mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-26 03:14:35 +00:00
CUDA: fix MMQ for non-contiguous src0, add tests (#10021)
* CUDA: fix MMQ for non-contiguous src0, add tests * revise test code
This commit is contained in:
parent
0a1c750c80
commit
c39665f589
@ -1151,7 +1151,7 @@ static cudaError_t ggml_cuda_cpy_tensor_2d(
|
|||||||
void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
|
void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
|
||||||
|
|
||||||
GGML_ASSERT(ggml_backend_buffer_is_cuda(src->buffer));
|
GGML_ASSERT(ggml_backend_buffer_is_cuda(src->buffer));
|
||||||
char * src_ptr = (char *) src->data;
|
const char * src_ptr = (const char *) src->data;
|
||||||
char * dst_ptr = (char *) dst;
|
char * dst_ptr = (char *) dst;
|
||||||
|
|
||||||
const int64_t ne0 = src->ne[0];
|
const int64_t ne0 = src->ne[0];
|
||||||
@ -1162,7 +1162,7 @@ static cudaError_t ggml_cuda_cpy_tensor_2d(
|
|||||||
const enum ggml_type type = src->type;
|
const enum ggml_type type = src->type;
|
||||||
const int64_t ts = ggml_type_size(type);
|
const int64_t ts = ggml_type_size(type);
|
||||||
const int64_t bs = ggml_blck_size(type);
|
const int64_t bs = ggml_blck_size(type);
|
||||||
int64_t i1_diff = i1_high - i1_low;
|
const int64_t i1_diff = i1_high - i1_low;
|
||||||
|
|
||||||
const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
|
const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
|
||||||
if (nb0 == ts && nb1 == ts*ne0/bs) {
|
if (nb0 == ts && nb1 == ts*ne0/bs) {
|
||||||
@ -1479,13 +1479,17 @@ static void ggml_cuda_op_mul_mat(
|
|||||||
if (src0_is_contiguous) {
|
if (src0_is_contiguous) {
|
||||||
dev[id].src0_dd = split ? (char *) src0_extra->data_device[id] : (char *) src0->data;
|
dev[id].src0_dd = split ? (char *) src0_extra->data_device[id] : (char *) src0->data;
|
||||||
} else {
|
} else {
|
||||||
dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ctx.pool(id), ggml_nbytes(src0));
|
// If src0 is not contiguous it will be copied to a temporary buffer, it may then be necessary to clear padding.
|
||||||
|
const size_t nbytes_data = ggml_nbytes(src0);
|
||||||
|
const size_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING);
|
||||||
|
dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ctx.pool(id), nbytes_data + nbytes_padding);
|
||||||
|
CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd + nbytes_data , 0, nbytes_padding, stream));
|
||||||
}
|
}
|
||||||
|
|
||||||
// If src0 is on a temporary compute buffers (partial offloading) there may be some padding that needs to be cleared:
|
// If src0 is on a temporary compute buffer (partial offloading) there may be some padding that needs to be cleared:
|
||||||
if (ne00 % MATRIX_ROW_PADDING != 0 && ggml_is_quantized(src0->type) && ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE && src0->view_src == nullptr) {
|
if (ne00 % MATRIX_ROW_PADDING != 0 && ggml_is_quantized(src0->type) && ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE && src0->view_src == nullptr) {
|
||||||
const int64_t nbytes_data = ggml_row_size(src0->type, (dev[id].row_high - dev[id].row_low)*ne00);
|
const size_t nbytes_data = ggml_row_size(src0->type, (dev[id].row_high - dev[id].row_low)*ne00);
|
||||||
const int64_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING);
|
const size_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING);
|
||||||
CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd + nbytes_data , 0, nbytes_padding, stream));
|
CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd + nbytes_data , 0, nbytes_padding, stream));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -8,8 +8,6 @@ void ggml_cuda_op_mul_mat_q(
|
|||||||
|
|
||||||
const int64_t ne00 = src0->ne[0];
|
const int64_t ne00 = src0->ne[0];
|
||||||
|
|
||||||
const int64_t nb01 = src0->nb[1];
|
|
||||||
|
|
||||||
const int64_t ne10 = src1->ne[0];
|
const int64_t ne10 = src1->ne[0];
|
||||||
const int64_t ne11 = src1->ne[1];
|
const int64_t ne11 = src1->ne[1];
|
||||||
GGML_ASSERT(ne10 % QK8_1 == 0);
|
GGML_ASSERT(ne10 % QK8_1 == 0);
|
||||||
@ -17,7 +15,7 @@ void ggml_cuda_op_mul_mat_q(
|
|||||||
const int64_t ne0 = dst->ne[0];
|
const int64_t ne0 = dst->ne[0];
|
||||||
|
|
||||||
const int64_t row_diff = row_high - row_low;
|
const int64_t row_diff = row_high - row_low;
|
||||||
const int64_t stride00 = nb01 / ggml_type_size(src0->type);
|
const int64_t stride00 = ne00 / ggml_blck_size(src0->type);
|
||||||
|
|
||||||
int id = ggml_cuda_get_device();
|
int id = ggml_cuda_get_device();
|
||||||
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
||||||
|
@ -3464,7 +3464,7 @@ int64_t ggml_nrows(const struct ggml_tensor * tensor) {
|
|||||||
|
|
||||||
size_t ggml_nbytes(const struct ggml_tensor * tensor) {
|
size_t ggml_nbytes(const struct ggml_tensor * tensor) {
|
||||||
size_t nbytes;
|
size_t nbytes;
|
||||||
size_t blck_size = ggml_blck_size(tensor->type);
|
const size_t blck_size = ggml_blck_size(tensor->type);
|
||||||
if (blck_size == 1) {
|
if (blck_size == 1) {
|
||||||
nbytes = ggml_type_size(tensor->type);
|
nbytes = ggml_type_size(tensor->type);
|
||||||
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
|
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
|
||||||
|
@ -1652,9 +1652,10 @@ struct test_mul_mat : public test_case {
|
|||||||
const int64_t k;
|
const int64_t k;
|
||||||
const std::array<int64_t, 2> bs; // dims 3 and 4
|
const std::array<int64_t, 2> bs; // dims 3 and 4
|
||||||
const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
|
const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
|
||||||
|
const std::array<int64_t, 4> per; // permutation of dimensions
|
||||||
|
|
||||||
std::string vars() override {
|
std::string vars() override {
|
||||||
return VARS_TO_STR7(type_a, type_b, m, n, k, bs, nr);
|
return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, per);
|
||||||
}
|
}
|
||||||
|
|
||||||
double max_nmse_err() override {
|
double max_nmse_err() override {
|
||||||
@ -1669,18 +1670,45 @@ struct test_mul_mat : public test_case {
|
|||||||
test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
|
test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
|
||||||
int64_t m = 32, int64_t n = 32, int64_t k = 32,
|
int64_t m = 32, int64_t n = 32, int64_t k = 32,
|
||||||
std::array<int64_t, 2> bs = {10, 10},
|
std::array<int64_t, 2> bs = {10, 10},
|
||||||
std::array<int64_t, 2> nr = {2, 2})
|
std::array<int64_t, 2> nr = {2, 2},
|
||||||
: type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr) {}
|
std::array<int64_t, 4> per = {0, 1, 2, 3})
|
||||||
|
: type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per) {}
|
||||||
|
|
||||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||||
// C^T = A * B^T: (k, m) * (k, n) => (m, n)
|
// C^T = A * B^T: (k, m) * (k, n) => (m, n)
|
||||||
ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0] , bs[1]);
|
ggml_tensor * a;
|
||||||
ggml_tensor * b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
|
ggml_tensor * b;
|
||||||
|
|
||||||
|
const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
|
||||||
|
if (npermuted > 0) {
|
||||||
|
GGML_ASSERT(npermuted == 2);
|
||||||
|
GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
|
||||||
|
GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
|
||||||
|
|
||||||
|
// Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
|
||||||
|
const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
|
||||||
|
const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
|
||||||
|
|
||||||
|
a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
|
||||||
|
b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
|
||||||
ggml_set_param(ctx, a);
|
ggml_set_param(ctx, a);
|
||||||
ggml_set_param(ctx, b);
|
ggml_set_param(ctx, b);
|
||||||
ggml_set_name(a, "a");
|
ggml_set_name(a, "a");
|
||||||
ggml_set_name(b, "b");
|
ggml_set_name(b, "b");
|
||||||
|
|
||||||
|
a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
|
||||||
|
b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
|
||||||
|
ggml_set_name(a, "a_permuted");
|
||||||
|
ggml_set_name(b, "b_permuted");
|
||||||
|
} else {
|
||||||
|
a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
|
||||||
|
b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
|
||||||
|
ggml_set_param(ctx, a);
|
||||||
|
ggml_set_param(ctx, b);
|
||||||
|
ggml_set_name(a, "a");
|
||||||
|
ggml_set_name(b, "b");
|
||||||
|
}
|
||||||
|
|
||||||
ggml_tensor * out = ggml_mul_mat(ctx, a, b);
|
ggml_tensor * out = ggml_mul_mat(ctx, a, b);
|
||||||
ggml_set_name(out, "out");
|
ggml_set_name(out, "out");
|
||||||
|
|
||||||
@ -3478,6 +3506,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|||||||
#if 1
|
#if 1
|
||||||
for (ggml_type type_a : base_types) {
|
for (ggml_type type_a : base_types) {
|
||||||
for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
|
for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
|
||||||
|
// test cases without permutation
|
||||||
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1}));
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1}));
|
||||||
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {1, 1}));
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {1, 1}));
|
||||||
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {2, 1}));
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {2, 1}));
|
||||||
@ -3493,6 +3522,19 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|||||||
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 1}));
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 1}));
|
||||||
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 2}));
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 2}));
|
||||||
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 2}));
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 2}));
|
||||||
|
|
||||||
|
// test cases with permutation
|
||||||
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
|
||||||
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
|
||||||
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
|
||||||
|
|
||||||
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
|
||||||
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
|
||||||
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
|
||||||
|
|
||||||
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
|
||||||
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
|
||||||
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
for (ggml_type type_a : other_types) {
|
for (ggml_type type_a : other_types) {
|
||||||
|
Loading…
Reference in New Issue
Block a user