cann: support q4_0 model (#8822)

This commit is contained in:
wangshuai09 2024-08-05 12:22:30 +08:00 committed by GitHub
parent 0d6fb52be0
commit c02b0a8a4d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 357 additions and 45 deletions

View File

@ -627,7 +627,6 @@ GGML_CALL static void* ggml_backend_cann_buffer_get_base(
GGML_CALL static void ggml_backend_cann_transform_q4_0(ggml_tensor* tensor,
const void* src,
void* dst) {
GGML_ASSERT(tensor->op == GGML_OP_NONE);
int64_t n_elems = ggml_nelements(tensor);
int64_t groups = n_elems / QK4_0;
@ -679,7 +678,6 @@ GGML_CALL static void ggml_backend_cann_transform_q4_0(ggml_tensor* tensor,
*/
GGML_CALL static void ggml_backend_cann_transform_back_q4_0(
const ggml_tensor* tensor, void* src, void* dst) {
GGML_ASSERT(tensor->op == GGML_OP_NONE);
int64_t n_elems = ggml_nelements(tensor);
int64_t groups = n_elems / QK4_0;
@ -1666,10 +1664,17 @@ GGML_CALL static bool ggml_backend_cann_supports_op(ggml_backend_t backend,
}
case GGML_OP_MUL_MAT: {
switch (op->src[0]->type) {
// case GGML_TYPE_Q4_0:
case GGML_TYPE_F16:
case GGML_TYPE_F32:
case GGML_TYPE_Q8_0:
// TODO: fix me
// Current groupsize should not be greater than k-1 in
// aclnnWeightQuantBatchMatmulV2GetWorkspaceSize().
if (op->src[0]->ne[0]-1 > QK8_0) {
return true;
}
return false;
case GGML_TYPE_Q4_0:
return true;
default:
return false;
@ -1694,6 +1699,7 @@ GGML_CALL static bool ggml_backend_cann_supports_op(ggml_backend_t backend,
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q4_0:
return true;
default:
return false;

View File

@ -37,6 +37,10 @@ aclDataType ggml_cann_type_mapping(ggml_type type) {
return ACL_INT16;
case GGML_TYPE_I32:
return ACL_INT32;
case GGML_TYPE_Q4_0:
return ACL_INT4;
case GGML_TYPE_Q8_0:
return ACL_INT8;
default:
return ACL_DT_UNDEFINED;
}
@ -89,33 +93,6 @@ bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1) {
return false;
}
aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype,
size_t type_size, int64_t* ne, size_t* nb,
int64_t dims, aclFormat format,
size_t offset) {
int64_t tmp_ne[GGML_MAX_DIMS * 2];
int64_t tmp_stride[GGML_MAX_DIMS * 2];
memcpy(tmp_ne, ne, dims * sizeof(int64_t));
for (int i = 0; i < dims; i++) {
tmp_stride[i] = nb[i] / type_size;
}
std::reverse(tmp_ne, tmp_ne + dims);
std::reverse(tmp_stride, tmp_stride + dims);
int64_t acl_storage_len = 0;
for (int i = 0; i < dims; i++) {
acl_storage_len += (ne[i] - 1) * nb[i];
}
aclTensor* acl_tensor =
aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size,
format, &acl_storage_len, 1, data_ptr);
return acl_tensor;
}
int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0,
const ggml_tensor* src1,
int64_t* bcast_src0_ne,

View File

@ -23,6 +23,9 @@
#ifndef CANN_ACL_TENSOR_H
#define CANN_ACL_TENSOR_H
#include <algorithm>
#include <cstring>
#include <aclnn/aclnn_base.h>
#include "common.h"
@ -65,7 +68,8 @@ aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne = null
size_t offset = 0);
/**
* @brief Creates an ACL tensor from provided parameters.
* @brief Template for creating an ACL tensor from provided parameters. typename TYPE
* should be size_t or float.
*
* @details This function creates an ACL tensor using the provided data pointer,
* data type, dimensions, strides, format, offset, and additional parameters.
@ -83,10 +87,34 @@ aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne = null
* @param offset Offset in bytes for the ACL tensor data. Defaults to 0.
* @return Pointer to the created ACL tensor.
*/
template<typename TYPE>
aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype,
size_t type_size, int64_t* ne, size_t* nb,
int64_t dims, aclFormat format = ACL_FORMAT_ND,
size_t offset = 0);
TYPE type_size, int64_t* ne, TYPE* nb,
int64_t dims,
aclFormat format = ACL_FORMAT_ND,
size_t offset = 0) {
int64_t tmp_ne[GGML_MAX_DIMS * 2];
int64_t tmp_stride[GGML_MAX_DIMS * 2];
memcpy(tmp_ne, ne, dims * sizeof(int64_t));
for (int i = 0; i < dims; i++) {
tmp_stride[i] = nb[i] / type_size;
}
std::reverse(tmp_ne, tmp_ne + dims);
std::reverse(tmp_stride, tmp_stride + dims);
int64_t acl_storage_len = 0;
for (int i = 0; i < dims; i++) {
acl_storage_len += (ne[i] - 1) * nb[i];
}
aclTensor* acl_tensor =
aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size,
format, &acl_storage_len, 1, data_ptr);
return acl_tensor;
}
/**
* @brief Checks if tensors require broadcasting based on their shapes.

View File

@ -910,6 +910,13 @@ void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
((ggml_tensor*)dst->extra)->ne);
return;
}
if (dst->type == GGML_TYPE_Q4_0) {
aclrtlaunch_ascendc_quantize_f16_to_q4_0(
24, ctx.stream(), src->data, dst->data,
((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb,
((ggml_tensor*)dst->extra)->ne);
return;
}
if (dst->type == GGML_TYPE_F16) {
if (ggml_are_same_shape(src, dst)) {
cann_copy(ctx, acl_src, acl_dst);
@ -971,6 +978,13 @@ void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
((ggml_tensor*)dst->extra)->ne);
return;
}
if (dst->type == GGML_TYPE_Q4_0) {
aclrtlaunch_ascendc_quantize_f32_to_q4_0(
24, ctx.stream(), src->data, dst->data,
((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb,
((ggml_tensor*)dst->extra)->ne);
return;
}
if (dst->type == GGML_TYPE_F32) {
if (ggml_are_same_shape(src, dst)) {
cann_copy(ctx, acl_src, acl_dst);
@ -2463,21 +2477,33 @@ static void ggml_cann_mat_mul_fp(ggml_backend_cann_context& ctx,
* @param dst The destination tensor where the result of the matrix
* multiplication will be stored.
*/
static void ggml_cann_mul_mat_q8_0(ggml_backend_cann_context& ctx,
ggml_tensor* dst) {
static void ggml_cann_mul_mat_quant(ggml_backend_cann_context& ctx,
ggml_tensor* dst,
const enum ggml_type type) {
ggml_tensor* src0 = dst->src[0]; // weight
ggml_tensor* src1 = dst->src[1]; // input
// The shape of the weight is NCHW. Matrix multiplication uses HW dims. HC
// is regarded as batch. weight need transpose.
int64_t weight_ne[] = {src0->ne[1], src0->ne[0]};
size_t weight_elem_size = sizeof(uint8_t);
size_t weight_nb[] = {weight_elem_size * src0->ne[0], weight_elem_size};
float weight_elem_size;
if (type == GGML_TYPE_Q4_0) {
weight_elem_size = float(sizeof(uint8_t)) / 2;
}
else if (type == GGML_TYPE_Q8_0) {
weight_elem_size = float(sizeof(uint8_t));
}
else {
GGML_ABORT("Only support Q4_0 and Q8_0 MUL_MAT");
}
float weight_nb[] = {weight_elem_size * src0->ne[0], weight_elem_size};
// size of one matrix is element_size * height * width.
size_t weight_stride = weight_elem_size * src0->ne[0] * src0->ne[1];
size_t weight_size = weight_stride * src0->ne[2] * src0->ne[3];
// scale stored at the end of weight. Also need transpose.
GGML_ASSERT(QK4_0 == QK8_0);
int64_t scale_ne[] = {src0->ne[1], src0->ne[0] / QK8_0};
size_t scale_elem_size = sizeof(uint16_t);
size_t scale_nb[] = {src0->ne[0] / QK8_0 * scale_elem_size,
@ -2541,8 +2567,9 @@ static void ggml_cann_mul_mat_q8_0(ggml_backend_cann_context& ctx,
(char*)input_buffer + batch1 * input_stride, ACL_FLOAT16,
input_elem_size, input_ne, input_nb, 2);
aclTensor* acl_weight_tensor = ggml_cann_create_tensor(
(char*)src0->data + batch0 * weight_stride, ACL_INT8,
weight_elem_size, weight_ne, weight_nb, 2);
(char*)src0->data + batch0 * weight_stride,
ggml_cann_type_mapping(type), weight_elem_size, weight_ne,
weight_nb, 2);
aclTensor* acl_scale_tensor = ggml_cann_create_tensor(
scale_offset + batch0 * scale_stride, ACL_FLOAT16,
scale_elem_size, scale_ne, scale_nb, 2);
@ -2596,11 +2623,9 @@ void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
case GGML_TYPE_F16:
ggml_cann_mat_mul_fp(ctx, dst);
break;
// case GGML_TYPE_Q4_0:
// ggml_cann_mul_mat_q4_0(ctx, dst);
// break;
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q8_0:
ggml_cann_mul_mat_q8_0(ctx, dst);
ggml_cann_mul_mat_quant(ctx, dst, type);
break;
default:
GGML_ABORT("fatal error");

View File

@ -9,6 +9,7 @@ file(GLOB SRC_FILES
get_row_q8_0.cpp
quantize_f32_q8_0.cpp
quantize_f16_q8_0.cpp
quantize_float_to_q4_0.cpp
dup.cpp
)
@ -29,4 +30,4 @@ ascendc_library(ascendc_kernels STATIC
${SRC_FILES}
)
#ascendc_compile_definitions(ascendc_kernels PRIVATE -DASCENDC_DUMP)
# ascendc_compile_definitions(ascendc_kernels PRIVATE -DASCENDC_DUMP)

View File

@ -8,6 +8,8 @@
#include "aclrtlaunch_ascendc_quantize_f32_q8_0.h"
#include "aclrtlaunch_ascendc_quantize_f16_q8_0.h"
#include "aclrtlaunch_ascendc_quantize_f16_to_q4_0.h"
#include "aclrtlaunch_ascendc_quantize_f32_to_q4_0.h"
#include "aclrtlaunch_ascendc_dup_by_rows_fp16.h"
#include "aclrtlaunch_ascendc_dup_by_rows_fp32.h"

View File

@ -0,0 +1,273 @@
#include "kernel_operator.h"
using namespace AscendC;
#define BUFFER_NUM 2
#define Group_Size 32
template <typename SRC_T>
class QUANTIZE_FLOAT_TO_Q4_0 {
public:
__aicore__ inline QUANTIZE_FLOAT_TO_Q4_0() {}
__aicore__ inline void init(GM_ADDR input, GM_ADDR output,
int64_t *input_ne_ub, size_t *input_nb_ub,
int64_t *output_ne_ub) {
int64_t op_block_num = GetBlockNum();
int64_t op_block_idx = GetBlockIdx();
// input stride of data elements
for (int i = 0; i < 4; i++) {
input_ne[i] = input_ne_ub[i];
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
output_ne[i] = output_ne_ub[i];
}
// output stride of data elements
output_stride[0] = 1;
for (int i = 1; i < 4; i++) {
output_stride[i] = output_stride[i - 1] * output_ne[i - 1];
}
// scale saved one by one after data:. [group1_scale, group2_scale, ...]
scale_ne = input_ne;
scale_stride[0] = 1;
scale_stride[1] = input_ne[0] / Group_Size;
for (int i = 2; i < 4; i++) {
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
}
// split input tensor by rows.
uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3];
dr = nr / op_block_num;
uint64_t tails = nr % op_block_num;
if (op_block_idx < tails) {
dr += 1;
ir = dr * op_block_idx;
} else {
ir = dr * op_block_idx + tails;
}
group_size_in_row = scale_stride[1];
int64_t scale_offset = output_ne[0] * output_ne[1] * output_ne[2] *
output_ne[3] * sizeof(uint8_t) / 2;
input_gm.SetGlobalBuffer((__gm__ SRC_T *)input);
output_gm.SetGlobalBuffer((__gm__ int8_t *)output);
scale_gm.SetGlobalBuffer((__gm__ half *)(output + scale_offset + ir *
group_size_in_row *
sizeof(half)));
pipe.InitBuffer(input_queue, BUFFER_NUM, Group_Size * sizeof(SRC_T));
pipe.InitBuffer(output_queue, BUFFER_NUM,
Group_Size * sizeof(int8_t) / 2);
pipe.InitBuffer(cast_queue , BUFFER_NUM, Group_Size * sizeof(float));
pipe.InitBuffer(work_queue, BUFFER_NUM, Group_Size*sizeof(float));
pipe.InitBuffer(max_queue, BUFFER_NUM, Group_Size*sizeof(float));
pipe.InitBuffer(min_queue, BUFFER_NUM, Group_Size*sizeof(float));
pipe.InitBuffer(scale_queue, BUFFER_NUM, 16*sizeof(half));
pipe.InitBuffer(int8_queue, BUFFER_NUM, Group_Size * sizeof(int8_t));
pipe.InitBuffer(half_queue, BUFFER_NUM, Group_Size * sizeof(half));
}
__aicore__ inline void copy_in(uint32_t offset) {
LocalTensor<SRC_T> input_local = input_queue.AllocTensor<SRC_T>();
DataCopy(input_local, input_gm[offset], Group_Size);
input_queue.EnQue(input_local);
}
__aicore__ inline void copy_out(uint32_t offset) {
// reinterpretcast Group_Size(32) * int4b_t to Group_Size / 2 * int8_t,
// and using DataCopyPad to avoid 32 bits align.
LocalTensor<int4b_t> output_local = output_queue.DeQue<int4b_t>();
LocalTensor<int8_t> output_int8_local =
output_local.ReinterpretCast<int8_t>();
DataCopyExtParams dataCopyParams;
dataCopyParams.blockCount = 1;
dataCopyParams.blockLen = Group_Size / 2 * sizeof(int8_t);
DataCopyPad(output_gm[offset], output_int8_local, dataCopyParams);
output_queue.FreeTensor(output_local);
}
__aicore__ inline void input_to_cast(LocalTensor<float> cast_local,
LocalTensor<float> input_local) {
DataCopy(cast_local, input_local, Group_Size);
}
__aicore__ inline void input_to_cast(LocalTensor<float> cast_local,
LocalTensor<half> input_local) {
Cast(cast_local, input_local, RoundMode::CAST_NONE, Group_Size);
}
__aicore__ inline half calculate_group(int64_t row, int64_t group) {
const int64_t i3 = row / (input_ne[1] * input_ne[2]);
const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1];
const int64_t i1 =
row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1];
const int64_t input_offset = i1 * input_stride[1] +
i2 * input_stride[2] +
i3 * input_stride[3] + Group_Size * group;
// output_offset is stride for output_gm which datatype is int8_t and
// divided by 2 is needed for int4b_t.
const int64_t output_offset = (i1 * output_stride[1] +
i2 * output_stride[2] +
i3 * output_stride[3] +
Group_Size * group) / 2;
copy_in(input_offset);
LocalTensor<SRC_T> input_local = input_queue.DeQue<SRC_T>();
LocalTensor<int4b_t> output_local = output_queue.AllocTensor<int4b_t>();
LocalTensor<float> cast_local = cast_queue.AllocTensor<float>();
LocalTensor<float> work_local = work_queue.AllocTensor<float>();
LocalTensor<float> max_local = max_queue.AllocTensor<float>();
LocalTensor<float> min_local = min_queue.AllocTensor<float>();
LocalTensor<int8_t> int8_local = int8_queue.AllocTensor<int8_t>();
LocalTensor<half> half_local = half_queue.AllocTensor<half>();
input_to_cast(cast_local, input_local);
ReduceMax(max_local, cast_local, work_local, Group_Size);
ReduceMin(min_local, cast_local, work_local, Group_Size);
const float max_value = max_local.GetValue(0);
const float min_value = min_local.GetValue(0);
float d = max_value;
if (min_value < 0 && (-1 * min_value) > max_value) {
d = min_value;
}
d = d / (-8);
if (d != 0) {
Muls(cast_local, cast_local, 1.0f / d, Group_Size);
}
// range: [-8,8] -> [0.5,16.5] -> [0,16] -> [0,15] -> [-8,7]
float scalar = 8.5f;
Adds(cast_local, cast_local, scalar, Group_Size);
Cast(cast_local, cast_local, RoundMode::CAST_FLOOR, Group_Size);
scalar = 15.0f;
Mins(cast_local, cast_local, scalar, Group_Size);
scalar = -8.0f;
Adds(cast_local, cast_local, scalar, Group_Size);
// float->half->int4b
Cast(half_local, cast_local, RoundMode::CAST_NONE, Group_Size);
Cast(output_local, half_local, RoundMode::CAST_NONE, Group_Size);
output_queue.EnQue(output_local);
copy_out(output_offset);
input_queue.FreeTensor(input_local);
work_queue.FreeTensor(work_local);
max_queue.FreeTensor(max_local);
min_queue.FreeTensor(min_local);
int8_queue.FreeTensor(int8_local);
half_queue.FreeTensor(half_local);
cast_queue.FreeTensor(cast_local);
return (half)d;
}
__aicore__ inline void calculate() {
LocalTensor<half> scale_local = scale_queue.AllocTensor<half>();
uint32_t scale_local_offset = 0;
uint32_t scale_global_offset = 0;
for (int64_t i = ir; i < ir + dr; i++) {
for (int64_t j = 0; j < group_size_in_row; j++) {
half scale = calculate_group(i, j);
scale_local.SetValue(scale_local_offset++, scale);
if (scale_local_offset == 16) {
scale_local_offset = 0;
// TODO: OPTIMIZE ME
pipe_barrier(PIPE_ALL);
DataCopy(scale_gm[scale_global_offset], scale_local, 16);
pipe_barrier(PIPE_ALL);
scale_global_offset += 16;
}
}
}
if (scale_local_offset != 0) {
pipe_barrier(PIPE_ALL);
DataCopyExtParams dataCopyParams;
dataCopyParams.blockCount = 1;
dataCopyParams.blockLen = scale_local_offset * sizeof(half);
DataCopyPad(scale_gm[scale_global_offset], scale_local,
dataCopyParams);
pipe_barrier(PIPE_ALL);
}
scale_queue.FreeTensor(scale_local);
}
private:
int64_t input_ne[4];
size_t input_stride[4];
int64_t *scale_ne;
size_t scale_stride[4];
int64_t output_ne[4];
size_t output_stride[4];
int64_t group_size_in_row;
int64_t ir;
int64_t dr;
TPipe pipe;
GlobalTensor<SRC_T> input_gm;
GlobalTensor<half> scale_gm;
GlobalTensor<int8_t> output_gm;
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
TQue<QuePosition::VECIN, BUFFER_NUM> work_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> max_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> min_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> scale_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> cast_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> int8_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> half_queue;
};
template <typename T>
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
auto gm_ptr = (__gm__ uint8_t *)gm;
auto ub_ptr = (uint8_t *)(ub);
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
*ub_ptr = *gm_ptr;
}
}
extern "C" __global__ __aicore__ void ascendc_quantize_f16_to_q4_0(
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
int64_t input_ne_ub[4];
size_t input_nb_ub[4];
int64_t output_ne_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(input_nb_gm, input_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
QUANTIZE_FLOAT_TO_Q4_0<half> op;
op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
op.calculate();
}
extern "C" __global__ __aicore__ void ascendc_quantize_f32_to_q4_0(
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
int64_t input_ne_ub[4];
size_t input_nb_ub[4];
int64_t output_ne_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(input_nb_gm, input_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
QUANTIZE_FLOAT_TO_Q4_0<float> op;
op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
op.calculate();
}