gguf_writer)
print(" gguf: write header")
gguf_writer.write_header_to_file()
print(" gguf: write metadata")
gguf_writer.write_kv_data_to_file()
print(" gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
if __name__ == '__main__':
main()

File diff suppressed because it is too large Load Diff