Merge branch 'master' into compilade/refactor-kv-cache

This commit is contained in:
Francis Couture-Harpin 2024-04-29 10:31:39 -04:00
commit c460ff1a1c
172 changed files with 11845 additions and 11211 deletions

View File

@ -32,7 +32,7 @@ on:
- cron: '04 2 * * *' - cron: '04 2 * * *'
concurrency: concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}-${{ github.event.inputs.sha }} group: ${{ github.workflow }}-${{ github.ref }}-${{ github.head_ref || github.run_id }}-${{ github.event.inputs.sha }}
cancel-in-progress: true cancel-in-progress: true
jobs: jobs:

View File

@ -32,6 +32,8 @@ jobs:
- name: Clone - name: Clone
id: checkout id: checkout
uses: actions/checkout@v4 uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Dependencies - name: Dependencies
id: depends id: depends
@ -52,7 +54,7 @@ jobs:
id: cmake_test id: cmake_test
run: | run: |
cd build cd build
ctest -L main --verbose --timeout 900 ctest -L 'main|curl' --verbose --timeout 900
- name: Determine tag name - name: Determine tag name
id: tag id: tag
@ -88,6 +90,8 @@ jobs:
- name: Clone - name: Clone
id: checkout id: checkout
uses: actions/checkout@v4 uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Dependencies - name: Dependencies
id: depends id: depends
@ -101,7 +105,9 @@ jobs:
sysctl -a sysctl -a
mkdir build mkdir build
cd build cd build
cmake -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_METAL_EMBED_LIBRARY=ON -DLLAMA_CURL=ON .. # Metal is disabled due to intermittent failures with Github runners not having a GPU:
# https://github.com/ggerganov/llama.cpp/actions/runs/8635935781/job/23674807267#step:5:2313
cmake -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_METAL=OFF -DLLAMA_CURL=ON ..
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu) cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
- name: Test - name: Test
@ -204,26 +210,28 @@ jobs:
- name: Clone - name: Clone
id: checkout id: checkout
uses: actions/checkout@v4 uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Dependencies - name: Dependencies
id: depends id: depends
run: | run: |
sudo apt-get update sudo apt-get update
sudo apt-get install build-essential sudo apt-get install build-essential libcurl4-openssl-dev
- name: Build - name: Build
id: cmake_build id: cmake_build
run: | run: |
mkdir build mkdir build
cd build cd build
cmake .. -DLLAMA_FATAL_WARNINGS=ON cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON
cmake --build . --config Release -j $(nproc) cmake --build . --config Release -j $(nproc)
- name: Test - name: Test
id: cmake_test id: cmake_test
run: | run: |
cd build cd build
ctest -L main --verbose --timeout 900 ctest -L 'main|curl' --verbose --timeout 900
- name: Test llama2c conversion - name: Test llama2c conversion
id: llama2c_test id: llama2c_test
@ -236,6 +244,33 @@ jobs:
./bin/convert-llama2c-to-ggml --copy-vocab-from-model ./tok512.bin --llama2c-model stories260K.bin --llama2c-output-model stories260K.gguf ./bin/convert-llama2c-to-ggml --copy-vocab-from-model ./tok512.bin --llama2c-model stories260K.bin --llama2c-output-model stories260K.gguf
./bin/main -m stories260K.gguf -p "One day, Lily met a Shoggoth" -n 500 -c 256 ./bin/main -m stories260K.gguf -p "One day, Lily met a Shoggoth" -n 500 -c 256
- name: Determine tag name
id: tag
shell: bash
run: |
BUILD_NUMBER="$(git rev-list --count HEAD)"
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
else
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
fi
- name: Pack artifacts
id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-x64.zip ./build/bin/*
- name: Upload artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-x64.zip
name: llama-bin-ubuntu-x64.zip
# ubuntu-latest-cmake-sanitizer: # ubuntu-latest-cmake-sanitizer:
# runs-on: ubuntu-latest # runs-on: ubuntu-latest
# #
@ -558,6 +593,63 @@ jobs:
run: | run: |
make swift make swift
windows-msys2:
runs-on: windows-latest
strategy:
fail-fast: false
matrix:
include:
- { sys: UCRT64, env: ucrt-x86_64, build: Release }
- { sys: CLANG64, env: clang-x86_64, build: Release }
steps:
- name: Clone
uses: actions/checkout@v4
- name: Setup ${{ matrix.sys }}
uses: msys2/setup-msys2@v2
with:
update: true
msystem: ${{matrix.sys}}
install: >-
base-devel
mingw-w64-${{matrix.env}}-toolchain
mingw-w64-${{matrix.env}}-cmake
mingw-w64-${{matrix.env}}-openblas
- name: Build using make
shell: msys2 {0}
run: |
make -j $(nproc)
- name: Clean after building using make
shell: msys2 {0}
run: |
make clean
- name: Build using make w/ OpenBLAS
shell: msys2 {0}
run: |
make LLAMA_OPENBLAS=1 -j $(nproc)
- name: Build using CMake
shell: msys2 {0}
run: |
cmake -B build
cmake --build build --config ${{ matrix.build }} -j $(nproc)
- name: Clean after building using CMake
shell: msys2 {0}
run: |
rm -rf build
- name: Build using CMake w/ OpenBLAS
shell: msys2 {0}
run: |
cmake -B build -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS
cmake --build build --config ${{ matrix.build }} -j $(nproc)
windows-latest-cmake: windows-latest-cmake:
runs-on: windows-latest runs-on: windows-latest
@ -938,6 +1030,12 @@ jobs:
- name: Download artifacts - name: Download artifacts
id: download-artifact id: download-artifact
uses: actions/download-artifact@v4 uses: actions/download-artifact@v4
with:
path: ./artifact
- name: Move artifacts
id: move_artifacts
run: mkdir -p ./artifact/release && mv ./artifact/*/*.zip ./artifact/release
- name: Create release - name: Create release
id: create_release id: create_release
@ -956,7 +1054,7 @@ jobs:
const path = require('path'); const path = require('path');
const fs = require('fs'); const fs = require('fs');
const release_id = '${{ steps.create_release.outputs.id }}'; const release_id = '${{ steps.create_release.outputs.id }}';
for (let file of await fs.readdirSync('./artifact')) { for (let file of await fs.readdirSync('./artifact/release')) {
if (path.extname(file) === '.zip') { if (path.extname(file) === '.zip') {
console.log('uploadReleaseAsset', file); console.log('uploadReleaseAsset', file);
await github.repos.uploadReleaseAsset({ await github.repos.uploadReleaseAsset({
@ -964,7 +1062,7 @@ jobs:
repo: context.repo.repo, repo: context.repo.repo,
release_id: release_id, release_id: release_id,
name: file, name: file,
data: await fs.readFileSync(`./artifact/${file}`) data: await fs.readFileSync(`./artifact/release/${file}`)
}); });
} }
} }

View File

@ -91,6 +91,12 @@ jobs:
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
fi fi
- name: Downcase github.repository_owner
run: |
echo "repository_owner_lowercase=${GITHUB_REPOSITORY_OWNER@L}" >> $GITHUB_ENV
env:
GITHUB_REPOSITORY_OWNER: '${{ github.repository_owner }}'
- name: Build and push Docker image (versioned) - name: Build and push Docker image (versioned)
if: github.event_name == 'push' if: github.event_name == 'push'
uses: docker/build-push-action@v4 uses: docker/build-push-action@v4
@ -98,7 +104,7 @@ jobs:
context: . context: .
push: true push: true
platforms: ${{ matrix.config.platforms }} platforms: ${{ matrix.config.platforms }}
tags: "ghcr.io/${{ github.repository_owner }}/llama.cpp:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }}" tags: "ghcr.io/${{ env.repository_owner_lowercase }}/llama.cpp:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }}"
file: ${{ matrix.config.dockerfile }} file: ${{ matrix.config.dockerfile }}
- name: Build and push Docker image (tagged) - name: Build and push Docker image (tagged)
@ -107,5 +113,5 @@ jobs:
context: . context: .
push: ${{ github.event_name == 'push' }} push: ${{ github.event_name == 'push' }}
platforms: ${{ matrix.config.platforms }} platforms: ${{ matrix.config.platforms }}
tags: "ghcr.io/${{ github.repository_owner }}/llama.cpp:${{ matrix.config.tag }},ghcr.io/${{ github.repository_owner }}/llama.cpp:${{ matrix.config.tag }}-${{ steps.tag.outputs.name }}" tags: "ghcr.io/${{ env.repository_owner_lowercase }}/llama.cpp:${{ matrix.config.tag }},ghcr.io/${{ env.repository_owner_lowercase }}/llama.cpp:${{ matrix.config.tag }}-${{ steps.tag.outputs.name }}"
file: ${{ matrix.config.dockerfile }} file: ${{ matrix.config.dockerfile }}

View File

@ -21,4 +21,4 @@ jobs:
uses: py-actions/flake8@v2 uses: py-actions/flake8@v2
with: with:
ignore: "E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704,W503" ignore: "E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704,W503"
exclude: "examples/*,examples/*/**,*/**/__init__.py" exclude: "examples/*,examples/*/**,*/**/__init__.py,convert-hf-to-gguf-update.py"

View File

@ -23,7 +23,7 @@ on:
- cron: '2 4 * * *' - cron: '2 4 * * *'
concurrency: concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }} group: ${{ github.workflow }}-${{ github.ref }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true cancel-in-progress: true
jobs: jobs:
@ -41,23 +41,16 @@ jobs:
sanitizer: "" sanitizer: ""
fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken
container:
image: ubuntu:latest
ports:
- 8888
options: --cpus 4
steps: steps:
- name: Dependencies - name: Dependencies
id: depends id: depends
run: | run: |
apt-get update sudo apt-get update
apt-get -y install \ sudo apt-get -y install \
build-essential \ build-essential \
xxd \ xxd \
git \ git \
cmake \ cmake \
python3-pip \
curl \ curl \
wget \ wget \
language-pack-en \ language-pack-en \
@ -70,6 +63,17 @@ jobs:
fetch-depth: 0 fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }} ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
- name: Python setup
id: setup_python
uses: actions/setup-python@v5
with:
python-version: '3.11'
- name: Tests dependencies
id: test_dependencies
run: |
pip install -r examples/server/tests/requirements.txt
- name: Verify server deps - name: Verify server deps
id: verify_server_deps id: verify_server_deps
run: | run: |
@ -100,10 +104,6 @@ jobs:
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ; -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
cmake --build . --config ${{ matrix.build_type }} -j $(nproc) --target server cmake --build . --config ${{ matrix.build_type }} -j $(nproc) --target server
- name: Tests dependencies
id: test_dependencies
run: |
pip install -r examples/server/tests/requirements.txt
- name: Tests - name: Tests
id: server_integration_tests id: server_integration_tests
@ -129,6 +129,7 @@ jobs:
uses: actions/checkout@v4 uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
- name: libCURL - name: libCURL
id: get_libcurl id: get_libcurl

20
.gitignore vendored
View File

@ -34,6 +34,7 @@ lcov-report/
gcovr-report/ gcovr-report/
build* build*
!build.zig
cmake-build-* cmake-build-*
out/ out/
tmp/ tmp/
@ -48,6 +49,7 @@ models-mnt
/convert-llama2c-to-ggml /convert-llama2c-to-ggml
/embd-input-test /embd-input-test
/embedding /embedding
/eval-callback
/gguf /gguf
/gguf-llama-simple /gguf-llama-simple
/gguf-split /gguf-split
@ -99,7 +101,25 @@ qnt-*.txt
perf-*.txt perf-*.txt
examples/jeopardy/results.txt examples/jeopardy/results.txt
examples/server/*.html.hpp
examples/server/*.js.hpp
examples/server/*.mjs.hpp
poetry.lock poetry.lock
poetry.toml poetry.toml
nppBackup nppBackup
# Test binaries
/tests/test-grammar-parser
/tests/test-llama-grammar
/tests/test-double-float
/tests/test-grad0
/tests/test-opt
/tests/test-quantize-fns
/tests/test-quantize-perf
/tests/test-sampling
/tests/test-tokenizer-0
/tests/test-tokenizer-1-spm
/tests/test-tokenizer-1-bpe
/tests/test-rope
/tests/test-backend-ops

View File

@ -43,6 +43,8 @@ else()
set(LLAMA_METAL_DEFAULT OFF) set(LLAMA_METAL_DEFAULT OFF)
endif() endif()
set(LLAMA_LLAMAFILE_DEFAULT ON)
# general # general
option(BUILD_SHARED_LIBS "build shared libraries" OFF) option(BUILD_SHARED_LIBS "build shared libraries" OFF)
option(LLAMA_STATIC "llama: static link libraries" OFF) option(LLAMA_STATIC "llama: static link libraries" OFF)
@ -88,6 +90,7 @@ endif()
# 3rd party libs # 3rd party libs
option(LLAMA_ACCELERATE "llama: enable Accelerate framework" ON) option(LLAMA_ACCELERATE "llama: enable Accelerate framework" ON)
option(LLAMA_BLAS "llama: use BLAS" OFF) option(LLAMA_BLAS "llama: use BLAS" OFF)
option(LLAMA_LLAMAFILE "llama: use llamafile SGEMM" ${LLAMA_LLAMAFILE_DEFAULT})
set(LLAMA_BLAS_VENDOR "Generic" CACHE STRING "llama: BLAS library vendor") set(LLAMA_BLAS_VENDOR "Generic" CACHE STRING "llama: BLAS library vendor")
option(LLAMA_CUDA "llama: use CUDA" OFF) option(LLAMA_CUDA "llama: use CUDA" OFF)
option(LLAMA_CUBLAS "llama: use CUDA (deprecated, use LLAMA_CUDA)" OFF) option(LLAMA_CUBLAS "llama: use CUDA (deprecated, use LLAMA_CUDA)" OFF)
@ -286,6 +289,7 @@ if (LLAMA_METAL)
${METALKIT_FRAMEWORK} ${METALKIT_FRAMEWORK}
) )
endif() endif()
if (LLAMA_BLAS) if (LLAMA_BLAS)
if (LLAMA_STATIC) if (LLAMA_STATIC)
set(BLA_STATIC ON) set(BLA_STATIC ON)
@ -368,6 +372,13 @@ if (LLAMA_BLAS)
endif() endif()
endif() endif()
if (LLAMA_LLAMAFILE)
add_compile_definitions(GGML_USE_LLAMAFILE)
set(GGML_HEADERS_LLAMAFILE sgemm.h)
set(GGML_SOURCES_LLAMAFILE sgemm.cpp)
endif()
if (LLAMA_QKK_64) if (LLAMA_QKK_64)
add_compile_definitions(GGML_QKK_64) add_compile_definitions(GGML_QKK_64)
endif() endif()
@ -1160,6 +1171,7 @@ add_library(ggml OBJECT
${GGML_SOURCES_KOMPUTE} ${GGML_HEADERS_KOMPUTE} ${GGML_SOURCES_KOMPUTE} ${GGML_HEADERS_KOMPUTE}
${GGML_SOURCES_VULKAN} ${GGML_HEADERS_VULKAN} ${GGML_SOURCES_VULKAN} ${GGML_HEADERS_VULKAN}
${GGML_SOURCES_ROCM} ${GGML_HEADERS_ROCM} ${GGML_SOURCES_ROCM} ${GGML_HEADERS_ROCM}
${GGML_SOURCES_LLAMAFILE} ${GGML_HEADERS_LLAMAFILE}
) )
target_include_directories(ggml PUBLIC . ${LLAMA_EXTRA_INCLUDES}) target_include_directories(ggml PUBLIC . ${LLAMA_EXTRA_INCLUDES})

View File

@ -1,16 +1,28 @@
# Define the default target now so that it is always the first target # Define the default target now so that it is always the first target
BUILD_TARGETS = \ BUILD_TARGETS = \
main quantize quantize-stats perplexity imatrix embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \ main quantize quantize-stats perplexity imatrix embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
simple batched batched-bench save-load-state server gguf gguf-split llama-bench libllava.a llava-cli baby-llama beam-search \ simple batched batched-bench save-load-state server gguf gguf-split eval-callback llama-bench libllava.a llava-cli baby-llama beam-search \
retrieval speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead lookup passkey gritlm tests/test-c.o retrieval speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead lookup passkey gritlm tests/test-c.o
# Binaries only useful for tests # Binaries only useful for tests
TEST_TARGETS = \ TEST_TARGETS = \
tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt \ tests/test-autorelease \
tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama \ tests/test-backend-ops \
tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe tests/test-rope \ tests/test-double-float \
tests/test-backend-ops tests/test-model-load-cancel tests/test-autorelease \ tests/test-grad0 \
tests/test-json-schema-to-grammar tests/test-grammar-integration tests/test-grammar-integration \
tests/test-grammar-parser \
tests/test-json-schema-to-grammar \
tests/test-llama-grammar \
tests/test-model-load-cancel \
tests/test-opt \
tests/test-quantize-fns \
tests/test-quantize-perf \
tests/test-rope \
tests/test-sampling \
tests/test-tokenizer-0 \
tests/test-tokenizer-1-bpe \
tests/test-tokenizer-1-spm
# Code coverage output files # Code coverage output files
COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report
@ -27,6 +39,17 @@ ifndef UNAME_M
UNAME_M := $(shell uname -m) UNAME_M := $(shell uname -m)
endif endif
# In GNU make default CXX is g++ instead of c++. Let's fix that so that users
# of non-gcc compilers don't have to provide g++ alias or wrapper.
DEFCC := cc
DEFCXX := c++
ifeq ($(origin CC),default)
CC := $(DEFCC)
endif
ifeq ($(origin CXX),default)
CXX := $(DEFCXX)
endif
# Mac OS + Arm can report x86_64 # Mac OS + Arm can report x86_64
# ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789 # ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789
ifeq ($(UNAME_S),Darwin) ifeq ($(UNAME_S),Darwin)
@ -49,11 +72,17 @@ default: $(BUILD_TARGETS)
test: $(TEST_TARGETS) test: $(TEST_TARGETS)
@failures=0; \ @failures=0; \
for test_target in $(TEST_TARGETS); do \ for test_target in $(TEST_TARGETS); do \
if [ "$$test_target" = "tests/test-tokenizer-0-llama" ]; then \ if [ "$$test_target" = "tests/test-tokenizer-0" ]; then \
./$$test_target $(CURDIR)/models/ggml-vocab-llama.gguf; \ ./$$test_target $(CURDIR)/models/ggml-vocab-llama-spm.gguf; \
elif [ "$$test_target" = "tests/test-tokenizer-0-falcon" ]; then \ ./$$test_target $(CURDIR)/models/ggml-vocab-llama-bpe.gguf; \
./$$test_target $(CURDIR)/models/ggml-vocab-phi-3.gguf; \
./$$test_target $(CURDIR)/models/ggml-vocab-falcon.gguf; \ ./$$test_target $(CURDIR)/models/ggml-vocab-falcon.gguf; \
elif [ "$$test_target" = "tests/test-tokenizer-1-llama" ]; then \ ./$$test_target $(CURDIR)/models/ggml-vocab-deepseek-coder.gguf; \
./$$test_target $(CURDIR)/models/ggml-vocab-deepseek-llm.gguf; \
./$$test_target $(CURDIR)/models/ggml-vocab-bert-bge.gguf; \
./$$test_target $(CURDIR)/models/ggml-vocab-starcoder.gguf; \
./$$test_target $(CURDIR)/models/ggml-vocab-gpt-2.gguf; \
elif [ "$$test_target" = "tests/test-tokenizer-1-spm" ]; then \
continue; \ continue; \
elif [ "$$test_target" = "tests/test-tokenizer-1-bpe" ]; then \ elif [ "$$test_target" = "tests/test-tokenizer-1-bpe" ]; then \
continue; \ continue; \
@ -384,6 +413,11 @@ ifdef LLAMA_OPENBLAS
MK_LDFLAGS += $(shell pkg-config --libs openblas) MK_LDFLAGS += $(shell pkg-config --libs openblas)
endif # LLAMA_OPENBLAS endif # LLAMA_OPENBLAS
ifndef LLAMA_NO_LLAMAFILE
MK_CPPFLAGS += -DGGML_USE_LLAMAFILE
OBJS += sgemm.o
endif
ifdef LLAMA_BLIS ifdef LLAMA_BLIS
MK_CPPFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/blis -I/usr/include/blis MK_CPPFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/blis -I/usr/include/blis
MK_LDFLAGS += -lblis -L/usr/local/lib MK_LDFLAGS += -lblis -L/usr/local/lib
@ -480,11 +514,9 @@ ggml-cuda/%.o: ggml-cuda/%.cu ggml-cuda/%.cuh ggml.h ggml-common.h ggml-cuda/com
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh) ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
$(NVCC_COMPILE) $(NVCC_COMPILE)
endif # LLAMA_CUDA endif # LLAMA_CUDA
ifdef LLAMA_CLBLAST ifdef LLAMA_CLBLAST
MK_CPPFLAGS += -DGGML_USE_CLBLAST $(shell pkg-config --cflags-only-I clblast OpenCL) MK_CPPFLAGS += -DGGML_USE_CLBLAST $(shell pkg-config --cflags-only-I clblast OpenCL)
MK_CFLAGS += $(shell pkg-config --cflags-only-other clblast OpenCL) MK_CFLAGS += $(shell pkg-config --cflags-only-other clblast OpenCL)
MK_CXXFLAGS += $(shell pkg-config --cflags-only-other clblast OpenCL) MK_CXXFLAGS += $(shell pkg-config --cflags-only-other clblast OpenCL)
@ -603,6 +635,11 @@ ggml-mpi.o: ggml-mpi.c ggml-mpi.h
$(CC) $(CFLAGS) -c $< -o $@ $(CC) $(CFLAGS) -c $< -o $@
endif # LLAMA_MPI endif # LLAMA_MPI
ifndef LLAMA_NO_LLAMAFILE
sgemm.o: sgemm.cpp sgemm.h ggml.h
$(CXX) $(CXXFLAGS) -c $< -o $@
endif
GF_CC := $(CC) GF_CC := $(CC)
include scripts/get-flags.mk include scripts/get-flags.mk
@ -646,7 +683,7 @@ CUDA_VERSION := $(shell $(NVCC) --version | grep -oP 'release (\K[0-9]+\.[0-9])'
ifeq ($(shell awk -v "v=$(CUDA_VERSION)" 'BEGIN { print (v < 11.7) }'),1) ifeq ($(shell awk -v "v=$(CUDA_VERSION)" 'BEGIN { print (v < 11.7) }'),1)
ifndef CUDA_DOCKER_ARCH ifndef CUDA_DOCKER_ARCH
ifndef CUDA_POWER_ARCH ifndef CUDA_POWER_ARCH
$(error I ERROR: For CUDA versions < 11.7 a target CUDA architecture must be explicitly provided via CUDA_DOCKER_ARCH) $(error I ERROR: For CUDA versions < 11.7 a target CUDA architecture must be explicitly provided via environment variable CUDA_DOCKER_ARCH, e.g. by running "export CUDA_DOCKER_ARCH=compute_XX" on Unix-like systems, where XX is the minimum compute capability that the code needs to run on. A list with compute capabilities can be found here: https://developer.nvidia.com/cuda-gpus )
endif # CUDA_POWER_ARCH endif # CUDA_POWER_ARCH
endif # CUDA_DOCKER_ARCH endif # CUDA_DOCKER_ARCH
endif # eq ($(shell echo "$(CUDA_VERSION) < 11.7" | bc),1) endif # eq ($(shell echo "$(CUDA_VERSION) < 11.7" | bc),1)
@ -687,8 +724,8 @@ OBJS += ggml-alloc.o ggml-backend.o ggml-quants.o unicode.o unicode-data.o
llama.o: llama.cpp unicode.h ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml-metal.h llama.h llama.o: llama.cpp unicode.h ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml-metal.h llama.h
$(CXX) $(CXXFLAGS) -c $< -o $@ $(CXX) $(CXXFLAGS) -c $< -o $@
COMMON_H_DEPS = common/common.h common/sampling.h common/log.h COMMON_H_DEPS = common/common.h common/sampling.h common/log.h llama.h
COMMON_DEPS = common.o sampling.o grammar-parser.o build-info.o COMMON_DEPS = common.o sampling.o grammar-parser.o build-info.o json-schema-to-grammar.o
common.o: common/common.cpp $(COMMON_H_DEPS) common.o: common/common.cpp $(COMMON_H_DEPS)
$(CXX) $(CXXFLAGS) -c $< -o $@ $(CXX) $(CXXFLAGS) -c $< -o $@
@ -756,11 +793,11 @@ batched: examples/batched/batched.cpp ggml.o llama.o $(C
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
batched-bench: examples/batched-bench/batched-bench.cpp build-info.o ggml.o llama.o common.o $(OBJS) batched-bench: examples/batched-bench/batched-bench.cpp build-info.o ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
quantize: examples/quantize/quantize.cpp build-info.o ggml.o llama.o $(OBJS) quantize: examples/quantize/quantize.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
@ -788,10 +825,19 @@ save-load-state: examples/save-load-state/save-load-state.cpp ggml.o llama.o $(C
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
server: examples/server/server.cpp examples/server/utils.hpp examples/server/httplib.h common/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp json-schema-to-grammar.o common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS) server: examples/server/server.cpp examples/server/utils.hpp examples/server/httplib.h common/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp examples/server/json-schema-to-grammar.mjs.hpp common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Iexamples/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2) $(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Iexamples/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2)
# Portable equivalent of `cd examples/server/public && xxd -i $(notdir $<) ../$(notdir $<).hpp`:
examples/server/%.hpp: examples/server/public/% Makefile
@( export NAME=$(subst .,_,$(subst -,_,$(notdir $<))) && \
echo "unsigned char $${NAME}[] = {" && \
cat $< | od -v -t x1 -An | sed -E 's/([0-9a-fA-F]+)/0x\1, /g' && \
echo "};" && \
echo "unsigned int $${NAME}_len = $(shell cat $< | wc -c );" \
) > $@
gguf: examples/gguf/gguf.cpp ggml.o $(OBJS) gguf: examples/gguf/gguf.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
@ -800,6 +846,10 @@ gguf-split: examples/gguf-split/gguf-split.cpp ggml.o llama.o $(COMMON_DEPS) $(O
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
eval-callback: examples/eval-callback/eval-callback.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS) train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
@ -950,11 +1000,7 @@ tests/test-sampling: tests/test-sampling.cpp ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS) tests/test-tokenizer-0: tests/test-tokenizer-0.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
@ -962,7 +1008,7 @@ tests/test-tokenizer-1-bpe: tests/test-tokenizer-1-bpe.cpp ggml.o llama.o $(COMM
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS) tests/test-tokenizer-1-spm: tests/test-tokenizer-1-spm.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)

View File

@ -2,6 +2,45 @@
import PackageDescription import PackageDescription
var sources = [
"ggml.c",
"sgemm.cpp",
"llama.cpp",
"unicode.cpp",
"unicode-data.cpp",
"ggml-alloc.c",
"ggml-backend.c",
"ggml-quants.c",
]
var resources: [Resource] = []
var linkerSettings: [LinkerSetting] = []
var cSettings: [CSetting] = [
.unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]),
.unsafeFlags(["-fno-objc-arc"]),
// NOTE: NEW_LAPACK will required iOS version 16.4+
// We should consider add this in the future when we drop support for iOS 14
// (ref: ref: https://developer.apple.com/documentation/accelerate/1513264-cblas_sgemm?language=objc)
// .define("ACCELERATE_NEW_LAPACK"),
// .define("ACCELERATE_LAPACK_ILP64")
]
#if canImport(Darwin)
sources.append("ggml-metal.m")
resources.append(.process("ggml-metal.metal"))
linkerSettings.append(.linkedFramework("Accelerate"))
cSettings.append(
contentsOf: [
.define("GGML_USE_ACCELERATE"),
.define("GGML_USE_METAL")
]
)
#endif
#if os(Linux)
cSettings.append(.define("_GNU_SOURCE"))
#endif
let package = Package( let package = Package(
name: "llama", name: "llama",
platforms: [ platforms: [
@ -28,34 +67,11 @@ let package = Package(
"ggml-cuda.h", "ggml-cuda.h",
"Makefile" "Makefile"
], ],
sources: [ sources: sources,
"ggml.c", resources: resources,
"llama.cpp",
"unicode.cpp",
"unicode-data.cpp",
"ggml-alloc.c",
"ggml-backend.c",
"ggml-quants.c",
"ggml-metal.m",
],
resources: [
.process("ggml-metal.metal")
],
publicHeadersPath: "spm-headers", publicHeadersPath: "spm-headers",
cSettings: [ cSettings: cSettings,
.unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]), linkerSettings: linkerSettings
.define("GGML_USE_ACCELERATE"),
.unsafeFlags(["-fno-objc-arc"]),
.define("GGML_USE_METAL"),
// NOTE: NEW_LAPACK will required iOS version 16.4+
// We should consider add this in the future when we drop support for iOS 14
// (ref: ref: https://developer.apple.com/documentation/accelerate/1513264-cblas_sgemm?language=objc)
// .define("ACCELERATE_NEW_LAPACK"),
// .define("ACCELERATE_LAPACK_ILP64")
],
linkerSettings: [
.linkedFramework("Accelerate")
]
) )
], ],
cxxLanguageStandard: .cxx11 cxxLanguageStandard: .cxx11

View File

@ -8,9 +8,9 @@
- [Linux](#linux) - [Linux](#linux)
- [Windows](#windows) - [Windows](#windows)
- [Environment Variable](#environment-variable) - [Environment Variable](#environment-variable)
- [Known Issue](#known-issue) - [Known Issue](#known-issues)
- [Q&A](#q&a) - [Q&A](#qa)
- [Todo](#todo) - [TODO](#todo)
## Background ## Background
@ -54,10 +54,10 @@ It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS,
## OS ## OS
|OS|Status|Verified| | OS | Status | Verified |
|-|-|-| |---------|---------|------------------------------------|
|Linux|Support|Ubuntu 22.04, Fedora Silverblue 39| | Linux | Support | Ubuntu 22.04, Fedora Silverblue 39 |
|Windows|Support|Windows 11| | Windows | Support | Windows 11 |
## Hardware ## Hardware
@ -66,13 +66,13 @@ It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS,
**Verified devices** **Verified devices**
|Intel GPU| Status | Verified Model| | Intel GPU | Status | Verified Model |
|-|-|-| |-------------------------------|---------|---------------------------------------|
|Intel Data Center Max Series| Support| Max 1550| | Intel Data Center Max Series | Support | Max 1550, 1100 |
|Intel Data Center Flex Series| Support| Flex 170| | Intel Data Center Flex Series | Support | Flex 170 |
|Intel Arc Series| Support| Arc 770, 730M| | Intel Arc Series | Support | Arc 770, 730M |
|Intel built-in Arc GPU| Support| built-in Arc GPU in Meteor Lake| | Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake |
|Intel iGPU| Support| iGPU in i5-1250P, i7-1260P, i7-1165G7| | Intel iGPU | Support | iGPU in i5-1250P, i7-1260P, i7-1165G7 |
*Notes:* *Notes:*
@ -84,24 +84,18 @@ It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS,
- **Execution Unit (EU)** - **Execution Unit (EU)**
- If the iGPU has less than 80 EUs, the inference speed will likely be too slow for practical use. - If the iGPU has less than 80 EUs, the inference speed will likely be too slow for practical use.
### Nvidia GPU ### Other Vendor GPU
The BLAS acceleration on Nvidia GPU through oneAPI can be obtained using the Nvidia plugins for oneAPI and the cuBLAS backend of the upstream oneMKL library. Details and instructions on how to setup the runtime and library can be found in [this section](#i-setup-environment)
**Verified devices** **Verified devices**
|Nvidia GPU| Status | Verified Model| | Nvidia GPU | Status | Verified Model |
|-|-|-| |--------------------------|---------|----------------|
|Ampere Series| Support| A100, A4000| | Ampere Series | Support | A100, A4000 |
|Ampere Series *(Mobile)*| Support| RTX 40 Series| | Ampere Series *(Mobile)* | Support | RTX 40 Series |
*Notes:*
- Support for Nvidia targets through oneAPI is currently limited to Linux platforms.
- Please make sure the native oneAPI MKL *(dedicated to intel CPUs and GPUs)* is not "visible" at this stage to properly setup and use the built-from-source oneMKL with cuBLAS backend in llama.cpp for Nvidia GPUs.
## Docker ## Docker
The docker build option is currently limited to *intel GPU* targets. The docker build option is currently limited to *intel GPU* targets.
### Build image ### Build image
```sh ```sh
# Using FP16 # Using FP16
@ -167,30 +161,11 @@ Platform #0: Intel(R) OpenCL HD Graphics
- **Nvidia GPU** - **Nvidia GPU**
In order to target Nvidia GPUs through SYCL, please make sure the CUDA/CUBLAS native requirements *-found [here](README.md#cublas)-* are installed. In order to target Nvidia GPUs through SYCL, please make sure the CUDA/CUBLAS native requirements *-found [here](README.md#cuda)-* are installed.
Installation can be verified by running the following:
```sh
nvidia-smi
```
Please make sure at least one CUDA device is available, which can be displayed like this *(here an A100-40GB Nvidia GPU)*:
```
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.54.03 Driver Version: 535.54.03 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA A100-PCIE-40GB On | 00000000:8D:00.0 Off | 0 |
| N/A 36C P0 57W / 250W | 4MiB / 40960MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
```
2. **Install Intel® oneAPI Base toolkit** 2. **Install Intel® oneAPI Base toolkit**
- **Base installation** - **For Intel GPU**
The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page. The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
@ -202,10 +177,10 @@ Upon a successful installation, SYCL is enabled for the available intel devices,
- **Adding support to Nvidia GPUs** - **Adding support to Nvidia GPUs**
**oneAPI**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup. **oneAPI Plugin**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup.
**oneMKL**: The current oneMKL releases *(shipped with the oneAPI base-toolkit)* do not contain the cuBLAS backend. A build from source of the upstream [oneMKL](https://github.com/oneapi-src/oneMKL) with the *cuBLAS* backend enabled is thus required to run it on Nvidia GPUs. **oneMKL for cuBlas**: The current oneMKL releases *(shipped with the oneAPI base-toolkit)* do not contain the cuBLAS backend. A build from source of the upstream [oneMKL](https://github.com/oneapi-src/oneMKL) with the *cuBLAS* backend enabled is thus required to run it on Nvidia GPUs.
```sh ```sh
git clone https://github.com/oneapi-src/oneMKL git clone https://github.com/oneapi-src/oneMKL
@ -237,7 +212,7 @@ When targeting an intel GPU, the user should expect one or more level-zero devic
- **Nvidia GPU** - **Nvidia GPU**
Similarly, user targetting Nvidia GPUs should expect at least one SYCL-CUDA device [`ext_oneapi_cuda:gpu`] as bellow: Similarly, user targeting Nvidia GPUs should expect at least one SYCL-CUDA device [`ext_oneapi_cuda:gpu`] as bellow:
``` ```
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.12.0.12_195853.xmain-hotfix] [opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.12.0.12_195853.xmain-hotfix]
[opencl:cpu:1] Intel(R) OpenCL, Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz OpenCL 3.0 (Build 0) [2023.16.12.0.12_195853.xmain-hotfix] [opencl:cpu:1] Intel(R) OpenCL, Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz OpenCL 3.0 (Build 0) [2023.16.12.0.12_195853.xmain-hotfix]
@ -254,12 +229,14 @@ source /opt/intel/oneapi/setvars.sh
# Build LLAMA with MKL BLAS acceleration for intel GPU # Build LLAMA with MKL BLAS acceleration for intel GPU
mkdir -p build && cd build mkdir -p build && cd build
# Option 1: Use FP16 for better performance in long-prompt inference # Option 1: Use FP32 (recommended for better performance in most cases)
cmake --build .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
# Or without "--build", run "make" next
# Option 2: Use FP32 by default # Option 2: Use FP16
cmake --build .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
#build all binary
cmake --build . --config Release -j -v
``` ```
#### Nvidia GPU #### Nvidia GPU
@ -273,11 +250,15 @@ export CPLUS_INCLUDE_DIR=/path/to/oneMKL/include:$CPLUS_INCLUDE_DIR
# Build LLAMA with Nvidia BLAS acceleration through SYCL # Build LLAMA with Nvidia BLAS acceleration through SYCL
mkdir -p build && cd build mkdir -p build && cd build
# Option 1: Use FP16 for better performance in long-prompt inference # Option 1: Use FP32 (recommended for better performance in most cases)
cmake --build .. -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON cmake .. -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
# Option 2: Use FP16
cmake .. -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
#build all binary
cmake --build . --config Release -j -v
# Option 2: Use FP32 by default
cmake --build .. -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
``` ```
### III. Run the inference ### III. Run the inference
@ -313,10 +294,10 @@ found 6 SYCL devices:
| 5| [opencl:acc:0]| Intel(R) FPGA Emulation Device| 1.2| 24|67108864| 64| 67064815616| | 5| [opencl:acc:0]| Intel(R) FPGA Emulation Device| 1.2| 24|67108864| 64| 67064815616|
``` ```
|Attribute|Note| | Attribute | Note |
|-|-| |------------------------|-------------------------------------------------------------|
|compute capability 1.3|Level-zero driver/runtime, recommended | | compute capability 1.3 | Level-zero driver/runtime, recommended |
|compute capability 3.0|OpenCL driver/runtime, slower than level-zero in most cases| | compute capability 3.0 | OpenCL driver/runtime, slower than level-zero in most cases |
4. Launch inference 4. Launch inference
@ -325,10 +306,10 @@ There are two device selection modes:
- Single device: Use one device target specified by the user. - Single device: Use one device target specified by the user.
- Multiple devices: Automatically select the devices with the same largest Max compute-units. - Multiple devices: Automatically select the devices with the same largest Max compute-units.
|Device selection|Parameter| | Device selection | Parameter |
|-|-| |------------------|----------------------------------------|
|Single device|--split-mode none --main-gpu DEVICE_ID | | Single device | --split-mode none --main-gpu DEVICE_ID |
|Multiple devices|--split-mode layer (default)| | Multiple devices | --split-mode layer (default) |
Examples: Examples:
@ -357,7 +338,6 @@ Otherwise, you can run the script:
*Notes:* *Notes:*
- By default, `mmap` is used to read the model file. In some cases, it causes runtime hang issues. Please disable it by passing `--no-mmap` to the `/bin/main` if faced with the issue.
- Upon execution, verify the selected device(s) ID(s) in the output log, which can for instance be displayed as follow: - Upon execution, verify the selected device(s) ID(s) in the output log, which can for instance be displayed as follow:
```sh ```sh
@ -436,9 +416,13 @@ mkdir -p build
cd build cd build
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force @call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
# Option 1: Use FP32 (recommended for better performance in most cases)
cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release
# Option 2: Or FP16
cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
make make -j
``` ```
Otherwise, run the `win-build-sycl.bat` wrapper which encapsulates the former instructions: Otherwise, run the `win-build-sycl.bat` wrapper which encapsulates the former instructions:
@ -486,10 +470,10 @@ found 6 SYCL devices:
``` ```
|Attribute|Note| | Attribute | Note |
|-|-| |------------------------|-----------------------------------------------------------|
|compute capability 1.3|Level-zero running time, recommended | | compute capability 1.3 | Level-zero running time, recommended |
|compute capability 3.0|OpenCL running time, slower than level-zero in most cases| | compute capability 3.0 | OpenCL running time, slower than level-zero in most cases |
4. Launch inference 4. Launch inference
@ -499,10 +483,10 @@ There are two device selection modes:
- Single device: Use one device assigned by user. - Single device: Use one device assigned by user.
- Multiple devices: Automatically choose the devices with the same biggest Max compute units. - Multiple devices: Automatically choose the devices with the same biggest Max compute units.
|Device selection|Parameter| | Device selection | Parameter |
|-|-| |------------------|----------------------------------------|
|Single device|--split-mode none --main-gpu DEVICE_ID | | Single device | --split-mode none --main-gpu DEVICE_ID |
|Multiple devices|--split-mode layer (default)| | Multiple devices | --split-mode layer (default) |
Examples: Examples:
@ -525,7 +509,6 @@ Otherwise, run the following wrapper script:
Note: Note:
- By default, `mmap` is used to read the model file. In some cases, it causes runtime hang issues. Please disable it by passing `--no-mmap` to the `main.exe` if faced with the issue.
- Upon execution, verify the selected device(s) ID(s) in the output log, which can for instance be displayed as follow: - Upon execution, verify the selected device(s) ID(s) in the output log, which can for instance be displayed as follow:
```sh ```sh
@ -540,29 +523,23 @@ use 1 SYCL GPUs: [0] with Max compute units:512
#### Build #### Build
|Name|Value|Function| | Name | Value | Function |
|-|-|-| |--------------------|-----------------------------------|---------------------------------------------|
|LLAMA_SYCL|ON (mandatory)|Enable build with SYCL code path.| | LLAMA_SYCL | ON (mandatory) | Enable build with SYCL code path. |
|LLAMA_SYCL_TARGET | INTEL *(default)* \| NVIDIA|Set the SYCL target device type.| | LLAMA_SYCL_TARGET | INTEL *(default)* \| NVIDIA | Set the SYCL target device type. |
|LLAMA_SYCL_F16|OFF *(default)* \|ON *(optional)*|Enable FP16 build with SYCL code path.| | LLAMA_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. |
|CMAKE_C_COMPILER|icx|Set *icx* compiler for SYCL code path.| | CMAKE_C_COMPILER | icx | Set *icx* compiler for SYCL code path. |
|CMAKE_CXX_COMPILER|icpx *(Linux)*, icx *(Windows)*|Set `icpx/icx` compiler for SYCL code path.| | CMAKE_CXX_COMPILER | icpx *(Linux)*, icx *(Windows)* | Set `icpx/icx` compiler for SYCL code path. |
#### Runtime #### Runtime
|Name|Value|Function| | Name | Value | Function |
|-|-|-| |-------------------|------------------|---------------------------------------------------------------------------------------------------------------------------|
|GGML_SYCL_DEBUG|0 (default) or 1|Enable log function by macro: GGML_SYCL_DEBUG| | GGML_SYCL_DEBUG | 0 (default) or 1 | Enable log function by macro: GGML_SYCL_DEBUG |
|ZES_ENABLE_SYSMAN| 0 (default) or 1|Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer| | ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer |
## Known Issues ## Known Issues
- Hanging during startup
llama.cpp uses *mmap* as the default mode for reading the model file and copying it to the GPU. In some systems, `memcpy` might behave abnormally and therefore hang.
- **Solution**: add `--no-mmap` or `--mmap 0` flag to the `main` executable.
- `Split-mode:[row]` is not supported. - `Split-mode:[row]` is not supported.
## Q&A ## Q&A
@ -574,7 +551,7 @@ use 1 SYCL GPUs: [0] with Max compute units:512
- General compiler error: - General compiler error:
- Remove build folder or try a clean-build. - Remove **build** folder or try a clean-build.
- I can **not** see `[ext_oneapi_level_zero:gpu]` afer installing the GPU driver on Linux. - I can **not** see `[ext_oneapi_level_zero:gpu]` afer installing the GPU driver on Linux.
@ -591,6 +568,6 @@ use 1 SYCL GPUs: [0] with Max compute units:512
### **GitHub contribution**: ### **GitHub contribution**:
Please add the **[SYCL]** prefix/tag in issues/PRs titles to help the SYCL-team check/address them without delay. Please add the **[SYCL]** prefix/tag in issues/PRs titles to help the SYCL-team check/address them without delay.
## Todo ## TODO
- Support row layer split for multiple card runs. - Support row layer split for multiple card runs.

View File

@ -10,6 +10,7 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
### Recent API changes ### Recent API changes
- [2024 Apr 21] `llama_token_to_piece` can now optionally render special tokens https://github.com/ggerganov/llama.cpp/pull/6807
- [2024 Apr 4] State and session file functions reorganized under `llama_state_*` https://github.com/ggerganov/llama.cpp/pull/6341 - [2024 Apr 4] State and session file functions reorganized under `llama_state_*` https://github.com/ggerganov/llama.cpp/pull/6341
- [2024 Mar 26] Logits and embeddings API updated for compactness https://github.com/ggerganov/llama.cpp/pull/6122 - [2024 Mar 26] Logits and embeddings API updated for compactness https://github.com/ggerganov/llama.cpp/pull/6122
- [2024 Mar 13] Add `llama_synchronize()` + `llama_context_params.n_ubatch` https://github.com/ggerganov/llama.cpp/pull/6017 - [2024 Mar 13] Add `llama_synchronize()` + `llama_context_params.n_ubatch` https://github.com/ggerganov/llama.cpp/pull/6017
@ -19,7 +20,8 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
### Hot topics ### Hot topics
- **MoE memory layout has been updated - reconvert models for `mmap` support and regenerate `imatrix` https://github.com/ggerganov/llama.cpp/pull/6387** - **BPE pre-tokenization support has been added: https://github.com/ggerganov/llama.cpp/pull/6920**
- MoE memory layout has been updated - reconvert models for `mmap` support and regenerate `imatrix` https://github.com/ggerganov/llama.cpp/pull/6387
- Model sharding instructions using `gguf-split` https://github.com/ggerganov/llama.cpp/discussions/6404 - Model sharding instructions using `gguf-split` https://github.com/ggerganov/llama.cpp/discussions/6404
- Fix major bug in Metal batched inference https://github.com/ggerganov/llama.cpp/pull/6225 - Fix major bug in Metal batched inference https://github.com/ggerganov/llama.cpp/pull/6225
- Multi-GPU pipeline parallelism support https://github.com/ggerganov/llama.cpp/pull/6017 - Multi-GPU pipeline parallelism support https://github.com/ggerganov/llama.cpp/pull/6017
@ -92,9 +94,11 @@ Typically finetunes of the base models below are supported as well.
- [X] LLaMA 🦙 - [X] LLaMA 🦙
- [x] LLaMA 2 🦙🦙 - [x] LLaMA 2 🦙🦙
- [x] LLaMA 3 🦙🦙🦙
- [X] [Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) - [X] [Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1)
- [x] [Mixtral MoE](https://huggingface.co/models?search=mistral-ai/Mixtral) - [x] [Mixtral MoE](https://huggingface.co/models?search=mistral-ai/Mixtral)
- [X] Falcon - [x] [DBRX](https://huggingface.co/databricks/dbrx-instruct)
- [X] [Falcon](https://huggingface.co/models?search=tiiuae/falcon)
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) and [Chinese LLaMA-2 / Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2) - [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) and [Chinese LLaMA-2 / Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2)
- [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne) - [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne)
- [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/) - [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/)
@ -117,10 +121,14 @@ Typically finetunes of the base models below are supported as well.
- [x] [CodeShell](https://github.com/WisdomShell/codeshell) - [x] [CodeShell](https://github.com/WisdomShell/codeshell)
- [x] [Gemma](https://ai.google.dev/gemma) - [x] [Gemma](https://ai.google.dev/gemma)
- [x] [Mamba](https://github.com/state-spaces/mamba) - [x] [Mamba](https://github.com/state-spaces/mamba)
- [x] [Grok-1](https://huggingface.co/keyfan/grok-1-hf)
- [x] [Xverse](https://huggingface.co/models?search=xverse) - [x] [Xverse](https://huggingface.co/models?search=xverse)
- [x] [Command-R](https://huggingface.co/CohereForAI/c4ai-command-r-v01) - [x] [Command-R models](https://huggingface.co/models?search=CohereForAI/c4ai-command-r)
- [x] [SEA-LION](https://huggingface.co/models?search=sea-lion) - [x] [SEA-LION](https://huggingface.co/models?search=sea-lion)
- [x] [GritLM-7B](https://huggingface.co/GritLM/GritLM-7B) + [GritLM-8x7B](https://huggingface.co/GritLM/GritLM-8x7B) - [x] [GritLM-7B](https://huggingface.co/GritLM/GritLM-7B) + [GritLM-8x7B](https://huggingface.co/GritLM/GritLM-8x7B)
- [x] [OLMo](https://allenai.org/olmo)
(instructions for supporting more models: [HOWTO-add-model.md](./docs/HOWTO-add-model.md))
**Multimodal models:** **Multimodal models:**
@ -130,6 +138,8 @@ Typically finetunes of the base models below are supported as well.
- [x] [ShareGPT4V](https://huggingface.co/models?search=Lin-Chen/ShareGPT4V) - [x] [ShareGPT4V](https://huggingface.co/models?search=Lin-Chen/ShareGPT4V)
- [x] [MobileVLM 1.7B/3B models](https://huggingface.co/models?search=mobileVLM) - [x] [MobileVLM 1.7B/3B models](https://huggingface.co/models?search=mobileVLM)
- [x] [Yi-VL](https://huggingface.co/models?search=Yi-VL) - [x] [Yi-VL](https://huggingface.co/models?search=Yi-VL)
- [x] [Mini CPM](https://huggingface.co/models?search=MiniCPM)
- [x] [Moondream](https://huggingface.co/vikhyatk/moondream2)
**HTTP server** **HTTP server**
@ -185,6 +195,8 @@ Unless otherwise noted these projects are open-source with permissive licensing:
- [Dot](https://github.com/alexpinel/Dot) (GPL) - [Dot](https://github.com/alexpinel/Dot) (GPL)
- [MindMac](https://mindmac.app) (proprietary) - [MindMac](https://mindmac.app) (proprietary)
- [KodiBot](https://github.com/firatkiral/kodibot) (GPL) - [KodiBot](https://github.com/firatkiral/kodibot) (GPL)
- [eva](https://github.com/ylsdamxssjxxdd/eva) (MIT)
- [AI Sublime Text plugin](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (MIT)
*(to have a project listed here, it should clearly state that it depends on `llama.cpp`)* *(to have a project listed here, it should clearly state that it depends on `llama.cpp`)*
@ -484,7 +496,7 @@ Building the program with BLAS support may lead to some performance improvements
The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) can be used to specify which GPU(s) will be used. The following compilation options are also available to tweak performance: The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) can be used to specify which GPU(s) will be used. The following compilation options are also available to tweak performance:
| Option | Legal values | Default | Description | | Option | Legal values | Default | Description |
|--------------------------------|------------------------|---------|-------------| |--------------------------------|------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LLAMA_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. | | LLAMA_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. |
| LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. | | LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
| LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. | | LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. |
@ -496,7 +508,7 @@ Building the program with BLAS support may lead to some performance improvements
This provides BLAS acceleration on HIP-supported AMD GPUs. This provides BLAS acceleration on HIP-supported AMD GPUs.
Make sure to have ROCm installed. Make sure to have ROCm installed.
You can download it from your Linux distro's package manager or from here: [ROCm Quick Start (Linux)](https://rocm.docs.amd.com/en/latest/deploy/linux/quick_start.html). You can download it from your Linux distro's package manager or from here: [ROCm Quick Start (Linux)](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/tutorial/quick-start.html#rocm-install-quick).
- Using `make`: - Using `make`:
```bash ```bash
@ -533,7 +545,7 @@ Building the program with BLAS support may lead to some performance improvements
The following compilation options are also available to tweak performance (yes, they refer to CUDA, not HIP, because it uses the same code as the cuBLAS version above): The following compilation options are also available to tweak performance (yes, they refer to CUDA, not HIP, because it uses the same code as the cuBLAS version above):
| Option | Legal values | Default | Description | | Option | Legal values | Default | Description |
|-------------------------|------------------------|---------|-------------| |-------------------------|------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the HIP dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. | | LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the HIP dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
| LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the HIP mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. | | LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the HIP mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. |
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per HIP thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. | | LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per HIP thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
@ -543,7 +555,7 @@ Building the program with BLAS support may lead to some performance improvements
OpenCL acceleration is provided by the matrix multiplication kernels from the [CLBlast](https://github.com/CNugteren/CLBlast) project and custom kernels for ggml that can generate tokens on the GPU. OpenCL acceleration is provided by the matrix multiplication kernels from the [CLBlast](https://github.com/CNugteren/CLBlast) project and custom kernels for ggml that can generate tokens on the GPU.
You will need the [OpenCL SDK](https://github.com/KhronosGroup/OpenCL-SDK). You will need the [OpenCL SDK](https://github.com/KhronosGroup/OpenCL-SDK).
- For Ubuntu or Debian, the packages `opencl-headers`, `ocl-icd` may be needed. - For Ubuntu, Debian, and Fedora the packages `opencl-headers`, `ocl-icd` may be needed.
- For Windows, a pre-built SDK is available on the [OpenCL Releases](https://github.com/KhronosGroup/OpenCL-SDK/releases) page. - For Windows, a pre-built SDK is available on the [OpenCL Releases](https://github.com/KhronosGroup/OpenCL-SDK/releases) page.
@ -568,6 +580,12 @@ Building the program with BLAS support may lead to some performance improvements
Pre-built CLBlast binaries may be found on the [CLBlast Releases](https://github.com/CNugteren/CLBlast/releases) page. For Unix variants, it may also be found in your operating system's packages. Pre-built CLBlast binaries may be found on the [CLBlast Releases](https://github.com/CNugteren/CLBlast/releases) page. For Unix variants, it may also be found in your operating system's packages.
Linux packaging:
Fedora Linux:
```bash
sudo dnf install clblast
```
Alternatively, they may be built from source. Alternatively, they may be built from source.
- <details> - <details>
@ -744,7 +762,7 @@ From the unzipped folder, open a terminal/cmd window here and place a pre-conver
As the models are currently fully loaded into memory, you will need adequate disk space to save them and sufficient RAM to load them. At the moment, memory and disk requirements are the same. As the models are currently fully loaded into memory, you will need adequate disk space to save them and sufficient RAM to load them. At the moment, memory and disk requirements are the same.
| Model | Original size | Quantized size (Q4_0) | | Model | Original size | Quantized size (Q4_0) |
|------:|--------------:|-----------------------:| |------:|--------------:|----------------------:|
| 7B | 13 GB | 3.9 GB | | 7B | 13 GB | 3.9 GB |
| 13B | 24 GB | 7.8 GB | | 13B | 24 GB | 7.8 GB |
| 30B | 60 GB | 19.5 GB | | 30B | 60 GB | 19.5 GB |
@ -1104,7 +1122,9 @@ docker run --gpus all -v /path/to/models:/models local/llama.cpp:server-cuda -m
- Clean-up any trailing whitespaces, use 4 spaces for indentation, brackets on the same line, `void * ptr`, `int & a` - Clean-up any trailing whitespaces, use 4 spaces for indentation, brackets on the same line, `void * ptr`, `int & a`
- See [good first issues](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) for tasks suitable for first contributions - See [good first issues](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) for tasks suitable for first contributions
- Tensors store data in row-major order. We refer to dimension 0 as columns, 1 as rows, 2 as matrices - Tensors store data in row-major order. We refer to dimension 0 as columns, 1 as rows, 2 as matrices
- Matrix multiplication is unconventional: [`z = ggml_mul_mat(ctx, x, y)`](https://github.com/ggerganov/llama.cpp/blob/880e352277fc017df4d5794f0c21c44e1eae2b84/ggml.h#L1058-L1064) means `zT = x @ yT` - Matrix multiplication is unconventional: [`C = ggml_mul_mat(ctx, A, B)`](https://github.com/ggerganov/llama.cpp/blob/880e352277fc017df4d5794f0c21c44e1eae2b84/ggml.h#L1058-L1064) means $C^T = A B^T \Leftrightarrow C = B A^T.$
![matmul](media/matmul.png)
### Docs ### Docs

View File

@ -49,11 +49,11 @@ If you intend to run multiple models in parallel with shared memory, it is your
1. Tenant Isolation: Models should run separately with strong isolation methods to prevent unwanted data access. Separating networks is crucial for isolation, as it prevents unauthorized access to data or models and malicious users from sending graphs to execute under another tenant's identity. 1. Tenant Isolation: Models should run separately with strong isolation methods to prevent unwanted data access. Separating networks is crucial for isolation, as it prevents unauthorized access to data or models and malicious users from sending graphs to execute under another tenant's identity.
1. Resource Allocation: A denial of service caused by one model can impact the overall system health. Implement safeguards like rate limits, access controls, and health monitoring. 2. Resource Allocation: A denial of service caused by one model can impact the overall system health. Implement safeguards like rate limits, access controls, and health monitoring.
1. Model Sharing: In a multitenant model sharing design, tenants and users must understand the security risks of running code provided by others. Since there are no reliable methods to detect malicious models, sandboxing the model execution is the recommended approach to mitigate the risk. 3. Model Sharing: In a multitenant model sharing design, tenants and users must understand the security risks of running code provided by others. Since there are no reliable methods to detect malicious models, sandboxing the model execution is the recommended approach to mitigate the risk.
1. Hardware Attacks: GPUs or TPUs can also be attacked. [Researches](https://scholar.google.com/scholar?q=gpu+side+channel) has shown that side channel attacks on GPUs are possible, which can make data leak from other models or processes running on the same system at the same time. 4. Hardware Attacks: GPUs or TPUs can also be attacked. [Researches](https://scholar.google.com/scholar?q=gpu+side+channel) has shown that side channel attacks on GPUs are possible, which can make data leak from other models or processes running on the same system at the same time.
## Reporting a vulnerability ## Reporting a vulnerability

View File

@ -112,6 +112,7 @@ pub fn build(b: *std.build.Builder) !void {
make.enable_lto = b.option(bool, "lto", "Enable LTO optimization, (default: false)") orelse false; make.enable_lto = b.option(bool, "lto", "Enable LTO optimization, (default: false)") orelse false;
const ggml = make.obj("ggml", "ggml.c"); const ggml = make.obj("ggml", "ggml.c");
const sgemm = make.obj("sgemm", "sgemm.cpp");
const ggml_alloc = make.obj("ggml-alloc", "ggml-alloc.c"); const ggml_alloc = make.obj("ggml-alloc", "ggml-alloc.c");
const ggml_backend = make.obj("ggml-backend", "ggml-backend.c"); const ggml_backend = make.obj("ggml-backend", "ggml-backend.c");
const ggml_quants = make.obj("ggml-quants", "ggml-quants.c"); const ggml_quants = make.obj("ggml-quants", "ggml-quants.c");
@ -128,15 +129,44 @@ pub fn build(b: *std.build.Builder) !void {
const clip = make.obj("clip", "examples/llava/clip.cpp"); const clip = make.obj("clip", "examples/llava/clip.cpp");
const llava = make.obj("llava", "examples/llava/llava.cpp"); const llava = make.obj("llava", "examples/llava/llava.cpp");
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, buildinfo, sampling, console, grammar_parser }); _ = make.exe("main", "examples/main/main.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, sampling, console, grammar_parser });
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, buildinfo }); _ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo });
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, buildinfo }); _ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo });
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, buildinfo }); _ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo });
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, buildinfo, train }); _ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, train });
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, buildinfo, train }); _ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, train });
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, buildinfo, sampling, grammar_parser, json_schema_to_grammar, clip, llava }); const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, sampling, grammar_parser, clip, llava });
if (server.target.isWindows()) { if (server.target.isWindows()) {
server.linkSystemLibrary("ws2_32"); server.linkSystemLibrary("ws2_32");
} }
const server_assets = [_][]const u8{ "index.html", "index.js", "completion.js", "json-schema-to-grammar.mjs" };
for (server_assets) |asset| {
const input_path = b.fmt("examples/server/public/{s}", .{asset});
const output_path = b.fmt("examples/server/{s}.hpp", .{asset});
// Portable equivalent of `b.addSystemCommand(&.{ "xxd", "-n", asset, "-i", input_path, output_path }) })`:
const input = try std.fs.cwd().readFileAlloc(b.allocator, input_path, std.math.maxInt(usize));
defer b.allocator.free(input);
var buf = std.ArrayList(u8).init(b.allocator);
defer buf.deinit();
for (input) |byte| {
try std.fmt.format(buf.writer(), "0x{X:0>2}, ", .{byte});
}
var name = try std.mem.replaceOwned(u8, b.allocator, asset, "-", "_");
defer b.allocator.free(name);
std.mem.replaceScalar(u8, name, '.', '_');
try std.fs.cwd().writeFile(output_path, b.fmt(
"unsigned char {s}[] = {{{s}}};\nunsigned int {s}_len = {d};\n",
.{ name, buf.items, name, input.len },
));
std.debug.print("Dumped hex of \"{s}\" ({s}) to {s}\n", .{ input_path, name, output_path });
}
} }

View File

@ -153,6 +153,55 @@ function gg_sum_ctest_release {
gg_printf '```\n' gg_printf '```\n'
} }
# test_scripts_debug
function gg_run_test_scripts_debug {
cd ${SRC}
set -e
# TODO: too slow, run on dedicated node
(cd ./examples/gguf-split && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
#(cd ./examples/quantize && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
set +e
}
function gg_sum_test_scripts_debug {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Runs test scripts in debug mode\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '```\n'
gg_printf '%s\n' "$(cat $OUT/${ci}-scripts.log)"
gg_printf '```\n'
gg_printf '\n'
}
# test_scripts_release
function gg_run_test_scripts_release {
cd ${SRC}
set -e
(cd ./examples/gguf-split && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
(cd ./examples/quantize && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
set +e
}
function gg_sum_test_scripts_release {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Runs test scripts in release mode\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '```\n'
gg_printf '%s\n' "$(cat $OUT/${ci}-scripts.log)"
gg_printf '```\n'
gg_printf '\n'
}
function gg_get_model { function gg_get_model {
local gguf_3b="$MNT/models/open-llama/3B-v2/ggml-model-f16.gguf" local gguf_3b="$MNT/models/open-llama/3B-v2/ggml-model-f16.gguf"
local gguf_7b="$MNT/models/open-llama/7B-v2/ggml-model-f16.gguf" local gguf_7b="$MNT/models/open-llama/7B-v2/ggml-model-f16.gguf"
@ -642,6 +691,9 @@ test $ret -eq 0 && gg_run ctest_release
if [ -z ${GG_BUILD_LOW_PERF} ]; then if [ -z ${GG_BUILD_LOW_PERF} ]; then
test $ret -eq 0 && gg_run embd_bge_small test $ret -eq 0 && gg_run embd_bge_small
test $ret -eq 0 && gg_run test_scripts_debug
test $ret -eq 0 && gg_run test_scripts_release
if [ -z ${GG_BUILD_VRAM_GB} ] || [ ${GG_BUILD_VRAM_GB} -ge 8 ]; then if [ -z ${GG_BUILD_VRAM_GB} ] || [ ${GG_BUILD_VRAM_GB} -ge 8 ]; then
if [ -z ${GG_BUILD_CUDA} ]; then if [ -z ${GG_BUILD_CUDA} ]; then
test $ret -eq 0 && gg_run open_llama_3b_v2 test $ret -eq 0 && gg_run open_llama_3b_v2

View File

@ -47,9 +47,6 @@ if (BUILD_SHARED_LIBS)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON) set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
endif() endif()
set(TARGET json-schema-to-grammar)
add_library(${TARGET} OBJECT json-schema-to-grammar.cpp json-schema-to-grammar.h)
set(TARGET common) set(TARGET common)
add_library(${TARGET} STATIC add_library(${TARGET} STATIC
@ -63,6 +60,7 @@ add_library(${TARGET} STATIC
grammar-parser.h grammar-parser.h
grammar-parser.cpp grammar-parser.cpp
json.hpp json.hpp
json-schema-to-grammar.cpp
train.h train.h
train.cpp train.cpp
ngram-cache.h ngram-cache.h

View File

@ -1,4 +1,6 @@
#include "common.h" #include "common.h"
#include "json.hpp"
#include "json-schema-to-grammar.h"
#include "llama.h" #include "llama.h"
#include <algorithm> #include <algorithm>
@ -68,6 +70,8 @@
#define LLAMA_CURL_MAX_HEADER_LENGTH 256 #define LLAMA_CURL_MAX_HEADER_LENGTH 256
#endif // LLAMA_USE_CURL #endif // LLAMA_USE_CURL
using json = nlohmann::ordered_json;
int32_t get_num_physical_cores() { int32_t get_num_physical_cores() {
#ifdef __linux__ #ifdef __linux__
// enumerate the set of thread siblings, num entries is num cores // enumerate the set of thread siblings, num entries is num cores
@ -104,6 +108,79 @@ int32_t get_num_physical_cores() {
return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4; return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
} }
#if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
#include <pthread.h>
static void cpuid(unsigned leaf, unsigned subleaf,
unsigned *eax, unsigned *ebx, unsigned *ecx, unsigned *edx) {
__asm__("movq\t%%rbx,%%rsi\n\t"
"cpuid\n\t"
"xchgq\t%%rbx,%%rsi"
: "=a"(*eax), "=S"(*ebx), "=c"(*ecx), "=d"(*edx)
: "0"(leaf), "2"(subleaf));
}
static int pin_cpu(int cpu) {
cpu_set_t mask;
CPU_ZERO(&mask);
CPU_SET(cpu, &mask);
return pthread_setaffinity_np(pthread_self(), sizeof(mask), &mask);
}
static bool is_hybrid_cpu(void) {
unsigned eax, ebx, ecx, edx;
cpuid(7, 0, &eax, &ebx, &ecx, &edx);
return !!(edx & (1u << 15));
}
static bool is_running_on_efficiency_core(void) {
unsigned eax, ebx, ecx, edx;
cpuid(0x1a, 0, &eax, &ebx, &ecx, &edx);
int intel_atom = 0x20;
int core_type = (eax & 0xff000000u) >> 24;
return core_type == intel_atom;
}
static int count_math_cpus(int cpu_count) {
int result = 0;
for (int cpu = 0; cpu < cpu_count; ++cpu) {
if (pin_cpu(cpu)) {
return -1;
}
if (is_running_on_efficiency_core()) {
continue; // efficiency cores harm lockstep threading
}
++cpu; // hyperthreading isn't useful for linear algebra
++result;
}
return result;
}
#endif // __x86_64__ && __linux__
/**
* Returns number of CPUs on system that are useful for math.
*/
int get_math_cpu_count() {
#if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
int cpu_count = sysconf(_SC_NPROCESSORS_ONLN);
if (cpu_count < 1) {
return get_num_physical_cores();
}
if (is_hybrid_cpu()) {
cpu_set_t affinity;
if (!pthread_getaffinity_np(pthread_self(), sizeof(affinity), &affinity)) {
int result = count_math_cpus(cpu_count);
pthread_setaffinity_np(pthread_self(), sizeof(affinity), &affinity);
if (result > 0) {
return result;
}
}
}
#endif
return get_num_physical_cores();
}
void process_escapes(std::string & input) { void process_escapes(std::string & input) {
std::size_t input_len = input.length(); std::size_t input_len = input.length();
std::size_t output_idx = 0; std::size_t output_idx = 0;
@ -157,15 +234,63 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
return result; return result;
} }
bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
const char * sep = strchr(data, '=');
if (sep == nullptr || sep - data >= 128) {
fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data);
return false;
}
llama_model_kv_override kvo;
std::strncpy(kvo.key, data, sep - data);
kvo.key[sep - data] = 0;
sep++;
if (strncmp(sep, "int:", 4) == 0) {
sep += 4;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
kvo.val_i64 = std::atol(sep);
} else if (strncmp(sep, "float:", 6) == 0) {
sep += 6;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
kvo.val_f64 = std::atof(sep);
} else if (strncmp(sep, "bool:", 5) == 0) {
sep += 5;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
if (std::strcmp(sep, "true") == 0) {
kvo.val_bool = true;
} else if (std::strcmp(sep, "false") == 0) {
kvo.val_bool = false;
} else {
fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data);
return false;
}
} else if (strncmp(sep, "str:", 4) == 0) {
sep += 4;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
if (strlen(sep) > 127) {
fprintf(stderr, "%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data);
return false;
}
strncpy(kvo.val_str, sep, 127);
kvo.val_str[127] = '\0';
} else {
fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data);
return false;
}
overrides.emplace_back(std::move(kvo));
return true;
}
bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param) { bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param) {
llama_sampling_params& sparams = params.sparams; llama_sampling_params & sparams = params.sparams;
if (arg == "-s" || arg == "--seed") { if (arg == "-s" || arg == "--seed") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
return true; return true;
} }
// This is temporary, in the future the samplign state will be moved fully to llama_sampling_context.
params.seed = std::stoul(argv[i]); params.seed = std::stoul(argv[i]);
sparams.seed = std::stoul(argv[i]);
return true; return true;
} }
if (arg == "-t" || arg == "--threads") { if (arg == "-t" || arg == "--threads") {
@ -1010,6 +1135,10 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
params.n_print = std::stoi(argv[i]); params.n_print = std::stoi(argv[i]);
return true; return true;
} }
if (arg == "--check-tensors") {
params.check_tensors = true;
return true;
}
if (arg == "--ppl-output-type") { if (arg == "--ppl-output-type") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
@ -1148,52 +1277,24 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
); );
return true; return true;
} }
if (arg == "-j" || arg == "--json-schema") {
if (++i >= argc) {
invalid_param = true;
return true;
}
sparams.grammar = json_schema_to_grammar(json::parse(argv[i]));
return true;
}
if (arg == "--override-kv") { if (arg == "--override-kv") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
return true; return true;
} }
char* sep = strchr(argv[i], '='); if (!parse_kv_override(argv[i], params.kv_overrides)) {
if (sep == nullptr || sep - argv[i] >= 128) {
fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
invalid_param = true;
return true;
}
struct llama_model_kv_override kvo;
std::strncpy(kvo.key, argv[i], sep - argv[i]);
kvo.key[sep - argv[i]] = 0;
sep++;
if (strncmp(sep, "int:", 4) == 0) {
sep += 4;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
kvo.int_value = std::atol(sep);
}
else if (strncmp(sep, "float:", 6) == 0) {
sep += 6;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
kvo.float_value = std::atof(sep);
}
else if (strncmp(sep, "bool:", 5) == 0) {
sep += 5;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
if (std::strcmp(sep, "true") == 0) {
kvo.bool_value = true;
}
else if (std::strcmp(sep, "false") == 0) {
kvo.bool_value = false;
}
else {
fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
invalid_param = true;
return true;
}
}
else {
fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]); fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
invalid_param = true; invalid_param = true;
return true; return true;
} }
params.kv_overrides.push_back(kvo);
return true; return true;
} }
#ifndef LOG_DISABLE_LOGS #ifndef LOG_DISABLE_LOGS
@ -1353,6 +1454,9 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n"); printf(" or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n");
printf(" --grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir)\n"); printf(" --grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir)\n");
printf(" --grammar-file FNAME file to read grammar from\n"); printf(" --grammar-file FNAME file to read grammar from\n");
printf(" -j SCHEMA, --json-schema SCHEMA\n");
printf(" JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object.\n");
printf(" For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead\n");
printf(" --cfg-negative-prompt PROMPT\n"); printf(" --cfg-negative-prompt PROMPT\n");
printf(" negative prompt to use for guidance. (default: empty)\n"); printf(" negative prompt to use for guidance. (default: empty)\n");
printf(" --cfg-negative-prompt-file FNAME\n"); printf(" --cfg-negative-prompt-file FNAME\n");
@ -1461,9 +1565,10 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" path to dynamic lookup cache to use for lookup decoding (updated by generation)\n"); printf(" path to dynamic lookup cache to use for lookup decoding (updated by generation)\n");
printf(" --override-kv KEY=TYPE:VALUE\n"); printf(" --override-kv KEY=TYPE:VALUE\n");
printf(" advanced option to override model metadata by key. may be specified multiple times.\n"); printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n"); printf(" types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
printf(" -ptc N, --print-token-count N\n"); printf(" -ptc N, --print-token-count N\n");
printf(" print token count every N tokens (default: %d)\n", params.n_print); printf(" print token count every N tokens (default: %d)\n", params.n_print);
printf(" --check-tensors check model tensor data for invalid values\n");
printf("\n"); printf("\n");
#ifndef LOG_DISABLE_LOGS #ifndef LOG_DISABLE_LOGS
log_print_usage(); log_print_usage();
@ -1588,6 +1693,18 @@ std::vector<std::string> string_split(std::string input, char separator) {
return parts; return parts;
} }
std::string string_strip(const std::string & str) {
size_t start = 0;
size_t end = str.size();
while (start < end && std::isspace(str[start])) {
start++;
}
while (end > start && std::isspace(str[end - 1])) {
end--;
}
return str.substr(start, end - start);
}
std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) { std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
std::unordered_map<std::string, llama_sampler_type> sampler_canonical_name_map { std::unordered_map<std::string, llama_sampler_type> sampler_canonical_name_map {
{"top_k", llama_sampler_type::TOP_K}, {"top_k", llama_sampler_type::TOP_K},
@ -1684,6 +1801,7 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
mparams.tensor_split = params.tensor_split; mparams.tensor_split = params.tensor_split;
mparams.use_mmap = params.use_mmap; mparams.use_mmap = params.use_mmap;
mparams.use_mlock = params.use_mlock; mparams.use_mlock = params.use_mlock;
mparams.check_tensors = params.check_tensors;
if (params.kv_overrides.empty()) { if (params.kv_overrides.empty()) {
mparams.kv_overrides = NULL; mparams.kv_overrides = NULL;
} else { } else {
@ -1745,6 +1863,8 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
cparams.yarn_orig_ctx = params.yarn_orig_ctx; cparams.yarn_orig_ctx = params.yarn_orig_ctx;
cparams.pooling_type = params.pooling_type; cparams.pooling_type = params.pooling_type;
cparams.defrag_thold = params.defrag_thold; cparams.defrag_thold = params.defrag_thold;
cparams.cb_eval = params.cb_eval;
cparams.cb_eval_user_data = params.cb_eval_user_data;
cparams.offload_kqv = !params.no_kv_offload; cparams.offload_kqv = !params.no_kv_offload;
cparams.type_k = kv_cache_type_from_str(params.cache_type_k); cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
@ -2192,7 +2312,7 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
params.sparams.logit_bias[llama_token_eos(model)] = -INFINITY; params.sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
} }
{ if (params.warmup) {
LOG("warming up the model with an empty run\n"); LOG("warming up the model with an empty run\n");
std::vector<llama_token> tmp = { llama_token_bos(model), llama_token_eos(model), }; std::vector<llama_token> tmp = { llama_token_bos(model), llama_token_eos(model), };
@ -2236,12 +2356,12 @@ std::vector<llama_token> llama_tokenize(
return result; return result;
} }
std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) { std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
std::vector<char> result(8, 0); std::vector<char> result(8, 0);
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size()); const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
if (n_tokens < 0) { if (n_tokens < 0) {
result.resize(-n_tokens); result.resize(-n_tokens);
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size()); int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
GGML_ASSERT(check == -n_tokens); GGML_ASSERT(check == -n_tokens);
} else { } else {
result.resize(n_tokens); result.resize(n_tokens);

View File

@ -39,6 +39,7 @@ extern char const *LLAMA_BUILD_TARGET;
struct llama_control_vector_load_info; struct llama_control_vector_load_info;
int get_math_cpu_count();
int32_t get_num_physical_cores(); int32_t get_num_physical_cores();
// //
@ -48,7 +49,7 @@ int32_t get_num_physical_cores();
struct gpt_params { struct gpt_params {
uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
int32_t n_threads = get_num_physical_cores(); int32_t n_threads = get_math_cpu_count();
int32_t n_threads_draft = -1; int32_t n_threads_draft = -1;
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads) int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
int32_t n_threads_batch_draft = -1; int32_t n_threads_batch_draft = -1;
@ -80,10 +81,13 @@ struct gpt_params {
int32_t yarn_orig_ctx = 0; // YaRN original context length int32_t yarn_orig_ctx = 0; // YaRN original context length
float defrag_thold = -1.0f; // KV cache defragmentation threshold float defrag_thold = -1.0f; // KV cache defragmentation threshold
ggml_backend_sched_eval_callback cb_eval = nullptr;
void * cb_eval_user_data = nullptr;
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED; ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED; enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
// // sampling parameters // // sampling parameters
struct llama_sampling_params sparams; struct llama_sampling_params sparams;
@ -156,6 +160,8 @@ struct gpt_params {
bool infill = false; // use infill mode bool infill = false; // use infill mode
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
bool no_kv_offload = false; // disable KV offloading bool no_kv_offload = false; // disable KV offloading
bool warmup = true; // warmup run
bool check_tensors = false; // validate tensor data
std::string cache_type_k = "f16"; // KV cache data type for the K std::string cache_type_k = "f16"; // KV cache data type for the K
std::string cache_type_v = "f16"; // KV cache data type for the V std::string cache_type_v = "f16"; // KV cache data type for the V
@ -165,6 +171,8 @@ struct gpt_params {
std::string image = ""; // path to an image file std::string image = ""; // path to an image file
}; };
bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params); bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params);
bool gpt_params_parse(int argc, char ** argv, gpt_params & params); bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
@ -188,6 +196,7 @@ bool validate_file_name(const std::string & filename);
std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names); std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
std::vector<llama_sampler_type> sampler_types_from_chars(const std::string & names_string); std::vector<llama_sampler_type> sampler_types_from_chars(const std::string & names_string);
std::vector<std::string> string_split(std::string input, char separator); std::vector<std::string> string_split(std::string input, char separator);
std::string string_strip(const std::string & str);
std::string sampler_type_to_name_string(llama_sampler_type sampler_type); std::string sampler_type_to_name_string(llama_sampler_type sampler_type);
// //
@ -232,11 +241,12 @@ std::vector<llama_token> llama_tokenize(
bool add_special, bool add_special,
bool parse_special = false); bool parse_special = false);
// tokenizes a token into a piece // tokenizes a token into a piece, optionally renders special/control tokens
// should work similar to Python's `tokenizer.id_to_piece` // should work similar to Python's `tokenizer.id_to_piece`
std::string llama_token_to_piece( std::string llama_token_to_piece(
const struct llama_context * ctx, const struct llama_context * ctx,
llama_token token); llama_token token,
bool special = true);
// TODO: these should be moved in llama.h C-style API under single `llama_detokenize` function // TODO: these should be moved in llama.h C-style API under single `llama_detokenize` function
// that takes into account the tokenizer type and decides how to handle the leading space // that takes into account the tokenizer type and decides how to handle the leading space

View File

@ -11,35 +11,101 @@
using json = nlohmann::ordered_json; using json = nlohmann::ordered_json;
template <typename Iterator>
static std::string join(Iterator begin, Iterator end, const std::string & separator);
static std::string repeat(const std::string & str, size_t n);
static std::string build_repetition(const std::string & item_rule, int min_items, int max_items, const std::string & separator_rule = "", bool item_rule_is_literal = false) {
if (separator_rule.empty()) {
if (min_items == 0 && max_items == 1) {
return item_rule + "?";
} else if (min_items == 1 && max_items == std::numeric_limits<int>::max()) {
return item_rule + "+";
}
}
std::string result;
if (min_items > 0) {
if (item_rule_is_literal && separator_rule.empty()) {
result = "\"" + repeat(std::string(item_rule.begin() + 1, item_rule.end() - 1), min_items) + "\"";
} else {
std::vector<std::string> items(min_items, item_rule);
result = join(items.begin(), items.end(), separator_rule.empty() ? " " : " " + separator_rule + " ");
}
}
std::function<std::string(int, bool)> opt_repetitions = [&](int up_to_n, bool prefix_with_sep) -> std::string {
auto content = prefix_with_sep && !separator_rule.empty() ? separator_rule + " " + item_rule : item_rule;
if (up_to_n == 0) {
return "";
} else if (up_to_n == 1) {
return "(" + content + ")?";
} else if (!separator_rule.empty() && !prefix_with_sep) {
return "(" + content + " " + opt_repetitions(up_to_n - 1, true) + ")?";
} else {
std::string res = repeat("(" + content + " ", up_to_n);
// strip trailing space
res = res.substr(0, res.length() - 1);
res += repeat(")?", up_to_n);
return res;
}
};
if (min_items > 0 && max_items != min_items) {
result += " ";
}
if (max_items != std::numeric_limits<int>::max()) {
result += opt_repetitions(max_items - min_items, min_items > 0);
} else {
std::string item_operator = "(" + (separator_rule.empty() ? "" : separator_rule + " ") + item_rule + ")";
if (min_items == 0 && !separator_rule.empty()) {
result = "(" + item_rule + " " + item_operator + "*)?";
} else {
result += item_operator + "*";
}
}
return result;
}
const std::string SPACE_RULE = "\" \"?"; const std::string SPACE_RULE = "\" \"?";
std::unordered_map<std::string, std::string> PRIMITIVE_RULES = { struct BuiltinRule {
{"boolean", "(\"true\" | \"false\") space"}, std::string content;
{"number", "(\"-\"? ([0-9] | [1-9] [0-9]*)) (\".\" [0-9]+)? ([eE] [-+]? [0-9]+)? space"}, std::vector<std::string> deps;
{"integer", "(\"-\"? ([0-9] | [1-9] [0-9]*)) space"},
{"value", "object | array | string | number | boolean"},
{"object", "\"{\" space ( string \":\" space value (\",\" space string \":\" space value)* )? \"}\" space"},
{"array", "\"[\" space ( value (\",\" space value)* )? \"]\" space"},
{"uuid", "\"\\\"\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] \"\\\"\" space"},
{"string", " \"\\\"\" (\n"
" [^\"\\\\] |\n"
" \"\\\\\" ([\"\\\\/bfnrt] | \"u\" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])\n"
" )* \"\\\"\" space"},
{"null", "\"null\" space"}
}; };
std::vector<std::string> OBJECT_RULE_NAMES = {"object", "array", "string", "number", "boolean", "null", "value"};
std::unordered_map<std::string, std::string> DATE_RULES = { const std::string _up_to_15_digits = build_repetition("[0-9]", 0, 15);
{"date", "[0-9] [0-9] [0-9] [0-9] \"-\" ( \"0\" [1-9] | \"1\" [0-2] ) \"-\" ( \"0\" [1-9] | [1-2] [0-9] | \"3\" [0-1] )"},
{"time", "([01] [0-9] | \"2\" [0-3]) \":\" [0-5] [0-9] \":\" [0-5] [0-9] ( \".\" [0-9] [0-9] [0-9] )? ( \"Z\" | ( \"+\" | \"-\" ) ( [01] [0-9] | \"2\" [0-3] ) \":\" [0-5] [0-9] )"}, std::unordered_map<std::string, BuiltinRule> PRIMITIVE_RULES = {
{"date-time", "date \"T\" time"}, {"boolean", {"(\"true\" | \"false\") space", {}}},
{"date-string", "\"\\\"\" date \"\\\"\" space"}, {"decimal-part", {"[0-9] " + _up_to_15_digits, {}}},
{"time-string", "\"\\\"\" time \"\\\"\" space"}, {"integral-part", {"[0-9] | [1-9] " + _up_to_15_digits, {}}},
{"date-time-string", "\"\\\"\" date-time \"\\\"\" space"} {"number", {"(\"-\"? integral-part) (\".\" decimal-part)? ([eE] [-+]? integral-part)? space", {"integral-part", "decimal-part"}}},
{"integer", {"(\"-\"? integral-part) space", {"integral-part"}}},
{"value", {"object | array | string | number | boolean | null", {"object", "array", "string", "number", "boolean", "null"}}},
{"object", {"\"{\" space ( string \":\" space value (\",\" space string \":\" space value)* )? \"}\" space", {"string", "value"}}},
{"array", {"\"[\" space ( value (\",\" space value)* )? \"]\" space", {"value"}}},
{"uuid", {"\"\\\"\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] \"\\\"\" space", {}}},
{"char", {"[^\"\\\\] | \"\\\\\" ([\"\\\\/bfnrt] | \"u\" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])", {}}},
{"string", {"\"\\\"\" char* \"\\\"\" space", {"char"}}},
{"null", {"\"null\" space", {}}},
};
std::unordered_map<std::string, BuiltinRule> STRING_FORMAT_RULES = {
{"date", {"[0-9] [0-9] [0-9] [0-9] \"-\" ( \"0\" [1-9] | \"1\" [0-2] ) \"-\" ( \"0\" [1-9] | [1-2] [0-9] | \"3\" [0-1] )", {}}},
{"time", {"([01] [0-9] | \"2\" [0-3]) \":\" [0-5] [0-9] \":\" [0-5] [0-9] ( \".\" [0-9] [0-9] [0-9] )? ( \"Z\" | ( \"+\" | \"-\" ) ( [01] [0-9] | \"2\" [0-3] ) \":\" [0-5] [0-9] )", {}}},
{"date-time", {"date \"T\" time", {"date", "time"}}},
{"date-string", {"\"\\\"\" date \"\\\"\" space", {"date"}}},
{"time-string", {"\"\\\"\" time \"\\\"\" space", {"time"}}},
{"date-time-string", {"\"\\\"\" date-time \"\\\"\" space", {"date-time"}}}
}; };
static bool is_reserved_name(const std::string & name) { static bool is_reserved_name(const std::string & name) {
@ -47,7 +113,7 @@ static bool is_reserved_name(const std::string & name) {
if (RESERVED_NAMES.empty()) { if (RESERVED_NAMES.empty()) {
RESERVED_NAMES.insert("root"); RESERVED_NAMES.insert("root");
for (const auto &p : PRIMITIVE_RULES) RESERVED_NAMES.insert(p.first); for (const auto &p : PRIMITIVE_RULES) RESERVED_NAMES.insert(p.first);
for (const auto &p : DATE_RULES) RESERVED_NAMES.insert(p.first); for (const auto &p : STRING_FORMAT_RULES) RESERVED_NAMES.insert(p.first);
} }
return RESERVED_NAMES.find(name) != RESERVED_NAMES.end(); return RESERVED_NAMES.find(name) != RESERVED_NAMES.end();
} }
@ -192,7 +258,7 @@ private:
if (_dotall) { if (_dotall) {
rule = "[\\U00000000-\\U0010FFFF]"; rule = "[\\U00000000-\\U0010FFFF]";
} else { } else {
rule = "[\\U00000000-\\x09\\x0B\\x0C\\x0E-\\U0010FFFF]"; rule = "[^\\x0A\\x0D]";
} }
return _add_rule("dot", rule); return _add_rule("dot", rule);
}; };
@ -308,13 +374,6 @@ private:
auto &sub = last.first; auto &sub = last.first;
auto sub_is_literal = last.second; auto sub_is_literal = last.second;
if (min_times == 0 && max_times == std::numeric_limits<int>::max()) {
sub += "*";
} else if (min_times == 0 && max_times == 1) {
sub += "?";
} else if (min_times == 1 && max_times == std::numeric_limits<int>::max()) {
sub += "+";
} else {
if (!sub_is_literal) { if (!sub_is_literal) {
std::string & sub_id = sub_rule_ids[sub]; std::string & sub_id = sub_rule_ids[sub];
if (sub_id.empty()) { if (sub_id.empty()) {
@ -322,33 +381,14 @@ private:
} }
sub = sub_id; sub = sub_id;
} }
std::string result; seq.back().first = build_repetition(
if (sub_is_literal && min_times > 0) { sub_is_literal ? "\"" + sub + "\"" : sub,
result = "\"" + repeat(sub.substr(1, sub.length() - 2), min_times) + "\""; min_times,
} else { max_times,
for (int j = 0; j < min_times; j++) { "",
if (j > 0) { sub_is_literal
result += " "; );
}
result += sub;
}
}
if (min_times > 0 && min_times < max_times) {
result += " ";
}
if (max_times == std::numeric_limits<int>::max()) {
result += sub + "*";
} else {
for (int j = min_times; j < max_times; j++) {
if (j > min_times) {
result += " ";
}
result += sub + "?";
}
}
seq.back().first = result;
seq.back().second = false; seq.back().second = false;
}
} else { } else {
std::string literal; std::string literal;
auto is_non_literal = [&](char c) { auto is_non_literal = [&](char c) {
@ -424,7 +464,7 @@ private:
if (additional_properties.is_object() || (additional_properties.is_boolean() && additional_properties.get<bool>())) { if (additional_properties.is_object() || (additional_properties.is_boolean() && additional_properties.get<bool>())) {
std::string sub_name = name + (name.empty() ? "" : "-") + "additional"; std::string sub_name = name + (name.empty() ? "" : "-") + "additional";
std::string value_rule = visit(additional_properties.is_object() ? additional_properties : json::object(), sub_name + "-value"); std::string value_rule = visit(additional_properties.is_object() ? additional_properties : json::object(), sub_name + "-value");
std::string kv_rule = _add_rule(sub_name + "-kv", _add_rule("string", PRIMITIVE_RULES.at("string")) + " \":\" space " + value_rule); std::string kv_rule = _add_rule(sub_name + "-kv", _add_primitive("string", PRIMITIVE_RULES.at("string")) + " \":\" space " + value_rule);
prop_kv_rule_names["*"] = kv_rule; prop_kv_rule_names["*"] = kv_rule;
optional_props.push_back("*"); optional_props.push_back("*");
} }
@ -486,6 +526,25 @@ private:
return rule; return rule;
} }
std::string _add_primitive(const std::string & name, const BuiltinRule & rule) {
auto n = _add_rule(name, rule.content);
for (const auto & dep : rule.deps) {
BuiltinRule dep_rule;
auto it = PRIMITIVE_RULES.find(dep);
if (it == PRIMITIVE_RULES.end()) {
it = STRING_FORMAT_RULES.find(dep);
if (it == STRING_FORMAT_RULES.end()) {
_errors.push_back("Rule " + dep + " not known");
continue;
}
}
if (_rules.find(dep) == _rules.end()) {
_add_primitive(dep, it->second);
}
}
return n;
}
public: public:
SchemaConverter( SchemaConverter(
const std::function<json(const std::string &)> & fetch_json, const std::function<json(const std::string &)> & fetch_json,
@ -647,49 +706,33 @@ public:
return _add_rule(rule_name, rule); return _add_rule(rule_name, rule);
} else { } else {
std::string item_rule_name = visit(items, name + (name.empty() ? "" : "-") + "item"); std::string item_rule_name = visit(items, name + (name.empty() ? "" : "-") + "item");
std::string list_item_operator = "( \",\" space " + item_rule_name + " )";
std::string successive_items;
int min_items = schema.contains("minItems") ? schema["minItems"].get<int>() : 0; int min_items = schema.contains("minItems") ? schema["minItems"].get<int>() : 0;
json max_items_json = schema.contains("maxItems") ? schema["maxItems"] : json(); json max_items_json = schema.contains("maxItems") ? schema["maxItems"] : json();
int max_items = max_items_json.is_number_integer() ? max_items_json.get<int>() : -1; int max_items = max_items_json.is_number_integer() ? max_items_json.get<int>() : std::numeric_limits<int>::max();
if (min_items > 0) {
successive_items += repeat(list_item_operator, min_items - 1); return _add_rule(rule_name, "\"[\" space " + build_repetition(item_rule_name, min_items, max_items, "\",\" space") + " \"]\" space");
min_items--;
}
if (max_items >= 0 && max_items > min_items) {
successive_items += repeat(list_item_operator + "?", max_items - min_items - 1);
} else {
successive_items += list_item_operator + "*";
}
std::string rule;
if (min_items == 0) {
rule = "\"[\" space ( " + item_rule_name + " " + successive_items + " )? \"]\" space";
} else {
rule = "\"[\" space " + item_rule_name + " " + successive_items + " \"]\" space";
}
return _add_rule(rule_name, rule);
} }
} else if ((schema_type.is_null() || schema_type == "string") && schema.contains("pattern")) { } else if ((schema_type.is_null() || schema_type == "string") && schema.contains("pattern")) {
return _visit_pattern(schema["pattern"], rule_name); return _visit_pattern(schema["pattern"], rule_name);
} else if ((schema_type.is_null() || schema_type == "string") && std::regex_match(schema_format, std::regex("^uuid[1-5]?$"))) { } else if ((schema_type.is_null() || schema_type == "string") && std::regex_match(schema_format, std::regex("^uuid[1-5]?$"))) {
return _add_rule(rule_name == "root" ? "root" : schema_format, PRIMITIVE_RULES.at("uuid")); return _add_primitive(rule_name == "root" ? "root" : schema_format, PRIMITIVE_RULES.at("uuid"));
} else if ((schema_type.is_null() || schema_type == "string") && DATE_RULES.find(schema_format) != DATE_RULES.end()) { } else if ((schema_type.is_null() || schema_type == "string") && STRING_FORMAT_RULES.find(schema_format + "-string") != STRING_FORMAT_RULES.end()) {
for (const auto & kv : DATE_RULES) { auto prim_name = schema_format + "-string";
_add_rule(kv.first, kv.second); return _add_rule(rule_name, _add_primitive(prim_name, STRING_FORMAT_RULES.at(prim_name)));
} } else if (schema_type == "string" && (schema.contains("minLength") || schema.contains("maxLength"))) {
return schema_format + "-string"; std::string char_rule = _add_primitive("char", PRIMITIVE_RULES.at("char"));
int min_len = schema.contains("minLength") ? schema["minLength"].get<int>() : 0;
int max_len = schema.contains("maxLength") ? schema["maxLength"].get<int>() : std::numeric_limits<int>::max();
return _add_rule(rule_name, "\"\\\"\" " + build_repetition(char_rule, min_len, max_len) + " \"\\\"\" space");
} else if (schema.empty() || schema_type == "object") { } else if (schema.empty() || schema_type == "object") {
for (const auto & n : OBJECT_RULE_NAMES) { return _add_rule(rule_name, _add_primitive("object", PRIMITIVE_RULES.at("object")));
_add_rule(n, PRIMITIVE_RULES.at(n));
}
return _add_rule(rule_name, "object");
} else { } else {
if (!schema_type.is_string() || PRIMITIVE_RULES.find(schema_type.get<std::string>()) == PRIMITIVE_RULES.end()) { if (!schema_type.is_string() || PRIMITIVE_RULES.find(schema_type.get<std::string>()) == PRIMITIVE_RULES.end()) {
_errors.push_back("Unrecognized schema: " + schema.dump()); _errors.push_back("Unrecognized schema: " + schema.dump());
return ""; return "";
} }
// TODO: support minimum, maximum, exclusiveMinimum, exclusiveMaximum at least for zero // TODO: support minimum, maximum, exclusiveMinimum, exclusiveMaximum at least for zero
return _add_rule(rule_name == "root" ? "root" : schema_type.get<std::string>(), PRIMITIVE_RULES.at(schema_type.get<std::string>())); return _add_primitive(rule_name == "root" ? "root" : schema_type.get<std::string>(), PRIMITIVE_RULES.at(schema_type.get<std::string>()));
} }
} }

View File

@ -234,7 +234,7 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
// INTERNAL, DO NOT USE // INTERNAL, DO NOT USE
// USE LOG() INSTEAD // USE LOG() INSTEAD
// //
#if !defined(_MSC_VER) or defined(__INTEL_LLVM_COMPILER) #if !defined(_MSC_VER) || defined(__INTEL_LLVM_COMPILER)
#define LOG_IMPL(str, ...) \ #define LOG_IMPL(str, ...) \
do { \ do { \
if (LOG_TARGET != nullptr) \ if (LOG_TARGET != nullptr) \
@ -257,7 +257,7 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
// INTERNAL, DO NOT USE // INTERNAL, DO NOT USE
// USE LOG_TEE() INSTEAD // USE LOG_TEE() INSTEAD
// //
#if !defined(_MSC_VER) or defined(__INTEL_LLVM_COMPILER) #if !defined(_MSC_VER) || defined(__INTEL_LLVM_COMPILER)
#define LOG_TEE_IMPL(str, ...) \ #define LOG_TEE_IMPL(str, ...) \
do { \ do { \
if (LOG_TARGET != nullptr) \ if (LOG_TARGET != nullptr) \

View File

@ -1,4 +1,6 @@
#define LLAMA_API_INTERNAL
#include "sampling.h" #include "sampling.h"
#include <random>
struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params) { struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params) {
struct llama_sampling_context * result = new llama_sampling_context(); struct llama_sampling_context * result = new llama_sampling_context();
@ -33,6 +35,8 @@ struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_
result->prev.resize(params.n_prev); result->prev.resize(params.n_prev);
llama_sampling_set_rng_seed(result, params.seed);
return result; return result;
} }
@ -62,6 +66,13 @@ void llama_sampling_reset(llama_sampling_context * ctx) {
ctx->cur.clear(); ctx->cur.clear();
} }
void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed) {
if (seed == LLAMA_DEFAULT_SEED) {
seed = std::random_device{}();
}
ctx->rng.seed(seed);
}
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) { void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) {
if (dst->grammar) { if (dst->grammar) {
llama_grammar_free(dst->grammar); llama_grammar_free(dst->grammar);
@ -203,7 +214,7 @@ static llama_token llama_sampling_sample_impl(
sampler_queue(ctx_main, params, cur_p, min_keep); sampler_queue(ctx_main, params, cur_p, min_keep);
id = llama_sample_token(ctx_main, &cur_p); id = llama_sample_token_with_rng(ctx_main, &cur_p, ctx_sampling->rng);
//{ //{
// const int n_top = 10; // const int n_top = 10;

View File

@ -4,9 +4,10 @@
#include "grammar-parser.h" #include "grammar-parser.h"
#include <random>
#include <string> #include <string>
#include <vector>
#include <unordered_map> #include <unordered_map>
#include <vector>
// sampler types // sampler types
enum class llama_sampler_type : char { enum class llama_sampler_type : char {
@ -39,6 +40,7 @@ typedef struct llama_sampling_params {
float mirostat_tau = 5.00f; // target entropy float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate float mirostat_eta = 0.10f; // learning rate
bool penalize_nl = false; // consider newlines as a repeatable token bool penalize_nl = false; // consider newlines as a repeatable token
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampling_context
std::vector<llama_sampler_type> samplers_sequence = { std::vector<llama_sampler_type> samplers_sequence = {
llama_sampler_type::TOP_K, llama_sampler_type::TOP_K,
@ -79,6 +81,8 @@ struct llama_sampling_context {
// TODO: replace with ring-buffer // TODO: replace with ring-buffer
std::vector<llama_token> prev; std::vector<llama_token> prev;
std::vector<llama_token_data> cur; std::vector<llama_token_data> cur;
std::mt19937 rng;
}; };
#include "common.h" #include "common.h"
@ -93,6 +97,9 @@ void llama_sampling_free(struct llama_sampling_context * ctx);
// - reset grammar // - reset grammar
void llama_sampling_reset(llama_sampling_context * ctx); void llama_sampling_reset(llama_sampling_context * ctx);
// Set the sampler seed
void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed);
// Copy the sampler context // Copy the sampler context
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst); void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst);

View File

@ -0,0 +1,275 @@
# This script downloads the tokenizer models of the specified models from Huggingface and
# generates the get_vocab_base_pre() function for convert-hf-to-gguf.py
#
# This is necessary in order to analyze the type of pre-tokenizer used by the model and
# provide the necessary information to llama.cpp via the GGUF header in order to implement
# the same pre-tokenizer.
#
# ref: https://github.com/ggerganov/llama.cpp/pull/6920
#
# Instructions:
#
# - Add a new model to the "models" list
# - Run the script with your huggingface token:
#
# python3 convert-hf-to-gguf-update.py <huggingface_token>
#
# - Copy-paste the generated get_vocab_base_pre() function into convert-hf-to-gguf.py
# - Update llama.cpp with the new pre-tokenizer if necessary
#
# TODO: generate tokenizer tests for llama.cpp
# TODO: automate the update of convert-hf-to-gguf.py
#
import os
import requests
import sys
import json
from hashlib import sha256
from enum import IntEnum, auto
class TOKENIZER_TYPE(IntEnum):
SPM = auto()
BPE = auto()
WPM = auto()
# TODO: this string has to exercise as much pre-tokenizer functionality as possible
# will be updated with time - contributions welcome
chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天 ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
if len(sys.argv) == 2:
token = sys.argv[1]
else:
print("Usage: python convert-hf-to-gguf-update.py <huggingface_token>")
sys.exit(1)
# TODO: add models here, base models preferred
models = [
{ "name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
{ "name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", },
{ "name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", },
{ "name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", },
{ "name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
{ "name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
{ "name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
{ "name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
{ "name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
{ "name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
]
# make directory "models/tokenizers" if it doesn't exist
if not os.path.exists("models/tokenizers"):
os.makedirs("models/tokenizers")
def download_file_with_auth(url, token, save_path):
headers = {"Authorization": f"Bearer {token}"}
response = requests.get(url, headers=headers)
if response.status_code == 200:
with open(save_path, 'wb') as f:
f.write(response.content)
print(f"File {save_path} downloaded successfully")
else:
print(f"Failed to download file. Status code: {response.status_code}")
# download the tokenizer models
for model in models:
name = model["name"]
repo = model["repo"]
tokt = model["tokt"]
if not os.path.exists(f"models/tokenizers/{name}"):
os.makedirs(f"models/tokenizers/{name}")
else:
print(f"Directory models/tokenizers/{name} already exists - skipping")
continue
print(f"Downloading {name} to models/tokenizers/{name}")
url = f"{repo}/raw/main/config.json"
save_path = f"models/tokenizers/{name}/config.json"
download_file_with_auth(url, token, save_path)
url = f"{repo}/raw/main/tokenizer.json"
save_path = f"models/tokenizers/{name}/tokenizer.json"
download_file_with_auth(url, token, save_path)
if tokt == TOKENIZER_TYPE.SPM:
url = f"{repo}/resolve/main/tokenizer.model"
save_path = f"models/tokenizers/{name}/tokenizer.model"
download_file_with_auth(url, token, save_path)
url = f"{repo}/raw/main/tokenizer_config.json"
save_path = f"models/tokenizers/{name}/tokenizer_config.json"
download_file_with_auth(url, token, save_path)
# generate the source code for the convert-hf-to-gguf.py:get_vocab_base_pre() function:
# TODO: auto-update convert-hf-to-gguf.py with the generated function
src_ifs = ""
for model in models:
name = model["name"]
tokt = model["tokt"]
if tokt == TOKENIZER_TYPE.SPM:
continue
# create the tokenizer
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
chktok = tokenizer.encode(chktxt)
chkhsh = sha256(str(chktok).encode()).hexdigest()
print(f"model: {name}")
print(f"tokt: {tokt}")
print(f"repo: {model['repo']}")
print(f"chktok: {chktok}")
print(f"chkhsh: {chkhsh}")
# print the "pre_tokenizer" content from the tokenizer.json
with open(f"models/tokenizers/{name}/tokenizer.json", "r") as f:
cfg = json.load(f)
pre_tokenizer = cfg["pre_tokenizer"]
print("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
print(f"\n")
src_ifs += f" if chkhsh == \"{chkhsh}\":\n"
src_ifs += f" # ref: {model['repo']}\n"
src_ifs += f" res = \"{name}\"\n"
src_func = ""
src_func += " def get_vocab_base_pre(self, tokenizer) -> str:\n"
src_func += " # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that\n"
src_func += " # is specific for the BPE pre-tokenizer used by the model\n"
src_func += " # we will use this unique identifier to write a \"tokenizer.ggml.pre\" entry in the GGUF file which we can\n"
src_func += " # use in llama.cpp to implement the same pre-tokenizer\n"
src_func += "\n"
src_func += f" chktxt = {repr(chktxt)}\n"
src_func += "\n"
src_func += " chktok = tokenizer.encode(chktxt)\n"
src_func += " chkhsh = sha256(str(chktok).encode()).hexdigest()\n"
src_func += "\n"
src_func += " print(f\"chktok: {chktok}\")\n"
src_func += " print(f\"chkhsh: {chkhsh}\")\n"
src_func += "\n"
src_func += " res = None\n"
src_func += "\n"
src_func += " # NOTE: if you get an error here, you need to add the model to the if-elif chain below\n"
src_func += " # don't do this manually - use the convert-hf-to-gguf-update.py script!\n"
src_func += f"{src_ifs}\n"
src_func += " if res is None:\n"
src_func += " print(\"\\n\")\n"
src_func += " print(\"**************************************************************************************\")\n"
src_func += " print(\"** WARNING: The BPE pre-tokenizer was not recognized!\")\n"
src_func += " print(\"** This means that it was not added yet or you are using an older version.\")\n"
src_func += " print(\"** Check convert-hf-to-gguf-update.py and update it accordingly.\")\n"
src_func += " print(\"**\")\n"
src_func += " print(f\"** chkhsh: {chkhsh}\")\n"
src_func += " print(\"**************************************************************************************\")\n"
src_func += " print(\"\\n\")\n"
src_func += " raise NotImplementedError(\"BPE pre-tokenizer was not recognized - update get_vocab_base_pre()\")\n"
src_func += "\n"
src_func += " print(f\"tokenizer.ggml.pre: {res}\")\n"
src_func += " print(f\"chkhsh: {chkhsh}\")\n"
src_func += "\n"
src_func += " return res\n"
print(src_func)
print("\n")
print("!!! Copy-paste the function above into convert-hf-to-gguf.py !!!")
print("\n")
# generate tests for each tokenizer model
tests = [
"",
" ",
" ",
" ",
"\t",
"\n",
"\n\n",
"\n\n\n",
"\t\n",
"Hello world",
" Hello world",
"Hello World",
" Hello World",
" Hello World!",
"Hello, world!",
" Hello, world!",
" this is 🦙.cpp",
"w048 7tuijk dsdfhu",
"нещо на Български",
"កាន់តែពិសេសអាចខលចេញ",
"🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
"Hello",
" Hello",
" Hello",
" Hello",
" Hello",
" Hello\n Hello",
" (",
"\n =",
"' era",
"Hello, y'all! How are you 😁 ?我想在apple工作1314151天",
"3",
"33",
"333",
"3333",
"33333",
"333333",
"3333333",
"33333333",
"333333333",
chktxt,
]
# write the tests to ./models/ggml-vocab-{name}.gguf.inp
# the format is:
#
# test0
# __ggml_vocab_test__
# test1
# __ggml_vocab_test__
# ...
#
# with each model, encode all tests and write the results in ./models/ggml-vocab-{name}.gguf.out
# for each test, write the resulting tokens on a separate line
for model in models:
name = model["name"]
tokt = model["tokt"]
# create the tokenizer
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
with open(f"models/ggml-vocab-{name}.gguf.inp", "w") as f:
for text in tests:
f.write(f"{text}")
f.write("\n__ggml_vocab_test__\n")
with open(f"models/ggml-vocab-{name}.gguf.out", "w") as f:
for text in tests:
res = tokenizer.encode(text, add_special_tokens=False)
for r in res:
f.write(f" {r}")
f.write("\n")
print(f"Tests for {name} written in ./models/ggml-vocab-{name}.gguf.*")
# generate commands for creating vocab files
print("\nRun the following commands to generate the vocab files for testing:\n")
for model in models:
name = model["name"]
print(f"python3 convert-hf-to-gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only")
print("\n")

View File

@ -11,6 +11,7 @@ import sys
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from enum import IntEnum from enum import IntEnum
from pathlib import Path from pathlib import Path
from hashlib import sha256
from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast
import numpy as np import numpy as np
@ -43,17 +44,18 @@ AnyModel = TypeVar("AnyModel", bound="type[Model]")
class Model(ABC): class Model(ABC):
_model_classes: dict[str, type[Model]] = {} _model_classes: dict[str, type[Model]] = {}
def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool): def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool, use_temp_file: bool):
self.dir_model = dir_model self.dir_model = dir_model
self.ftype = ftype self.ftype = ftype
self.fname_out = fname_out self.fname_out = fname_out
self.is_big_endian = is_big_endian self.is_big_endian = is_big_endian
self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
self.use_temp_file = use_temp_file
self.is_safetensors = self._is_model_safetensors() self.is_safetensors = self._is_model_safetensors()
self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin") self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
self.part_names = self._get_part_names() self.part_names = self._get_part_names()
self.hparams = Model.load_hparams(self.dir_model) self.hparams = Model.load_hparams(self.dir_model)
self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=False) self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file)
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"]) self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
@property @property
@ -228,7 +230,7 @@ class Model(ABC):
return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1)) return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
# used for GPT-2 BPE and WordPiece vocabs # used for GPT-2 BPE and WordPiece vocabs
def get_basic_vocab(self) -> tuple[list[str], list[int]]: def get_vocab_base(self) -> tuple[list[str], list[int], str]:
tokens: list[str] = [] tokens: list[str] = []
toktypes: list[int] = [] toktypes: list[int] = []
@ -237,6 +239,8 @@ class Model(ABC):
vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab)) vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size assert max(tokenizer.vocab.values()) < vocab_size
tokpre = self.get_vocab_base_pre(tokenizer)
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()} reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
added_vocab = tokenizer.get_added_vocab() added_vocab = tokenizer.get_added_vocab()
@ -254,11 +258,75 @@ class Model(ABC):
tokens.append(reverse_vocab[i]) tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL) toktypes.append(gguf.TokenType.NORMAL)
return tokens, toktypes return tokens, toktypes, tokpre
# NOTE: this function is generated by convert-hf-to-gguf-update.py
# do not modify it manually!
# ref: https://github.com/ggerganov/llama.cpp/pull/6920
def get_vocab_base_pre(self, tokenizer) -> str:
# encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
# is specific for the BPE pre-tokenizer used by the model
# we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
# use in llama.cpp to implement the same pre-tokenizer
chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天 ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
chktok = tokenizer.encode(chktxt)
chkhsh = sha256(str(chktok).encode()).hexdigest()
print(f"chktok: {chktok}")
print(f"chkhsh: {chkhsh}")
res = None
# NOTE: if you get an error here, you need to add the model to the if-elif chain below
# don't do this manually - use the convert-hf-to-gguf-update.py script!
if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
# ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
res = "llama-bpe"
if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
# ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
res = "deepseek-llm"
if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
# ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
res = "deepseek-coder"
if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
# ref: https://huggingface.co/tiiuae/falcon-7b
res = "falcon"
if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
# ref: https://huggingface.co/BAAI/bge-small-en-v1.5
res = "bert-bge"
if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
# ref: https://huggingface.co/mosaicml/mpt-7b
res = "mpt"
if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
# ref: https://huggingface.co/bigcode/starcoder2-3b
res = "starcoder"
if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
# ref: https://huggingface.co/openai-community/gpt2
res = "gpt-2"
if res is None:
print("\n")
print("**************************************************************************************")
print("** WARNING: The BPE pre-tokenizer was not recognized!")
print("** This means that it was not added yet or you are using an older version.")
print("** Check convert-hf-to-gguf-update.py and update it accordingly.")
print("**")
print(f"** chkhsh: {chkhsh}")
print("**************************************************************************************")
print("\n")
raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
print(f"tokenizer.ggml.pre: {res}")
print(f"chkhsh: {chkhsh}")
return res
def _set_vocab_gpt2(self) -> None: def _set_vocab_gpt2(self) -> None:
tokens, toktypes = self.get_basic_vocab() tokens, toktypes, tokpre = self.get_vocab_base()
self.gguf_writer.add_tokenizer_model("gpt2") self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes) self.gguf_writer.add_token_types(toktypes)
@ -276,6 +344,8 @@ class Model(ABC):
vocab_size = hparams["vocab_size"] vocab_size = hparams["vocab_size"]
assert max(tokenizer.get_vocab().values()) < vocab_size assert max(tokenizer.get_vocab().values()) < vocab_size
tokpre = self.get_vocab_base_pre(tokenizer)
merges = [] merges = []
vocab = {} vocab = {}
mergeable_ranks = tokenizer.mergeable_ranks mergeable_ranks = tokenizer.mergeable_ranks
@ -303,6 +373,7 @@ class Model(ABC):
toktypes.append(gguf.TokenType.NORMAL) toktypes.append(gguf.TokenType.NORMAL)
self.gguf_writer.add_tokenizer_model("gpt2") self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes) self.gguf_writer.add_token_types(toktypes)
@ -362,9 +433,20 @@ class Model(ABC):
scores.append(-1000.0) scores.append(-1000.0)
toktypes.append(SentencePieceTokenTypes.USER_DEFINED) toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
if vocab_size > len(tokens):
pad_count = vocab_size - len(tokens)
print(
f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]"
)
for i in range(1, pad_count + 1):
tokens.append(f"[PAD{i}]")
scores.append(-1000.0)
toktypes.append(SentencePieceTokenTypes.UNUSED)
assert len(tokens) == vocab_size assert len(tokens) == vocab_size
self.gguf_writer.add_tokenizer_model("llama") self.gguf_writer.add_tokenizer_model("llama")
self.gguf_writer.add_tokenizer_pre("default")
self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores) self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes) self.gguf_writer.add_token_types(toktypes)
@ -386,6 +468,7 @@ class Model(ABC):
assert len(tokens) == vocab.vocab_size assert len(tokens) == vocab.vocab_size
self.gguf_writer.add_tokenizer_model("llama") self.gguf_writer.add_tokenizer_model("llama")
self.gguf_writer.add_tokenizer_pre("default")
self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores) self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes) self.gguf_writer.add_token_types(toktypes)
@ -829,6 +912,7 @@ class XverseModel(Model):
toktypes.append(toktype) toktypes.append(toktype)
self.gguf_writer.add_tokenizer_model("llama") self.gguf_writer.add_tokenizer_model("llama")
self.gguf_writer.add_tokenizer_pre("default")
self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes) self.gguf_writer.add_token_types(toktypes)
@ -1206,9 +1290,91 @@ class StableLMModel(Model):
rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"]) rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"]))) self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
self.gguf_writer.add_head_count(hparams["num_attention_heads"]) self.gguf_writer.add_head_count(hparams["num_attention_heads"])
self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True) self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"])) self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
def write_tensors(self):
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
n_head = self.hparams.get("num_attention_heads")
n_kv_head = self.hparams.get("num_key_value_heads")
q_norms = dict()
k_norms = dict()
for name, data_torch in self.get_tensors():
# we don't need these
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
continue
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
data = data_torch.squeeze().numpy()
n_dims = len(data.shape)
if name.find("q_layernorm.norms") != -1:
q_norms[name] = data
if len(q_norms) >= (block_count * n_head):
self._stack_qk_norm(block_count, name, tensor_map, n_head, q_norms, n_dims, layer_name="q_layernorm")
continue
if name.find("k_layernorm.norms") != -1:
k_norms[name] = data
if len(k_norms) >= (block_count * n_kv_head):
self._stack_qk_norm(block_count, name, tensor_map, n_kv_head, k_norms, n_dims, layer_name="k_layernorm")
continue
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
def _stack_qk_norm(self, block_count, name, tensor_map, n_head, norms, n_dims, layer_name="q_layernorm"):
for bid in range(block_count):
datas = []
for xid in range(n_head):
ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
datas.append(norms[ename])
del norms[ename]
data = np.stack(datas, axis=0)
data_dtype = data.dtype
merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
@Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM") @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
class LlamaModel(Model): class LlamaModel(Model):
@ -1218,7 +1384,23 @@ class LlamaModel(Model):
try: try:
self. _set_vocab_sentencepiece() self. _set_vocab_sentencepiece()
except FileNotFoundError: except FileNotFoundError:
try:
self._set_vocab_llama_hf() self._set_vocab_llama_hf()
except (FileNotFoundError, TypeError):
# Llama 3
self._set_vocab_gpt2()
# Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
if self.hparams.get("vocab_size", 32000) == 32016:
special_vocab = gguf.SpecialVocab(
self.dir_model, load_merges=False,
special_token_types = ['prefix', 'suffix', 'middle', 'eot']
)
special_vocab._set_special_token("prefix", 32007)
special_vocab._set_special_token("suffix", 32008)
special_vocab._set_special_token("middle", 32009)
special_vocab._set_special_token("eot", 32010)
special_vocab.add_to_gguf(self.gguf_writer)
def set_gguf_parameters(self): def set_gguf_parameters(self):
super().set_gguf_parameters() super().set_gguf_parameters()
@ -1226,6 +1408,11 @@ class LlamaModel(Model):
self.gguf_writer.add_vocab_size(hparams["vocab_size"]) self.gguf_writer.add_vocab_size(hparams["vocab_size"])
self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"]) self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "linear":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
# Same as super class, but permuting q_proj, k_proj # Same as super class, but permuting q_proj, k_proj
def write_tensors(self): def write_tensors(self):
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer"))) block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
@ -1427,6 +1614,102 @@ class GrokModel(Model):
self.gguf_writer.add_tensor(new_name, data) self.gguf_writer.add_tensor(new_name, data)
@Model.register("DbrxForCausalLM")
class DbrxModel(Model):
model_arch = gguf.MODEL_ARCH.DBRX
def set_gguf_parameters(self):
ffn_config = self.hparams["ffn_config"]
attn_config = self.hparams["attn_config"]
self.gguf_writer.add_name(self.hparams["model_type"])
self.gguf_writer.add_block_count(self.hparams["n_layers"])
self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
self.gguf_writer.add_embedding_length(self.hparams["d_model"])
self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
self.gguf_writer.add_head_count(self.hparams["n_heads"])
self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
self.gguf_writer.add_file_type(self.ftype)
self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
self.gguf_writer.add_layer_norm_eps(1e-5)
self.gguf_writer.add_file_type(self.ftype)
print(f"gguf: file type = {self.ftype}")
def write_tensors(self):
block_count = self.hparams.get("n_layers")
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
for name, data_torch in self.get_tensors():
n_expert = self.hparams["ffn_config"]["moe_num_experts"]
n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
n_embd = self.hparams["d_model"]
# Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
# original implementation expects (n_expert, n_ff, n_embd) for all experts weights
# But llama.cpp moe graph works differently
# AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
# so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
"ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
"ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
experts = False
for exp_tensor_name in exp_tensor_names.keys():
if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
experts = True
data_torch = data_torch.view(n_expert, n_ff, n_embd)
if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
data_torch = data_torch.permute(*permute_tensor)
break
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
data = data_torch.squeeze().numpy()
# map tensor names
# In MoE models the ffn tensors are typically most of the model weights,
# and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
# Every other model has the weight names ending in .weight,
# let's assume that is the convention which is not the case for dbrx:
# https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
new_name = tensor_map.get_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# Most of the codebase that takes in 1D tensors only handles F32 tensors
# and most of the outputs tensors are F32.
if data_dtype != np.float32 and n_dims == 1:
print(f"Can not map tensor {name!r}: all 1D tensors must be F32")
sys.exit()
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and n_dims > 1:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
@Model.register("MiniCPMForCausalLM") @Model.register("MiniCPMForCausalLM")
class MiniCPMModel(Model): class MiniCPMModel(Model):
model_arch = gguf.MODEL_ARCH.MINICPM model_arch = gguf.MODEL_ARCH.MINICPM
@ -1594,6 +1877,111 @@ class QwenModel(Model):
class Qwen2Model(Model): class Qwen2Model(Model):
model_arch = gguf.MODEL_ARCH.QWEN2 model_arch = gguf.MODEL_ARCH.QWEN2
def set_vocab(self):
try:
self._set_vocab_sentencepiece()
except FileNotFoundError:
self._set_vocab_gpt2()
@Model.register("Qwen2MoeForCausalLM")
class Qwen2MoeModel(Model):
model_arch = gguf.MODEL_ARCH.QWEN2MOE
def set_gguf_parameters(self):
super().set_gguf_parameters()
if (n_experts := self.hparams.get("num_experts")) is not None:
self.gguf_writer.add_expert_count(n_experts)
def write_tensors(self):
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
n_experts = self.hparams.get("num_experts")
experts = dict()
for name, data_torch in self.get_tensors():
# we don't need these
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
continue
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
data = data_torch.squeeze().numpy()
# process the experts separately
if name.find("experts") != -1:
experts[name] = data
if len(experts) >= n_experts * 3:
# merge the experts into a single 3d tensor
for bid in range(block_count):
for w_name in ["down_proj", "gate_proj", "up_proj"]:
full = True
for xid in range(n_experts):
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
if ename not in experts:
full = False
break
if not full:
continue
datas = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
datas.append(experts[ename])
del experts[ename]
data = np.stack(datas, axis=0)
data_dtype = data.dtype
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
if self.ftype == 1 and data_dtype == np.float32:
data = data.astype(np.float16)
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
continue
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts.keys()}")
@Model.register("GPT2LMHeadModel") @Model.register("GPT2LMHeadModel")
class GPT2Model(Model): class GPT2Model(Model):
@ -1685,6 +2073,92 @@ class Phi2Model(Model):
self.gguf_writer.add_add_bos_token(False) self.gguf_writer.add_add_bos_token(False)
@Model.register("Phi3ForCausalLM")
class Phi3MiniModel(Model):
model_arch = gguf.MODEL_ARCH.PHI3
def set_vocab(self):
from sentencepiece import SentencePieceProcessor
tokenizer_path = self.dir_model / 'tokenizer.model'
if not tokenizer_path.is_file():
print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
sys.exit(1)
tokenizer = SentencePieceProcessor(str(tokenizer_path))
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
scores: list[float] = [-10000.0] * vocab_size
toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
for token_id in range(tokenizer.vocab_size()):
piece = tokenizer.id_to_piece(token_id)
text = piece.encode("utf-8")
score = tokenizer.get_score(token_id)
toktype = SentencePieceTokenTypes.NORMAL
if tokenizer.is_unknown(token_id):
toktype = SentencePieceTokenTypes.UNKNOWN
elif tokenizer.is_control(token_id):
toktype = SentencePieceTokenTypes.CONTROL
elif tokenizer.is_unused(token_id):
toktype = SentencePieceTokenTypes.UNUSED
elif tokenizer.is_byte(token_id):
toktype = SentencePieceTokenTypes.BYTE
tokens[token_id] = text
scores[token_id] = score
toktypes[token_id] = toktype
added_tokens_file = self.dir_model / 'added_tokens.json'
if added_tokens_file.is_file():
with open(added_tokens_file, "r", encoding="utf-8") as f:
added_tokens_json = json.load(f)
for key in added_tokens_json:
token_id = added_tokens_json[key]
if (token_id >= vocab_size):
print(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
continue
tokens[token_id] = key.encode("utf-8")
scores[token_id] = -1000.0
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
self.gguf_writer.add_tokenizer_model("llama")
self.gguf_writer.add_tokenizer_pre("default")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(self.gguf_writer)
def set_gguf_parameters(self):
block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
rot_pct = 1.0
n_embd = self.find_hparam(["hidden_size", "n_embd"])
n_head = self.find_hparam(["num_attention_heads", "n_head"])
rms_eps = self.find_hparam(["rms_norm_eps"])
self.gguf_writer.add_name("Phi3")
self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
self.gguf_writer.add_embedding_length(n_embd)
self.gguf_writer.add_feed_forward_length(8192)
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_head_count(n_head)
self.gguf_writer.add_head_count_kv(n_head)
self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
self.gguf_writer.add_file_type(self.ftype)
@Model.register("PlamoForCausalLM") @Model.register("PlamoForCausalLM")
class PlamoModel(Model): class PlamoModel(Model):
model_arch = gguf.MODEL_ARCH.PLAMO model_arch = gguf.MODEL_ARCH.PLAMO
@ -1899,6 +2373,7 @@ class InternLM2Model(Model):
toktypes.append(SentencePieceTokenTypes.USER_DEFINED) toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
self.gguf_writer.add_tokenizer_model("llama") self.gguf_writer.add_tokenizer_model("llama")
self.gguf_writer.add_tokenizer_pre("default")
self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores) self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes) self.gguf_writer.add_token_types(toktypes)
@ -1908,6 +2383,8 @@ class InternLM2Model(Model):
old_eos = special_vocab.special_token_ids["eos"] old_eos = special_vocab.special_token_ids["eos"]
if "chat" in os.path.basename(self.dir_model.absolute()): if "chat" in os.path.basename(self.dir_model.absolute()):
# For the chat model, we replace the eos with '<|im_end|>'. # For the chat model, we replace the eos with '<|im_end|>'.
# TODO: this is a hack, should be fixed
# https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer) special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
print(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \ print(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
in chat mode so that the conversation can end normally.") in chat mode so that the conversation can end normally.")
@ -2046,7 +2523,7 @@ class BertModel(Model):
self.gguf_writer.add_pooling_type(pooling_type) self.gguf_writer.add_pooling_type(pooling_type)
def set_vocab(self): def set_vocab(self):
tokens, toktypes = self.get_basic_vocab() tokens, toktypes, tokpre = self.get_vocab_base()
self.vocab_size = len(tokens) self.vocab_size = len(tokens)
# we need this to validate the size of the token_type embeddings # we need this to validate the size of the token_type embeddings
@ -2064,6 +2541,7 @@ class BertModel(Model):
# add vocab to gguf # add vocab to gguf
self.gguf_writer.add_tokenizer_model("bert") self.gguf_writer.add_tokenizer_model("bert")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes) self.gguf_writer.add_token_types(toktypes)
@ -2085,6 +2563,10 @@ class BertModel(Model):
print(f"Can not map tensor {name!r}") print(f"Can not map tensor {name!r}")
sys.exit() sys.exit()
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
data = data_torch.squeeze().numpy() data = data_torch.squeeze().numpy()
n_dims = len(data.shape) n_dims = len(data.shape)
new_dtype: type[np.floating[Any]] new_dtype: type[np.floating[Any]]
@ -2144,6 +2626,16 @@ class GemmaModel(Model):
def set_vocab(self): def set_vocab(self):
self._set_vocab_sentencepiece() self._set_vocab_sentencepiece()
# TODO: these special tokens should be exported only for the CodeGemma family
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
special_vocab._set_special_token("prefix", 67)
special_vocab._set_special_token("suffix", 69)
special_vocab._set_special_token("middle", 68)
special_vocab._set_special_token("fsep", 70)
special_vocab._set_special_token("eot", 107)
special_vocab.add_to_gguf(self.gguf_writer)
def set_gguf_parameters(self): def set_gguf_parameters(self):
hparams = self.hparams hparams = self.hparams
block_count = hparams["num_hidden_layers"] block_count = hparams["num_hidden_layers"]
@ -2165,6 +2657,12 @@ class GemmaModel(Model):
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
for name, data_torch in self.get_tensors(): for name, data_torch in self.get_tensors():
# lm_head is not used in llama.cpp, while autoawq will include this tensor in model
# To prevent errors, skip loading lm_head.weight.
if name == "lm_head.weight":
print(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
continue
old_dtype = data_torch.dtype old_dtype = data_torch.dtype
# convert any unsupported data types to float32 # convert any unsupported data types to float32
@ -2224,16 +2722,25 @@ class MambaModel(Model):
field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL) field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1])) self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]))
field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE)
self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]))
field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST) field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size]) self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE) field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size]) self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES) field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data]) self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID) field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0]) self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID) field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0]) self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID) field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0]) self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
@ -2337,6 +2844,66 @@ class CommandR2Model(Model):
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE) self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
@Model.register("OlmoForCausalLM")
@Model.register("OLMoForCausalLM")
class OlmoModel(Model):
model_arch = gguf.MODEL_ARCH.OLMO
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_layer_norm_eps(1e-5)
if "clip_qkv" in self.hparams is not None:
self.gguf_writer.add_clamp_kqv(self.hparams["clip_qkv"])
# Same as super class, but permuting q_proj, k_proj
# Copied from: LlamaModel
def write_tensors(self):
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
n_head = self.hparams.get("num_attention_heads")
n_kv_head = self.hparams.get("num_key_value_heads")
for name, data_torch in self.get_tensors():
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
data = data_torch.numpy()
if name.endswith("q_proj.weight"):
data = permute(data, n_head, n_head)
if name.endswith("k_proj.weight"):
data = permute(data, n_head, n_kv_head)
data = data.squeeze()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# 1d tensors need to be converted to float32
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and n_dims == 2:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
###### CONVERSION LOGIC ###### ###### CONVERSION LOGIC ######
@ -2363,6 +2930,8 @@ def parse_args() -> argparse.Namespace:
"model", type=Path, "model", type=Path,
help="directory containing model file", help="directory containing model file",
) )
parser.add_argument("--use-temp-file", action="store_true", help="use the tempfile library while processing (helpful when running out of memory, process killed)")
parser.add_argument("--model-name", type=str, default=None, help="name of the model")
return parser.parse_args() return parser.parse_args()
@ -2406,7 +2975,7 @@ def main() -> None:
with torch.inference_mode(): with torch.inference_mode():
model_class = Model.from_model_architecture(hparams["architectures"][0]) model_class = Model.from_model_architecture(hparams["architectures"][0])
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian) model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file)
print("Set model parameters") print("Set model parameters")
model_instance.set_gguf_parameters() model_instance.set_gguf_parameters()

View File

@ -281,6 +281,7 @@ class GGMLToGGUF:
def add_vocab(self, gguf_writer): def add_vocab(self, gguf_writer):
hp = self.model.hyperparameters hp = self.model.hyperparameters
gguf_writer.add_tokenizer_model('llama') gguf_writer.add_tokenizer_model('llama')
gguf_writer.add_tokenizer_pre('default')
tokens = [] tokens = []
scores = [] scores = []
toktypes = [] toktypes = []

View File

@ -99,6 +99,7 @@ def main():
tokens, scores, toktypes = _get_sentencepiece_tokenizer_info(args.model_dir) tokens, scores, toktypes = _get_sentencepiece_tokenizer_info(args.model_dir)
gguf_writer.add_tokenizer_model('llama') gguf_writer.add_tokenizer_model('llama')
gguf_writer.add_tokenizer_pre('default')
gguf_writer.add_token_list(tokens) gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores) gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes) gguf_writer.add_token_types(toktypes)

View File

@ -525,7 +525,14 @@ class LlamaHfVocab(Vocab):
# pre-check so we know if we need transformers # pre-check so we know if we need transformers
tokenizer_model: dict[str, Any] = tokenizer_json['model'] tokenizer_model: dict[str, Any] = tokenizer_json['model']
if ( is_llama3 = (
tokenizer_model['type'] == 'BPE' and tokenizer_model.get('ignore_merges', False)
and not tokenizer_model.get('byte_fallback', True)
)
if is_llama3:
raise TypeError('Llama 3 must be converted with BpeVocab')
if not is_llama3 and (
tokenizer_model['type'] != 'BPE' or not tokenizer_model.get('byte_fallback', False) tokenizer_model['type'] != 'BPE' or not tokenizer_model.get('byte_fallback', False)
or tokenizer_json['decoder']['type'] != 'Sequence' or tokenizer_json['decoder']['type'] != 'Sequence'
): ):
@ -1350,7 +1357,7 @@ def load_some_model(path: Path) -> ModelPlus:
# Be extra-friendly and accept either a file or a directory: # Be extra-friendly and accept either a file or a directory:
if path.is_dir(): if path.is_dir():
# Check if it's a set of safetensors files first # Check if it's a set of safetensors files first
globs = ["model-00001-of-*.safetensors", "model.safetensors"] globs = ["model-00001-of-*.safetensors", "model.safetensors", "consolidated.safetensors"]
files = [file for glob in globs for file in path.glob(glob)] files = [file for glob in globs for file in path.glob(glob)]
if not files: if not files:
# Try the PyTorch patterns too, with lower priority # Try the PyTorch patterns too, with lower priority

119
docs/HOWTO-add-model.md Normal file
View File

@ -0,0 +1,119 @@
## Add a new model architecture to `llama.cpp`
Adding a model requires few steps:
1. Convert the model to GGUF
2. Define the model architecture in `llama.cpp`
3. Build the GGML graph implementation
After following these steps, you can open PR.
Also, it is important to check that the examples and main ggml backends (CUDA, METAL, CPU) are working with the new architecture, especially:
- [main](../examples/main)
- [imatrix](../examples/imatrix)
- [quantize](../examples/quantize)
- [server](../examples/server)
### 1. Convert the model to GGUF
This step is done in python with a `convert` script using the [gguf](https://pypi.org/project/gguf/) library.
Depending on the model architecture, you can use either [convert.py](../convert.py) or [convert-hf-to-gguf.py](../convert-hf-to-gguf.py).
The convert script reads the model configuration, tokenizer, tensor names+data and converts them to GGUF metadata and tensors.
The required steps to implement for an HF model are:
1. Define the model `Model.register` annotation in a new `Model` subclass, example:
```python
@Model.register("MyModelForCausalLM")
class MyModel(Model):
model_arch = gguf.MODEL_ARCH.GROK
```
2. Define the layout of the GGUF tensors in [constants.py](../gguf-py/gguf/constants.py)
Add an enum entry in `MODEL_ARCH`, the model human friendly name in `MODEL_ARCH_NAMES` and the GGUF tensor names in `MODEL_TENSORS`.
Example for `falcon` model:
```python
MODEL_ARCH.FALCON: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_NORM_2,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
]
```
3. Map the original tensor names to the standardize equivalent in GGUF
As a general rule, before adding a new tensor name to GGUF, be sure the equivalent naming does not already exist.
Once you have found the GGUF tensor name equivalent, add it to the [tensor_mapping.py](../gguf-py/gguf/tensor_mapping.py) file.
If the tensor name is part of a repetitive layer/block, the key word `bid` substitutes it.
Example for the normalization tensor in attention layers:
```python
block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
# Attention norm
MODEL_TENSOR.ATTN_NORM: (
"gpt_neox.layers.{bid}.input_layernorm", # gptneox
"transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen
"transformer.blocks.{bid}.norm_1", # mpt
...
)
}
```
`transformer.blocks.{bid}.norm_1` will be mapped to `blk.{bid}.attn_norm` in GGUF.
Depending on the model configuration, tokenizer, code and tensors layout, you will have to override:
- `Model#set_gguf_parameters`
- `Model#set_vocab`
- `Model#write_tensors`
NOTE: Tensor names must end with `.weight` suffix, that is the convention and several tools like `quantize` expect this to proceed the weights.
### 2. Define the model architecture in `llama.cpp`
The model params and tensors layout must be defined in `llama.cpp`:
1. Define a new `llm_arch`
2. Define the tensors layout in `LLM_TENSOR_NAMES`
3. Add any non standard metadata in `llm_load_hparams`
4. Create the tensors for inference in `llm_load_tensors`
5. If the model has a RoPE operation, add the rope type in `llama_rope_type`
NOTE: The dimensions in `ggml` are typically in the reverse order of the `pytorch` dimensions.
### 3. Build the GGML graph implementation
This is the funniest part, you have to provide the inference graph implementation of the new model architecture in `llama_build_graph`.
Have a look to existing implementation like `build_llama`, `build_dbrx` or `build_bert`.
When implementing a new graph, please note that the underlying `ggml` backends might not support them all, support of missing backend operations can be added in another PR.
Note: to debug the inference graph: you can use [eval-callback](../examples/eval-callback).
## GGUF specification
https://github.com/ggerganov/ggml/blob/master/docs/gguf.md
## Resources
- YaRN RoPE scaling https://github.com/ggerganov/llama.cpp/pull/2268
- support Baichuan serial models https://github.com/ggerganov/llama.cpp/pull/3009
- support attention bias https://github.com/ggerganov/llama.cpp/pull/4283
- Mixtral support https://github.com/ggerganov/llama.cpp/pull/4406
- BERT embeddings https://github.com/ggerganov/llama.cpp/pull/5423
- Grok-1 support https://github.com/ggerganov/llama.cpp/pull/6204
- Command R Plus support https://github.com/ggerganov/llama.cpp/pull/6491
- support arch DBRX https://github.com/ggerganov/llama.cpp/pull/6515
- How to convert HuggingFace model to GGUF format https://github.com/ggerganov/llama.cpp/discussions/2948

View File

@ -19,6 +19,7 @@ else()
add_subdirectory(benchmark) add_subdirectory(benchmark)
add_subdirectory(convert-llama2c-to-ggml) add_subdirectory(convert-llama2c-to-ggml)
add_subdirectory(embedding) add_subdirectory(embedding)
add_subdirectory(eval-callback)
add_subdirectory(finetune) add_subdirectory(finetune)
add_subdirectory(gritlm) add_subdirectory(gritlm)
add_subdirectory(gguf-split) add_subdirectory(gguf-split)

View File

@ -153,7 +153,7 @@ while n_cur <= n_len {
// const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p); // const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
// is it an end of stream? -> mark the stream as finished // is it an end of stream? -> mark the stream as finished
if new_token_id == llama_token_eos(model) || n_cur == n_len { if llama_token_is_eog(model, new_token_id) || n_cur == n_len {
i_batch[i] = -1 i_batch[i] = -1
// print("") // print("")
if n_parallel > 1 { if n_parallel > 1 {
@ -229,7 +229,7 @@ private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String? { private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String? {
var result = [CChar](repeating: 0, count: 8) var result = [CChar](repeating: 0, count: 8)
let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count)) let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count), false)
if nTokens < 0 { if nTokens < 0 {
let actualTokensCount = -Int(nTokens) let actualTokensCount = -Int(nTokens)
result = .init(repeating: 0, count: actualTokensCount) result = .init(repeating: 0, count: actualTokensCount)
@ -237,7 +237,8 @@ private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String
model, model,
token, token,
&result, &result,
Int32(result.count) Int32(result.count),
false
) )
assert(check == actualTokensCount) assert(check == actualTokensCount)
} else { } else {

View File

@ -191,8 +191,8 @@ int main(int argc, char ** argv) {
//const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p); //const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
// is it an end of stream? -> mark the stream as finished // is it an end of generation? -> mark the stream as finished
if (new_token_id == llama_token_eos(model) || n_cur == n_len) { if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
i_batch[i] = -1; i_batch[i] = -1;
LOG_TEE("\n"); LOG_TEE("\n");
if (n_parallel > 1) { if (n_parallel > 1) {

View File

@ -47,7 +47,7 @@ struct beam_search_callback_data {
// In this case, end-of-beam (eob) is equivalent to end-of-sentence (eos) but this need not always be the same. // In this case, end-of-beam (eob) is equivalent to end-of-sentence (eos) but this need not always be the same.
// For example, eob can be flagged due to maximum token length, stop words, etc. // For example, eob can be flagged due to maximum token length, stop words, etc.
static bool is_at_eob(const beam_search_callback_data & callback_data, const llama_token * tokens, size_t n_tokens) { static bool is_at_eob(const beam_search_callback_data & callback_data, const llama_token * tokens, size_t n_tokens) {
return n_tokens && tokens[n_tokens-1] == llama_token_eos(llama_get_model(callback_data.ctx)); return n_tokens && llama_token_is_eog(llama_get_model(callback_data.ctx), tokens[n_tokens-1]);
} }
// Function matching type llama_beam_search_callback_fn_t. // Function matching type llama_beam_search_callback_fn_t.

View File

@ -0,0 +1,9 @@
set(TARGET eval-callback)
add_executable(${TARGET} eval-callback.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
set(TEST_TARGET test-eval-callback)
add_test(NAME ${TEST_TARGET} COMMAND eval-callback --hf-repo ggml-org/models --hf-file tinyllamas/stories260K.gguf --model stories260K.gguf --prompt hello --seed 42 -ngl 0)
set_property(TEST ${TEST_TARGET} PROPERTY LABELS eval-callback curl)

View File

@ -0,0 +1,95 @@
# llama.cpp/examples/eval-callback
A simple example which demonstrates how to use callback during the inference.
It simply prints to the console all operations and tensor data.
Usage:
```shell
eval-callback \
--hf-repo ggml-org/models \
--hf-file phi-2/ggml-model-q4_0.gguf \
--model phi-2-q4_0.gguf \
--prompt hello \
--seed 42 \
-ngl 33
```
Will print:
```shell
llm_load_tensors: offloaded 33/33 layers to GPU
...
llama_new_context_with_model: n_ctx = 512
...
llama_new_context_with_model: CUDA0 compute buffer size = 105.00 MiB
llama_new_context_with_model: CUDA_Host compute buffer size = 6.01 MiB
llama_new_context_with_model: graph nodes = 1225
llama_new_context_with_model: graph splits = 2
ggml_debug: inp_embd = (f32) GET_ROWS(token_embd.weight{2560, 51200, 1, 1}, inp_tokens{1, 1, 1, 1}}) = {2560, 1, 1, 1}
[
[
[ -0.0181, 0.0272, 0.0272, ...],
],
]
ggml_debug: norm-0 = (f32) NORM(CUDA0#inp_embd#0{2560, 1, 1, 1}, }) = {2560, 1, 1, 1}
[
[
[ -0.6989, 1.0636, 1.0636, ...],
],
]
ggml_debug: norm_w-0 = (f32) MUL(norm-0{2560, 1, 1, 1}, blk.0.attn_norm.weight{2560, 1, 1, 1}}) = {2560, 1, 1, 1}
[
[
[ -0.1800, 0.2817, 0.2632, ...],
],
]
ggml_debug: attn_norm-0 = (f32) ADD(norm_w-0{2560, 1, 1, 1}, blk.0.attn_norm.bias{2560, 1, 1, 1}}) = {2560, 1, 1, 1}
[
[
[ -0.1863, 0.2970, 0.2604, ...],
],
]
ggml_debug: wqkv-0 = (f32) MUL_MAT(blk.0.attn_qkv.weight{2560, 7680, 1, 1}, attn_norm-0{2560, 1, 1, 1}}) = {7680, 1, 1, 1}
[
[
[ -1.1238, 1.2876, -1.8086, ...],
],
]
ggml_debug: bqkv-0 = (f32) ADD(wqkv-0{7680, 1, 1, 1}, blk.0.attn_qkv.bias{7680, 1, 1, 1}}) = {7680, 1, 1, 1}
[
[
[ -1.1135, 1.4604, -1.9226, ...],
],
]
ggml_debug: bqkv-0 (view) = (f32) VIEW(bqkv-0{7680, 1, 1, 1}, }) = {2560, 1, 1, 1}
[
[
[ -1.1135, 1.4604, -1.9226, ...],
],
]
ggml_debug: Qcur-0 = (f32) CONT(bqkv-0 (view){2560, 1, 1, 1}, }) = {2560, 1, 1, 1}
[
[
[ -1.1135, 1.4604, -1.9226, ...],
],
]
ggml_debug: Qcur-0 (reshaped) = (f32) RESHAPE(Qcur-0{2560, 1, 1, 1}, }) = {80, 32, 1, 1}
[
[
[ -1.1135, 1.4604, -1.9226, ...],
[ -0.3608, 0.5076, -1.8866, ...],
[ 1.7643, 0.0273, -2.1065, ...],
...
],
]
ggml_debug: Qcur-0 = (f32) ROPE(Qcur-0 (reshaped){80, 32, 1, 1}, CUDA0#inp_pos#0{1, 1, 1, 1}}) = {80, 32, 1, 1}
[
[
[ -1.1135, 1.4604, -1.9226, ...],
[ -0.3608, 0.5076, -1.8866, ...],
[ 1.7643, 0.0273, -2.1065, ...],
...
],
]
```

View File

@ -0,0 +1,195 @@
#include "common.h"
#include "llama.h"
#include "ggml.h"
#include <cstdio>
#include <random>
#include <string>
#include <tuple>
#include <vector>
/**
* This the arbitrary data which will be passed to each callback.
* Later on we can for example add operation or tensor name filter from the CLI arg, or a file descriptor to dump the tensor.
*/
struct callback_data {
std::vector<uint8_t> data;
};
static std::string ggml_ne_string(const ggml_tensor * t) {
std::string str;
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
str += std::to_string(t->ne[i]);
if (i + 1 < GGML_MAX_DIMS) {
str += ", ";
}
}
return str;
}
static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) {
GGML_ASSERT(n > 0);
float sum = 0;
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
printf(" [\n");
for (int64_t i2 = 0; i2 < ne[2]; i2++) {
if (i2 == n && ne[2] > 2*n) {
printf(" ..., \n");
i2 = ne[2] - n;
}
printf(" [\n");
for (int64_t i1 = 0; i1 < ne[1]; i1++) {
if (i1 == n && ne[1] > 2*n) {
printf(" ..., \n");
i1 = ne[1] - n;
}
printf(" [");
for (int64_t i0 = 0; i0 < ne[0]; i0++) {
if (i0 == n && ne[0] > 2*n) {
printf("..., ");
i0 = ne[0] - n;
}
size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
float v;
if (type == GGML_TYPE_F16) {
v = ggml_fp16_to_fp32(*(ggml_fp16_t *) data + i);
} else if (type == GGML_TYPE_F32) {
v = *(float *) data + i;
} else if (type == GGML_TYPE_I32) {
v = (float) *(int32_t *) data + i;
} else if (type == GGML_TYPE_I16) {
v = (float) *(int16_t *) data + i;
} else if (type == GGML_TYPE_I8) {
v = (float) *(int8_t *) data + i;
} else {
GGML_ASSERT(false);
}
printf("%12.4f", v);
sum += v;
if (i0 < ne[0] - 1) printf(", ");
}
printf("],\n");
}
printf(" ],\n");
}
printf(" ]\n");
printf(" sum = %f\n", sum);
}
}
/**
* GGML operations callback during the graph execution.
*
* @param t current tensor
* @param ask when ask is true, the scheduler wants to know if we are interested in data from this tensor
* if we return true, a follow-up call will be made with ask=false in which we can do the actual collection.
* see ggml_backend_sched_eval_callback
* @param user_data user data to pass at each call back
* @return true to receive data or continue the graph, false otherwise
*/
static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data) {
auto * cb_data = (callback_data *) user_data;
const struct ggml_tensor * src0 = t->src[0];
const struct ggml_tensor * src1 = t->src[1];
if (ask) {
return true; // Always retrieve data
}
char src1_str[128] = {0};
if (src1) {
sprintf(src1_str, "%s{%s}", src1->name, ggml_ne_string(src1).c_str());
}
printf("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__,
t->name, ggml_type_name(t->type), ggml_op_desc(t),
src0->name, ggml_ne_string(src0).c_str(),
src1 ? src1_str : "",
ggml_ne_string(t).c_str());
// copy the data from the GPU memory if needed
const bool is_host = ggml_backend_buffer_is_host(t->buffer);
if (!is_host) {
auto n_bytes = ggml_nbytes(t);
cb_data->data.resize(n_bytes);
ggml_backend_tensor_get(t, cb_data->data.data(), 0, n_bytes);
}
if (!ggml_is_quantized(t->type)) {
uint8_t * data = is_host ? (uint8_t *) t->data : cb_data->data.data();
ggml_print_tensor(data, t->type, t->ne, t->nb, 3);
}
return true;
}
static bool run(llama_context * ctx, const gpt_params & params) {
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), 0, 0))) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return false;
}
return true;
}
int main(int argc, char ** argv) {
callback_data cb_data;
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
return 1;
}
print_build_info();
std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = gpt_random_prompt(rng);
}
llama_backend_init();
llama_numa_init(params.numa);
// pass the callback to the backend scheduler
// it will be executed for each node during the graph computation
params.cb_eval = ggml_debug;
params.cb_eval_user_data = &cb_data;
params.warmup = false;
// init
llama_model * model;
llama_context * ctx;
std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (model == nullptr || ctx == nullptr) {
fprintf(stderr, "%s : failed to init\n", __func__);
return 1;
}
// print system information
{
fprintf(stderr, "\n");
fprintf(stderr, "%s\n", get_system_info(params).c_str());
}
bool OK = run(ctx, params);
if (!OK) {
return 1;
}
llama_print_timings(ctx);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
return 0;
}

View File

@ -17,7 +17,7 @@ static bool llama_sample_grammar_string(struct llama_grammar * grammar, const st
size_t pos = 0; size_t pos = 0;
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) { for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
auto prev_stacks = grammar->stacks; auto prev_stacks = grammar->stacks;
grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it); llama_grammar_accept(grammar->rules, prev_stacks, *it, grammar->stacks);
if (grammar->stacks.empty()) { if (grammar->stacks.empty()) {
error_pos = pos; error_pos = pos;
error_msg = "Unexpected character '" + unicode_cpt_to_utf8(*it) + "'"; error_msg = "Unexpected character '" + unicode_cpt_to_utf8(*it) + "'";

View File

@ -5,5 +5,6 @@ CLI to split / merge GGUF files.
**Command line options:** **Command line options:**
- `--split`: split GGUF to multiple GGUF, default operation. - `--split`: split GGUF to multiple GGUF, default operation.
- `--split-max-size`: max size per split in `M` or `G`, f.ex. `500M` or `2G`.
- `--split-max-tensors`: maximum tensors in each split: default(128) - `--split-max-tensors`: maximum tensors in each split: default(128)
- `--merge`: merge multiple GGUF to a single GGUF. - `--merge`: merge multiple GGUF to a single GGUF.

View File

@ -59,10 +59,10 @@ static size_t split_str_to_n_bytes(std::string str) {
int n; int n;
if (str.back() == 'M') { if (str.back() == 'M') {
sscanf(str.c_str(), "%d", &n); sscanf(str.c_str(), "%d", &n);
n_bytes = n * 1024 * 1024; // megabytes n_bytes = (size_t)n * 1024 * 1024; // megabytes
} else if (str.back() == 'G') { } else if (str.back() == 'G') {
sscanf(str.c_str(), "%d", &n); sscanf(str.c_str(), "%d", &n);
n_bytes = n * 1024 * 1024 * 1024; // gigabytes n_bytes = (size_t)n * 1024 * 1024 * 1024; // gigabytes
} else { } else {
throw std::invalid_argument("error: supported units are M (megabytes) or G (gigabytes), but got: " + std::string(1, str.back())); throw std::invalid_argument("error: supported units are M (megabytes) or G (gigabytes), but got: " + std::string(1, str.back()));
} }

89
examples/gguf-split/tests.sh Executable file
View File

@ -0,0 +1,89 @@
#!/bin/bash
set -eu
if [ $# -lt 1 ]
then
echo "usage: $0 path_to_build_binary [path_to_temp_folder]"
echo "example: $0 ../../build/bin ../../tmp"
exit 1
fi
if [ $# -gt 1 ]
then
TMP_DIR=$2
else
TMP_DIR=/tmp
fi
set -x
SPLIT=$1/gguf-split
MAIN=$1/main
WORK_PATH=$TMP_DIR/gguf-split
ROOT_DIR=$(realpath $(dirname $0)/../../)
mkdir -p "$WORK_PATH"
# Clean up in case of previously failed test
rm -f $WORK_PATH/ggml-model-split*.gguf $WORK_PATH/ggml-model-merge*.gguf
# 1. Get a model
(
cd $WORK_PATH
"$ROOT_DIR"/scripts/hf.sh --repo ggml-org/gemma-1.1-2b-it-Q8_0-GGUF --file gemma-1.1-2b-it.Q8_0.gguf
)
echo PASS
# 2. Split with max tensors strategy
$SPLIT --split-max-tensors 28 $WORK_PATH/gemma-1.1-2b-it.Q8_0.gguf $WORK_PATH/ggml-model-split
echo PASS
echo
# 2b. Test the sharded model is loading properly
$MAIN --model $WORK_PATH/ggml-model-split-00001-of-00006.gguf --random-prompt --n-predict 32
echo PASS
echo
# 3. Merge
$SPLIT --merge $WORK_PATH/ggml-model-split-00001-of-00006.gguf $WORK_PATH/ggml-model-merge.gguf
echo PASS
echo
# 3b. Test the merged model is loading properly
$MAIN --model $WORK_PATH/ggml-model-merge.gguf --random-prompt --n-predict 32
echo PASS
echo
# 4. Split with no tensor in metadata
#$SPLIT --split-max-tensors 32 --no-tensor-in-metadata $WORK_PATH/ggml-model-merge.gguf $WORK_PATH/ggml-model-split-32-tensors
#echo PASS
#echo
# 4b. Test the sharded model is loading properly
#$MAIN --model $WORK_PATH/ggml-model-split-32-tensors-00001-of-00006.gguf --random-prompt --n-predict 32
#echo PASS
#echo
# 5. Merge
#$SPLIT --merge $WORK_PATH/ggml-model-split-32-tensors-00001-of-00006.gguf $WORK_PATH/ggml-model-merge-2.gguf
#echo PASS
#echo
# 5b. Test the merged model is loading properly
#$MAIN --model $WORK_PATH/ggml-model-merge-2.gguf --random-prompt --n-predict 32
#echo PASS
#echo
# 6. Split with size strategy
$SPLIT --split-max-size 2G $WORK_PATH/ggml-model-merge.gguf $WORK_PATH/ggml-model-split-2G
echo PASS
echo
# 6b. Test the sharded model is loading properly
$MAIN --model $WORK_PATH/ggml-model-split-2G-00001-of-00002.gguf --random-prompt --n-predict 32
echo PASS
echo
# Clean up
rm -f $WORK_PATH/ggml-model-split*.gguf $WORK_PATH/ggml-model-merge*.gguf

View File

@ -142,7 +142,7 @@ static bool gguf_ex_read_0(const std::string & fname) {
} }
// read and create ggml_context containing the tensors and their data // read and create ggml_context containing the tensors and their data
static bool gguf_ex_read_1(const std::string & fname) { static bool gguf_ex_read_1(const std::string & fname, bool check_data) {
struct ggml_context * ctx_data = NULL; struct ggml_context * ctx_data = NULL;
struct gguf_init_params params = { struct gguf_init_params params = {
@ -206,7 +206,7 @@ static bool gguf_ex_read_1(const std::string & fname) {
printf("\n\n"); printf("\n\n");
// check data // check data
{ if (check_data) {
const float * data = (const float *) cur->data; const float * data = (const float *) cur->data;
for (int j = 0; j < ggml_nelements(cur); ++j) { for (int j = 0; j < ggml_nelements(cur); ++j) {
if (data[j] != 100 + i) { if (data[j] != 100 + i) {
@ -229,9 +229,16 @@ static bool gguf_ex_read_1(const std::string & fname) {
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
if (argc < 3) { if (argc < 3) {
printf("usage: %s data.gguf r|w\n", argv[0]); printf("usage: %s data.gguf r|w [n]\n", argv[0]);
printf("r: read data.gguf file\n");
printf("w: write data.gguf file\n");
printf("n: no check of tensor data\n");
return -1; return -1;
} }
bool check_data = true;
if (argc == 4) {
check_data = false;
}
const std::string fname(argv[1]); const std::string fname(argv[1]);
const std::string mode (argv[2]); const std::string mode (argv[2]);
@ -242,7 +249,7 @@ int main(int argc, char ** argv) {
GGML_ASSERT(gguf_ex_write(fname) && "failed to write gguf file"); GGML_ASSERT(gguf_ex_write(fname) && "failed to write gguf file");
} else if (mode == "r") { } else if (mode == "r") {
GGML_ASSERT(gguf_ex_read_0(fname) && "failed to read gguf file"); GGML_ASSERT(gguf_ex_read_0(fname) && "failed to read gguf file");
GGML_ASSERT(gguf_ex_read_1(fname) && "failed to read gguf file"); GGML_ASSERT(gguf_ex_read_1(fname, check_data) && "failed to read gguf file");
} }
return 0; return 0;

View File

@ -21,12 +21,12 @@ not have to be performed at all.
### Running the example ### Running the example
Download a Grit model: Download a Grit model:
```console ```console
$ scripts/hf.sh --repo cohesionet/GritLM-7B_gguf --file gritlm-7b_q4_1.gguf $ scripts/hf.sh --repo cohesionet/GritLM-7B_gguf --file gritlm-7b_q4_1.gguf --outdir models
``` ```
Run the example using the downloaded model: Run the example using the downloaded model:
```console ```console
$ ./gritlm -m gritlm-7b_q4_1.gguf $ ./gritlm -m models/gritlm-7b_q4_1.gguf
Cosine similarity between "Bitcoin: A Peer-to-Peer Electronic Cash System" and "A purely peer-to-peer version of electronic cash w" is: 0.605 Cosine similarity between "Bitcoin: A Peer-to-Peer Electronic Cash System" and "A purely peer-to-peer version of electronic cash w" is: 0.605
Cosine similarity between "Bitcoin: A Peer-to-Peer Electronic Cash System" and "All text-based language problems can be reduced to" is: 0.103 Cosine similarity between "Bitcoin: A Peer-to-Peer Electronic Cash System" and "All text-based language problems can be reduced to" is: 0.103

View File

@ -23,6 +23,7 @@ struct Stats {
}; };
struct StatParams { struct StatParams {
std::string dataset;
std::string ofile = "imatrix.dat"; std::string ofile = "imatrix.dat";
int n_output_frequency = 10; int n_output_frequency = 10;
int verbosity = 1; int verbosity = 1;
@ -44,9 +45,9 @@ private:
std::mutex m_mutex; std::mutex m_mutex;
int m_last_call = 0; int m_last_call = 0;
std::vector<float> m_src1_data; std::vector<float> m_src1_data;
std::vector<int> m_ids; // the expert ids from ggml_mul_mat_id std::vector<char> m_ids; // the expert ids from ggml_mul_mat_id
// //
void save_imatrix(const char * file_name) const; void save_imatrix(const char * file_name, const char * dataset) const;
void keep_imatrix(int ncall) const; void keep_imatrix(int ncall) const;
}; };
@ -81,6 +82,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
if (ask) { if (ask) {
if (t->op == GGML_OP_MUL_MAT_ID) return true; // collect all indirect matrix multiplications if (t->op == GGML_OP_MUL_MAT_ID) return true; // collect all indirect matrix multiplications
if (t->op != GGML_OP_MUL_MAT) return false; if (t->op != GGML_OP_MUL_MAT) return false;
// why are small batches ignored (<16 tokens)?
if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return false; if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return false;
if (!(wname.substr(0, 4) == "blk." || (m_params.collect_output_weight && wname == "output.weight"))) return false; if (!(wname.substr(0, 4) == "blk." || (m_params.collect_output_weight && wname == "output.weight"))) return false;
return true; return true;
@ -101,16 +103,19 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
// this has been adapted to the new format of storing merged experts in a single 3d tensor // this has been adapted to the new format of storing merged experts in a single 3d tensor
// ref: https://github.com/ggerganov/llama.cpp/pull/6387 // ref: https://github.com/ggerganov/llama.cpp/pull/6387
if (t->op == GGML_OP_MUL_MAT_ID) { if (t->op == GGML_OP_MUL_MAT_ID) {
const int idx = ((int32_t *) t->op_params)[0]; // ids -> [n_experts_used, n_tokens]
// src1 -> [cols, n_expert_used, n_tokens]
const ggml_tensor * ids = t->src[2]; const ggml_tensor * ids = t->src[2];
const int n_as = src0->ne[2]; const int n_as = src0->ne[2];
const int n_ids = ids->ne[0];
// the top-k selected expert ids are stored in the ids tensor // the top-k selected expert ids are stored in the ids tensor
// for simplicity, always copy ids to host, because it is small // for simplicity, always copy ids to host, because it is small
// take into account that ids is not contiguous! // take into account that ids is not contiguous!
GGML_ASSERT(ids->ne[1] == src1->ne[1]);
GGML_ASSERT(n_as*ggml_nrows(ids)*sizeof(int) == GGML_PAD(ggml_nbytes(ids), n_as*sizeof(int))); GGML_ASSERT(ids->ne[1] == src1->ne[2]);
m_ids.resize(ggml_nbytes(ids)/sizeof(int));
m_ids.resize(ggml_nbytes(ids));
ggml_backend_tensor_get(ids, m_ids.data(), 0, ggml_nbytes(ids)); ggml_backend_tensor_get(ids, m_ids.data(), 0, ggml_nbytes(ids));
auto & e = m_stats[wname]; auto & e = m_stats[wname];
@ -120,9 +125,6 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
// using the following line, we can correct for that if needed by replacing the line above with: // using the following line, we can correct for that if needed by replacing the line above with:
//if (idx == t->src[0]->ne[0] - 1) ++e.ncall; //if (idx == t->src[0]->ne[0] - 1) ++e.ncall;
// loop over all possible experts, regardless if they are used or not in the batch
for (int ex = 0; ex < n_as; ++ex) {
size_t e_start = ex*src1->ne[0];
if (e.values.empty()) { if (e.values.empty()) {
e.values.resize(src1->ne[0]*n_as, 0); e.values.resize(src1->ne[0]*n_as, 0);
} }
@ -131,17 +133,29 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
exit(1); //GGML_ASSERT(false); exit(1); //GGML_ASSERT(false);
} }
if (m_params.verbosity > 1) { if (m_params.verbosity > 1) {
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type); printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[2], (int)src1->type);
} }
for (int row = 0; row < (int)src1->ne[1]; ++row) { // loop over all possible experts, regardless if they are used or not in the batch
const int excur = m_ids[row*n_as + idx]; for (int ex = 0; ex < n_as; ++ex) {
size_t e_start = ex*src1->ne[0];
for (int idx = 0; idx < n_ids; ++idx) {
for (int row = 0; row < (int)src1->ne[2]; ++row) {
const int excur = *(const int32_t *) (m_ids.data() + row*ids->nb[1] + idx*ids->nb[0]);
GGML_ASSERT(excur >= 0 && excur < n_as); // sanity check GGML_ASSERT(excur >= 0 && excur < n_as); // sanity check
if (excur != ex) continue; if (excur != ex) continue;
const float * x = data + row * src1->ne[0];
const int64_t i11 = idx % src1->ne[1];
const int64_t i12 = row;
const float * x = (const float *)((const char *)data + i11*src1->nb[1] + i12*src1->nb[2]);
for (int j = 0; j < (int)src1->ne[0]; ++j) { for (int j = 0; j < (int)src1->ne[0]; ++j) {
e.values[e_start + j] += x[j]*x[j]; e.values[e_start + j] += x[j]*x[j];
} }
} }
}
if (e.ncall > m_last_call) { if (e.ncall > m_last_call) {
m_last_call = e.ncall; m_last_call = e.ncall;
if (m_last_call % m_params.n_output_frequency == 0) { if (m_last_call % m_params.n_output_frequency == 0) {
@ -186,7 +200,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
} }
void IMatrixCollector::save_imatrix() const { void IMatrixCollector::save_imatrix() const {
save_imatrix(m_params.ofile.empty() ? "imatrix.dat" : m_params.ofile.c_str()); save_imatrix(m_params.ofile.empty() ? "imatrix.dat" : m_params.ofile.c_str(), m_params.dataset.c_str());
} }
void IMatrixCollector::keep_imatrix(int ncall) const { void IMatrixCollector::keep_imatrix(int ncall) const {
@ -194,24 +208,33 @@ void IMatrixCollector::keep_imatrix(int ncall) const {
if (file_name.empty()) file_name = "imatrix.dat"; if (file_name.empty()) file_name = "imatrix.dat";
file_name += ".at_"; file_name += ".at_";
file_name += std::to_string(ncall); file_name += std::to_string(ncall);
save_imatrix(file_name.c_str()); save_imatrix(file_name.c_str(), m_params.dataset.c_str());
} }
void IMatrixCollector::save_imatrix(const char * fname) const { void IMatrixCollector::save_imatrix(const char * fname, const char * dataset) const {
std::ofstream out(fname, std::ios::binary); std::ofstream out(fname, std::ios::binary);
int n_entries = m_stats.size(); int n_entries = m_stats.size();
out.write((const char*)&n_entries, sizeof(n_entries)); out.write((const char *) &n_entries, sizeof(n_entries));
for (auto& p : m_stats) { for (const auto & p : m_stats) {
int len = p.first.size(); int len = p.first.size();
out.write((const char*)&len, sizeof(len)); out.write((const char *) &len, sizeof(len));
out.write(p.first.c_str(), len); out.write(p.first.c_str(), len);
out.write((const char*)&p.second.ncall, sizeof(p.second.ncall)); out.write((const char *) &p.second.ncall, sizeof(p.second.ncall));
int nval = p.second.values.size(); int nval = p.second.values.size();
out.write((const char*)&nval, sizeof(nval)); out.write((const char *) &nval, sizeof(nval));
if (nval > 0) out.write((const char*)p.second.values.data(), nval*sizeof(float)); if (nval > 0) out.write((const char *) p.second.values.data(), nval * sizeof(float));
} }
// Write the number of call the matrix was computed with
out.write((const char *) &m_last_call, sizeof(m_last_call));
// Write the dataset name at the end of the file to later on specify it in quantize
int n_dataset = strlen(dataset);
out.write((const char *) &n_dataset, sizeof(n_dataset));
out.write(dataset, n_dataset);
if (m_params.verbosity > 0) { if (m_params.verbosity > 0) {
fprintf(stderr, "\n%s: stored collected data after %d chunks in %s\n",__func__,m_last_call,fname); fprintf(stderr, "\n%s: stored collected data after %d chunks in %s\n", __func__, m_last_call, fname);
} }
} }
@ -534,6 +557,29 @@ int main(int argc, char ** argv) {
} }
} }
gpt_params params;
params.n_batch = 512;
if (!gpt_params_parse(args.size(), args.data(), params)) {
return 1;
}
params.logits_all = true;
params.n_batch = std::min(params.n_batch, params.n_ctx);
print_build_info();
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = gpt_random_prompt(rng);
}
sparams.dataset = params.prompt_file;
g_collector.set_parameters(std::move(sparams)); g_collector.set_parameters(std::move(sparams));
if (!combine_files.empty()) { if (!combine_files.empty()) {
@ -572,49 +618,21 @@ int main(int argc, char ** argv) {
} }
} }
gpt_params params;
params.n_batch = 512;
if (!gpt_params_parse(args.size(), args.data(), params)) {
return 1;
}
params.logits_all = true;
params.n_batch = std::min(params.n_batch, params.n_ctx);
print_build_info();
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = gpt_random_prompt(rng);
}
llama_backend_init(); llama_backend_init();
llama_numa_init(params.numa); llama_numa_init(params.numa);
llama_model_params mparams = llama_model_params_from_gpt_params(params);
llama_model * model = llama_load_model_from_file(params.model.c_str(), mparams);
if (model == NULL) {
fprintf(stderr, "%s: error: unable to load model\n", __func__);
return 1;
}
llama_context_params cparams = llama_context_params_from_gpt_params(params);
// pass the callback to the backend scheduler // pass the callback to the backend scheduler
// it will be executed for each node during the graph computation // it will be executed for each node during the graph computation
cparams.cb_eval = ik_collect_imatrix; params.cb_eval = ik_collect_imatrix;
cparams.cb_eval_user_data = NULL; params.cb_eval_user_data = NULL;
params.warmup = false;
llama_context * ctx = llama_new_context_with_model(model, cparams); // init
if (ctx == NULL) { llama_model * model;
fprintf(stderr, "%s: error: unable to create context\n", __func__); llama_context * ctx;
std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (model == nullptr || ctx == nullptr) {
fprintf(stderr, "%s : failed to init\n", __func__);
return 1; return 1;
} }

View File

@ -36,6 +36,11 @@ The `infill` program offers a seamless way to interact with LLaMA models, allowi
### Example ### Example
Download a model that supports infill, for example CodeLlama:
```console
scripts/hf.sh --repo TheBloke/CodeLlama-13B-GGUF --file codellama-13b.Q5_K_S.gguf --outdir models
```
```bash ```bash
./infill -t 10 -ngl 0 -m models/codellama-13b.Q5_K_S.gguf -c 4096 --temp 0.7 --repeat_penalty 1.1 -n 20 --in-prefix "def helloworld():\n print(\"hell" --in-suffix "\n print(\"goodbye world\")\n " ./infill -t 10 -ngl 0 -m models/codellama-13b.Q5_K_S.gguf -c 4096 --temp 0.7 --repeat_penalty 1.1 -n 20 --in-prefix "def helloworld():\n print(\"hell" --in-suffix "\n print(\"goodbye world\")\n "
``` ```

View File

@ -586,7 +586,7 @@ int main(int argc, char ** argv) {
// deal with eot token in infill mode // deal with eot token in infill mode
if ((llama_sampling_last(ctx_sampling) == llama_token_eot(model) || is_interacting) && params.interactive){ if ((llama_sampling_last(ctx_sampling) == llama_token_eot(model) || is_interacting) && params.interactive){
if(is_interacting && !params.interactive_first) { if (is_interacting && !params.interactive_first) {
// print an eot token // print an eot token
printf("%s", llama_token_to_piece(ctx, llama_token_eot(model)).c_str()); printf("%s", llama_token_to_piece(ctx, llama_token_eot(model)).c_str());
} }
@ -651,8 +651,8 @@ int main(int argc, char ** argv) {
// LOG_TEE("took new input\n"); // LOG_TEE("took new input\n");
is_interacting = false; is_interacting = false;
} }
// deal with end of text token in interactive mode // deal with end of generation tokens in interactive mode
else if (llama_sampling_last(ctx_sampling) == llama_token_eos(model)) { else if (llama_token_is_eog(model, llama_sampling_last(ctx_sampling))) {
LOG("found EOS token\n"); LOG("found EOS token\n");
if (params.interactive) { if (params.interactive) {
@ -731,8 +731,8 @@ int main(int argc, char ** argv) {
} }
} }
// end of text token // end of generation
if (!embd.empty() && embd.back() == llama_token_eos(model) && !params.interactive) { if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !params.interactive) {
break; break;
} }

View File

@ -6,37 +6,94 @@ import re
import sys import sys
from typing import Any, Dict, List, Set, Tuple, Union from typing import Any, Dict, List, Set, Tuple, Union
def _build_repetition(item_rule, min_items, max_items, separator_rule=None, item_rule_is_literal=False):
if not separator_rule:
if min_items == 0 and max_items == 1:
return f'{item_rule}?'
elif min_items == 1 and max_items is None:
return f'{item_rule}+'
result = ''
if min_items > 0:
if item_rule_is_literal and separator_rule is None:
result = '"' + (item_rule[1:-1] * min_items) + '"'
else:
result = (f' {separator_rule} ' if separator_rule else ' ').join([item_rule] * min_items)
def opt_repetitions(up_to_n, prefix_with_sep=False):
'''
- n=4, no sep: '(a (a (a (a)?)?)?)?'
- n=4, sep=',', prefix: '("," a ("," a ("," a ("," a)?)?)?)?'
- n=4, sep=',', no prefix: '(a ("," a ("," a ("," a)?)?)?)?'
'''
content = f'{separator_rule} {item_rule}' if prefix_with_sep and separator_rule else item_rule
if up_to_n == 0:
return ''
elif up_to_n == 1:
return f'({content})?'
elif separator_rule and not prefix_with_sep:
return f'({content} {opt_repetitions(up_to_n - 1, prefix_with_sep=True)})?'
else:
return (f'({content} ' * up_to_n).rstrip() + (')?' * up_to_n)
if min_items > 0 and max_items != min_items:
result += ' '
if max_items is not None:
result += opt_repetitions(max_items - min_items, prefix_with_sep=min_items > 0)
else:
item_operator = f'({separator_rule + " " if separator_rule else ""}{item_rule})'
if min_items == 0 and separator_rule:
result = f'({item_rule} {item_operator}*)?'
else:
result += f'{item_operator}*'
return result
class BuiltinRule:
def __init__(self, content: str, deps: list = None):
self.content = content
self.deps = deps or []
_up_to_15_digits = _build_repetition('[0-9]', 0, 15)
# whitespace is constrained to a single space char to prevent model "running away" in # whitespace is constrained to a single space char to prevent model "running away" in
# whitespace. Also maybe improves generation quality? # whitespace. Also maybe improves generation quality?
SPACE_RULE = '" "?' SPACE_RULE = '" "?'
PRIMITIVE_RULES = { PRIMITIVE_RULES = {
'boolean': '("true" | "false") space', 'boolean' : BuiltinRule('("true" | "false") space', []),
'number': '("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? space', 'decimal-part' : BuiltinRule('[0-9] ' + _up_to_15_digits, []),
'integer': '("-"? ([0-9] | [1-9] [0-9]*)) space', 'integral-part': BuiltinRule('[0-9] | [1-9] ' + _up_to_15_digits, []),
'value' : 'object | array | string | number | boolean', 'number' : BuiltinRule('("-"? integral-part) ("." decimal-part)? ([eE] [-+]? integral-part)? space', ['integral-part', 'decimal-part']),
'object' : '"{" space ( string ":" space value ("," space string ":" space value)* )? "}" space', 'integer' : BuiltinRule('("-"? integral-part) space', ['integral-part']),
'array' : '"[" space ( value ("," space value)* )? "]" space', 'value' : BuiltinRule('object | array | string | number | boolean | null', ['object', 'array', 'string', 'number', 'boolean', 'null']),
'uuid' : '"\\"" ' + ' "-" '.join('[0-9a-fA-F]' * n for n in [8, 4, 4, 4, 12]) + ' "\\"" space', 'object' : BuiltinRule('"{" space ( string ":" space value ("," space string ":" space value)* )? "}" space', ['string', 'value']),
'string': r''' "\"" ( 'array' : BuiltinRule('"[" space ( value ("," space value)* )? "]" space', ['value']),
[^"\\] | 'uuid' : BuiltinRule(r'"\"" ' + ' "-" '.join('[0-9a-fA-F]' * n for n in [8, 4, 4, 4, 12]) + r' "\"" space', []),
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]) 'char' : BuiltinRule(r'[^"\\] | "\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])', []),
)* "\"" space''', 'string' : BuiltinRule(r'"\"" char* "\"" space', ['char']),
'null': '"null" space', 'null' : BuiltinRule('"null" space', []),
} }
OBJECT_RULE_NAMES = ['object', 'array', 'string', 'number', 'boolean', 'null', 'value']
# TODO: support "uri", "email" string formats # TODO: support "uri", "email" string formats
DATE_RULES = { STRING_FORMAT_RULES = {
'date' : '[0-9] [0-9] [0-9] [0-9] "-" ( "0" [1-9] | "1" [0-2] ) "-" ( \"0\" [1-9] | [1-2] [0-9] | "3" [0-1] )', 'date' : BuiltinRule('[0-9] [0-9] [0-9] [0-9] "-" ( "0" [1-9] | "1" [0-2] ) "-" ( \"0\" [1-9] | [1-2] [0-9] | "3" [0-1] )', []),
'time' : '([01] [0-9] | "2" [0-3]) ":" [0-5] [0-9] ":" [0-5] [0-9] ( "." [0-9] [0-9] [0-9] )? ( "Z" | ( "+" | "-" ) ( [01] [0-9] | "2" [0-3] ) ":" [0-5] [0-9] )', 'time' : BuiltinRule('([01] [0-9] | "2" [0-3]) ":" [0-5] [0-9] ":" [0-5] [0-9] ( "." [0-9] [0-9] [0-9] )? ( "Z" | ( "+" | "-" ) ( [01] [0-9] | "2" [0-3] ) ":" [0-5] [0-9] )', []),
'date-time': 'date "T" time', 'date-time' : BuiltinRule('date "T" time', ['date', 'time']),
'date-string': '"\\"" date "\\"" space', 'date-string' : BuiltinRule('"\\"" date "\\"" space', ['date']),
'time-string': '"\\"" time "\\"" space', 'time-string' : BuiltinRule('"\\"" time "\\"" space', ['time']),
'date-time-string': '"\\"" date-time "\\"" space', 'date-time-string': BuiltinRule('"\\"" date-time "\\"" space', ['date-time']),
} }
RESERVED_NAMES = set(["root", *PRIMITIVE_RULES.keys(), *DATE_RULES.keys()]) DOTALL = '[\\U00000000-\\U0010FFFF]'
DOT = '[^\\x0A\\x0D]'
RESERVED_NAMES = set(["root", "dot", *PRIMITIVE_RULES.keys(), *STRING_FORMAT_RULES.keys()])
INVALID_RULE_CHARS_RE = re.compile(r'[^a-zA-Z0-9-]+') INVALID_RULE_CHARS_RE = re.compile(r'[^a-zA-Z0-9-]+')
GRAMMAR_LITERAL_ESCAPE_RE = re.compile(r'[\r\n"]') GRAMMAR_LITERAL_ESCAPE_RE = re.compile(r'[\r\n"]')
@ -46,8 +103,6 @@ GRAMMAR_LITERAL_ESCAPES = {'\r': '\\r', '\n': '\\n', '"': '\\"', '-': '\\-', ']'
NON_LITERAL_SET = set('|.()[]{}*+?') NON_LITERAL_SET = set('|.()[]{}*+?')
ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = set('[]()|{}*+?') ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = set('[]()|{}*+?')
DATE_PATTERN = '[0-9]{4}-(0[1-9]|1[0-2])-([0-2][0-9]|3[0-1])'
TIME_PATTERN = '([01][0-9]|2[0-3])(:[0-5][0-9]){2}(\\.[0-9]{1,3})?(Z|[+-](([01][0-9]|2[0-3]):[0-5][0-9]))' # Cap millisecond precision w/ 3 digits
class SchemaConverter: class SchemaConverter:
def __init__(self, *, prop_order, allow_fetch, dotall, raw_pattern): def __init__(self, *, prop_order, allow_fetch, dotall, raw_pattern):
@ -55,7 +110,9 @@ class SchemaConverter:
self._allow_fetch = allow_fetch self._allow_fetch = allow_fetch
self._dotall = dotall self._dotall = dotall
self._raw_pattern = raw_pattern self._raw_pattern = raw_pattern
self._rules = {'space': SPACE_RULE} self._rules = {
'space': SPACE_RULE,
}
self._refs = {} self._refs = {}
self._refs_being_resolved = set() self._refs_being_resolved = set()
@ -65,6 +122,29 @@ class SchemaConverter:
) )
return f'"{escaped}"' return f'"{escaped}"'
def not_literal(self, literal: str, dotall: bool = True, maybe_escaped_underscores = False) -> str:
'''
not_literal('a') -> '[^a]'
not_literal('abc') -> '([^a] | "a" ([^b] | "b" ([^c])?)?)?'
'''
assert len(literal) > 0, 'Empty literal not supported'
def recurse(i: int):
c = literal[i]
if maybe_escaped_underscores and c == '_':
yield f'[^{c}\\\\]'
yield ' | '
yield f'"\\\\"? "{c}"'
else:
yield f'[^{c}]'
if i < len(literal) - 1:
yield ' | '
yield self._format_literal(c)
yield ' ('
yield from recurse(i + 1)
yield ')?'
return ''.join(('(', *recurse(0), ')'))
def _add_rule(self, name, rule): def _add_rule(self, name, rule):
esc_name = INVALID_RULE_CHARS_RE.sub('-', name) esc_name = INVALID_RULE_CHARS_RE.sub('-', name)
if esc_name not in self._rules or self._rules[esc_name] == rule: if esc_name not in self._rules or self._rules[esc_name] == rule:
@ -169,10 +249,10 @@ class SchemaConverter:
def get_dot(): def get_dot():
if self._dotall: if self._dotall:
rule = '[\\U00000000-\\U0010FFFF]' rule = DOTALL
else: else:
# Accept any character... except \n and \r line break chars (\x0A and \xOD) # Accept any character... except \n and \r line break chars (\x0A and \xOD)
rule = '[\\U00000000-\\x09\\x0B\\x0C\\x0E-\\U0010FFFF]' rule = DOT
return self._add_rule(f'dot', rule) return self._add_rule(f'dot', rule)
def join_seq(): def join_seq():
@ -246,13 +326,6 @@ class SchemaConverter:
(sub, sub_is_literal) = seq[-1] (sub, sub_is_literal) = seq[-1]
if min_times == 0 and max_times is None:
seq[-1] = (f'{sub}*', False)
elif min_times == 0 and max_times == 1:
seq[-1] = (f'{sub}?', False)
elif min_times == 1 and max_times is None:
seq[-1] = (f'{sub}+', False)
else:
if not sub_is_literal: if not sub_is_literal:
id = sub_rule_ids.get(sub) id = sub_rule_ids.get(sub)
if id is None: if id is None:
@ -260,12 +333,7 @@ class SchemaConverter:
sub_rule_ids[sub] = id sub_rule_ids[sub] = id
sub = id sub = id
seq[-1] = ( seq[-1] = (_build_repetition(f'"{sub}"' if sub_is_literal else sub, min_times, max_times, item_rule_is_literal=sub_is_literal), False)
' '.join(
([f'"{sub[1:-1] * min_times}"'] if sub_is_literal else [sub] * min_times) +
([f'{sub}?'] * (max_times - min_times) if max_times is not None else [f'{sub}*'])),
False
)
else: else:
literal = '' literal = ''
while i < length: while i < length:
@ -373,49 +441,47 @@ class SchemaConverter:
' "]" space') ' "]" space')
else: else:
item_rule_name = self.visit(items, f'{name}{"-" if name else ""}item') item_rule_name = self.visit(items, f'{name}{"-" if name else ""}item')
list_item_operator = f'( "," space {item_rule_name} )'
successive_items = ""
min_items = schema.get("minItems", 0) min_items = schema.get("minItems", 0)
max_items = schema.get("maxItems") max_items = schema.get("maxItems")
if min_items > 0: return self._add_rule(rule_name, '"[" space ' + _build_repetition(item_rule_name, min_items, max_items, separator_rule='"," space') + ' "]" space')
successive_items = list_item_operator * (min_items - 1)
min_items -= 1
if max_items is not None and max_items > min_items:
successive_items += (list_item_operator + "?") * (max_items - min_items - 1)
else:
successive_items += list_item_operator + "*"
if min_items == 0:
rule = f'"[" space ( {item_rule_name} {successive_items} )? "]" space'
else:
rule = f'"[" space {item_rule_name} {successive_items} "]" space'
return self._add_rule(rule_name, rule)
elif schema_type in (None, 'string') and 'pattern' in schema: elif schema_type in (None, 'string') and 'pattern' in schema:
return self._visit_pattern(schema['pattern'], rule_name) return self._visit_pattern(schema['pattern'], rule_name)
elif schema_type in (None, 'string') and re.match(r'^uuid[1-5]?$', schema_format or ''): elif schema_type in (None, 'string') and re.match(r'^uuid[1-5]?$', schema_format or ''):
return self._add_rule( return self._add_primitive(
'root' if rule_name == 'root' else schema_format, 'root' if rule_name == 'root' else schema_format,
PRIMITIVE_RULES['uuid'] PRIMITIVE_RULES['uuid']
) )
elif schema_type in (None, 'string') and schema_format in DATE_RULES: elif schema_type in (None, 'string') and f'{schema_format}-string' in STRING_FORMAT_RULES:
for t, r in DATE_RULES.items(): prim_name = f'{schema_format}-string'
self._add_rule(t, r) return self._add_rule(rule_name, self._add_primitive(prim_name, STRING_FORMAT_RULES[prim_name]))
return schema_format + '-string'
elif schema_type == 'string' and ('minLength' in schema or 'maxLength' in schema):
char_rule = self._add_primitive('char', PRIMITIVE_RULES['char'])
min_len = schema.get('minLength', 0)
max_len = schema.get('maxLength')
return self._add_rule(rule_name, r'"\"" ' + _build_repetition(char_rule, min_len, max_len) + r' "\"" space')
elif (schema_type == 'object') or (len(schema) == 0): elif (schema_type == 'object') or (len(schema) == 0):
for n in OBJECT_RULE_NAMES: return self._add_rule(rule_name, self._add_primitive('object', PRIMITIVE_RULES['object']))
self._add_rule(n, PRIMITIVE_RULES[n])
return self._add_rule(rule_name, 'object')
else: else:
assert schema_type in PRIMITIVE_RULES, f'Unrecognized schema: {schema}' assert schema_type in PRIMITIVE_RULES, f'Unrecognized schema: {schema}'
# TODO: support minimum, maximum, exclusiveMinimum, exclusiveMaximum at least for zero # TODO: support minimum, maximum, exclusiveMinimum, exclusiveMaximum at least for zero
return self._add_rule( return self._add_primitive('root' if rule_name == 'root' else schema_type, PRIMITIVE_RULES[schema_type])
'root' if rule_name == 'root' else schema_type,
PRIMITIVE_RULES[schema_type] def _add_primitive(self, name: str, rule: BuiltinRule):
) n = self._add_rule(name, rule.content)
for dep in rule.deps:
dep_rule = PRIMITIVE_RULES.get(dep) or STRING_FORMAT_RULES.get(dep)
assert dep_rule, f'Rule {dep} not known'
if dep not in self._rules:
self._add_primitive(dep, dep_rule)
return n
def _build_object_rule(self, properties: List[Tuple[str, Any]], required: Set[str], name: str, additional_properties: Union[bool, Any]): def _build_object_rule(self, properties: List[Tuple[str, Any]], required: Set[str], name: str, additional_properties: Union[bool, Any]):
prop_order = self._prop_order prop_order = self._prop_order
@ -437,7 +503,7 @@ class SchemaConverter:
value_rule = self.visit({} if additional_properties == True else additional_properties, f'{sub_name}-value') value_rule = self.visit({} if additional_properties == True else additional_properties, f'{sub_name}-value')
prop_kv_rule_names["*"] = self._add_rule( prop_kv_rule_names["*"] = self._add_rule(
f'{sub_name}-kv', f'{sub_name}-kv',
self._add_rule('string', PRIMITIVE_RULES['string']) + f' ":" space {value_rule}' self._add_primitive('string', PRIMITIVE_RULES['string']) + f' ":" space {value_rule}'
) )
optional_props.append("*") optional_props.append("*")

View File

@ -190,7 +190,7 @@ static const cmd_params cmd_params_defaults = {
/* n_ubatch */ {512}, /* n_ubatch */ {512},
/* type_k */ {GGML_TYPE_F16}, /* type_k */ {GGML_TYPE_F16},
/* type_v */ {GGML_TYPE_F16}, /* type_v */ {GGML_TYPE_F16},
/* n_threads */ {get_num_physical_cores()}, /* n_threads */ {get_math_cpu_count()},
/* n_gpu_layers */ {99}, /* n_gpu_layers */ {99},
/* split_mode */ {LLAMA_SPLIT_MODE_LAYER}, /* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
/* main_gpu */ {0}, /* main_gpu */ {0},

View File

@ -408,7 +408,7 @@ Java_com_example_llama_Llm_completion_1loop(
const auto new_token_id = llama_sample_token_greedy(context, &candidates_p); const auto new_token_id = llama_sample_token_greedy(context, &candidates_p);
const auto n_cur = env->CallIntMethod(intvar_ncur, la_int_var_value); const auto n_cur = env->CallIntMethod(intvar_ncur, la_int_var_value);
if (new_token_id == llama_token_eos(model) || n_cur == n_len) { if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
return env->NewStringUTF(""); return env->NewStringUTF("");
} }

View File

@ -158,7 +158,7 @@ actor LlamaContext {
new_token_id = llama_sample_token_greedy(context, &candidates_p) new_token_id = llama_sample_token_greedy(context, &candidates_p)
} }
if new_token_id == llama_token_eos(model) || n_cur == n_len { if llama_token_is_eog(model, new_token_id) || n_cur == n_len {
print("\n") print("\n")
let new_token_str = String(cString: temporary_invalid_cchars + [0]) let new_token_str = String(cString: temporary_invalid_cchars + [0])
temporary_invalid_cchars.removeAll() temporary_invalid_cchars.removeAll()
@ -322,7 +322,7 @@ actor LlamaContext {
defer { defer {
result.deallocate() result.deallocate()
} }
let nTokens = llama_token_to_piece(model, token, result, 8) let nTokens = llama_token_to_piece(model, token, result, 8, false)
if nTokens < 0 { if nTokens < 0 {
let newResult = UnsafeMutablePointer<Int8>.allocate(capacity: Int(-nTokens)) let newResult = UnsafeMutablePointer<Int8>.allocate(capacity: Int(-nTokens))
@ -330,7 +330,7 @@ actor LlamaContext {
defer { defer {
newResult.deallocate() newResult.deallocate()
} }
let nNewTokens = llama_token_to_piece(model, token, newResult, -nTokens) let nNewTokens = llama_token_to_piece(model, token, newResult, -nTokens, false)
let bufferPointer = UnsafeBufferPointer(start: newResult, count: Int(nNewTokens)) let bufferPointer = UnsafeBufferPointer(start: newResult, count: Int(nNewTokens))
return Array(bufferPointer) return Array(bufferPointer)
} else { } else {

View File

@ -22,7 +22,7 @@ After building, run: `./llava-cli` to see the usage. For example:
## Model conversion ## Model conversion
- Clone `mobileVLM-1.7B` and `clip-vit-large-patch14-336` locally: 1. Clone `mobileVLM-1.7B` and `clip-vit-large-patch14-336` locally:
```sh ```sh
git clone https://huggingface.co/mtgv/MobileVLM-1.7B git clone https://huggingface.co/mtgv/MobileVLM-1.7B

View File

@ -24,7 +24,7 @@ After building, run: `./llava-cli` to see the usage. For example:
## LLaVA 1.5 ## LLaVA 1.5
- Clone a LLaVA and a CLIP model ([available options](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md)). For example: 1. Clone a LLaVA and a CLIP model ([available options](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md)). For example:
```sh ```sh
git clone https://huggingface.co/liuhaotian/llava-v1.5-7b git clone https://huggingface.co/liuhaotian/llava-v1.5-7b

View File

@ -3,6 +3,7 @@
// I'll gradually clean and extend it // I'll gradually clean and extend it
// Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
#include "clip.h" #include "clip.h"
#include "log.h"
#include "ggml.h" #include "ggml.h"
#include "ggml-alloc.h" #include "ggml-alloc.h"
#include "ggml-backend.h" #include "ggml-backend.h"
@ -23,7 +24,6 @@
#include <cstdlib> #include <cstdlib>
#include <cstring> #include <cstring>
#include <fstream> #include <fstream>
#include <iostream>
#include <map> #include <map>
#include <regex> #include <regex>
#include <stdexcept> #include <stdexcept>
@ -104,6 +104,7 @@ static std::string format(const char * fmt, ...) {
#define TN_POS_EMBD "%s.position_embd.weight" #define TN_POS_EMBD "%s.position_embd.weight"
#define TN_CLASS_EMBD "v.class_embd" #define TN_CLASS_EMBD "v.class_embd"
#define TN_PATCH_EMBD "v.patch_embd.weight" #define TN_PATCH_EMBD "v.patch_embd.weight"
#define TN_PATCH_BIAS "v.patch_embd.bias"
#define TN_ATTN_K "%s.blk.%d.attn_k.%s" #define TN_ATTN_K "%s.blk.%d.attn_k.%s"
#define TN_ATTN_Q "%s.blk.%d.attn_q.%s" #define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
#define TN_ATTN_V "%s.blk.%d.attn_v.%s" #define TN_ATTN_V "%s.blk.%d.attn_v.%s"
@ -145,7 +146,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
static int get_key_idx(const gguf_context * ctx, const char * key) { static int get_key_idx(const gguf_context * ctx, const char * key) {
int i = gguf_find_key(ctx, key); int i = gguf_find_key(ctx, key);
if (i == -1) { if (i == -1) {
fprintf(stderr, "key %s not found in file\n", key); LOG_TEE("key %s not found in file\n", key);
throw std::runtime_error(format("Missing required key: %s", key)); throw std::runtime_error(format("Missing required key: %s", key));
} }
@ -247,7 +248,7 @@ static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
static void print_tensor_info(const ggml_tensor * tensor, const char * prefix = "") { static void print_tensor_info(const ggml_tensor * tensor, const char * prefix = "") {
size_t tensor_size = ggml_nbytes(tensor); size_t tensor_size = ggml_nbytes(tensor);
printf("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n", LOG_TEE("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n",
prefix, ggml_n_dims(tensor), tensor->name, tensor_size, prefix, ggml_n_dims(tensor), tensor->name, tensor_size,
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], ggml_type_name(tensor->type)); tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], ggml_type_name(tensor->type));
} }
@ -265,7 +266,7 @@ static projector_type clip_projector_type_from_string(const std::string & name)
static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) { static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
std::ofstream file(filename, std::ios::binary); std::ofstream file(filename, std::ios::binary);
if (!file.is_open()) { if (!file.is_open()) {
std::cerr << "Failed to open file for writing: " << filename << std::endl; LOG_TEE("Failed to open file for writing: %s\n", filename.c_str());
return; return;
} }
@ -284,7 +285,7 @@ static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::s
static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) { static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
std::ofstream file(filename, std::ios::binary); std::ofstream file(filename, std::ios::binary);
if (!file.is_open()) { if (!file.is_open()) {
std::cerr << "Failed to open file for writing: " << filename << std::endl; LOG_TEE("Failed to open file for writing: %s\n", filename.c_str());
return; return;
} }
@ -425,6 +426,7 @@ struct clip_vision_model {
// embeddings // embeddings
struct ggml_tensor * class_embedding; struct ggml_tensor * class_embedding;
struct ggml_tensor * patch_embeddings; struct ggml_tensor * patch_embeddings;
struct ggml_tensor * patch_bias;
struct ggml_tensor * position_embeddings; struct ggml_tensor * position_embeddings;
struct ggml_tensor * pre_ln_w; struct ggml_tensor * pre_ln_w;
@ -501,6 +503,11 @@ struct clip_ctx {
bool use_gelu = false; bool use_gelu = false;
int32_t ftype = 1; int32_t ftype = 1;
bool has_class_embedding = true;
bool has_pre_norm = true;
bool has_post_norm = false;
bool has_patch_bias = false;
struct gguf_context * ctx_gguf; struct gguf_context * ctx_gguf;
struct ggml_context * ctx_data; struct ggml_context * ctx_data;
@ -515,7 +522,7 @@ struct clip_ctx {
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs) { static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs) {
if (!ctx->has_vision_encoder) { if (!ctx->has_vision_encoder) {
printf("This gguf file seems to have no vision encoder\n"); LOG_TEE("This gguf file seems to have no vision encoder\n");
return nullptr; return nullptr;
} }
@ -526,7 +533,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
const int patch_size = hparams.patch_size; const int patch_size = hparams.patch_size;
const int num_patches = ((image_size / patch_size) * (image_size / patch_size)); const int num_patches = ((image_size / patch_size) * (image_size / patch_size));
const int num_patches_per_side = image_size / patch_size; GGML_UNUSED(num_patches_per_side); const int num_patches_per_side = image_size / patch_size; GGML_UNUSED(num_patches_per_side);
const int num_positions = num_patches + 1; const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
const int hidden_size = hparams.hidden_size; const int hidden_size = hparams.hidden_size;
const int n_head = hparams.n_head; const int n_head = hparams.n_head;
const int d_head = hidden_size / n_head; const int d_head = hidden_size / n_head;
@ -557,16 +564,23 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size); inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3)); inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
if (ctx->has_patch_bias) {
// inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
inp = ggml_add(ctx0, inp, model.patch_bias);
}
// concat class_embeddings and patch_embeddings // concat class_embeddings and patch_embeddings
struct ggml_tensor * embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size); struct ggml_tensor * embeddings = inp;
if (ctx->has_class_embedding) {
embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
embeddings = ggml_acc(ctx0, embeddings, inp,
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
}
ggml_set_name(embeddings, "embeddings"); ggml_set_name(embeddings, "embeddings");
ggml_set_input(embeddings); ggml_set_input(embeddings);
embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
embeddings = ggml_acc(ctx0, embeddings, inp,
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions); struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
ggml_set_name(positions, "positions"); ggml_set_name(positions, "positions");
@ -576,7 +590,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions)); ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
// pre-layernorm // pre-layernorm
{ if (ctx->has_pre_norm) {
embeddings = ggml_norm(ctx0, embeddings, eps); embeddings = ggml_norm(ctx0, embeddings, eps);
ggml_set_name(embeddings, "pre_ln"); ggml_set_name(embeddings, "pre_ln");
@ -664,6 +678,14 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
embeddings = cur; embeddings = cur;
} }
// post-layernorm
if (ctx->has_post_norm) {
embeddings = ggml_norm(ctx0, embeddings, eps);
ggml_set_name(embeddings, "post_ln");
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
}
// llava projector // llava projector
{ {
embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]); embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
@ -879,21 +901,21 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
const int idx_name = gguf_find_key(ctx, KEY_NAME); const int idx_name = gguf_find_key(ctx, KEY_NAME);
if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug
const std::string name = gguf_get_val_str(ctx, idx_name); const std::string name = gguf_get_val_str(ctx, idx_name);
printf("%s: model name: %s\n", __func__, name.c_str()); LOG_TEE("%s: model name: %s\n", __func__, name.c_str());
} }
printf("%s: description: %s\n", __func__, description.c_str()); LOG_TEE("%s: description: %s\n", __func__, description.c_str());
printf("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx)); LOG_TEE("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx));
printf("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx)); LOG_TEE("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
printf("%s: n_tensors: %d\n", __func__, n_tensors); LOG_TEE("%s: n_tensors: %d\n", __func__, n_tensors);
printf("%s: n_kv: %d\n", __func__, n_kv); LOG_TEE("%s: n_kv: %d\n", __func__, n_kv);
printf("%s: ftype: %s\n", __func__, ftype_str.c_str()); LOG_TEE("%s: ftype: %s\n", __func__, ftype_str.c_str());
printf("\n"); LOG_TEE("\n");
} }
const int n_tensors = gguf_get_n_tensors(ctx); const int n_tensors = gguf_get_n_tensors(ctx);
// kv // kv
const int n_kv = gguf_get_n_kv(ctx); const int n_kv = gguf_get_n_kv(ctx);
printf("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n", LOG_TEE("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n",
__func__, n_kv, n_tensors, fname); __func__, n_kv, n_tensors, fname);
{ {
std::map<enum ggml_type, uint32_t> n_type; std::map<enum ggml_type, uint32_t> n_type;
@ -904,7 +926,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
n_type[type]++; n_type[type]++;
} }
printf("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__); LOG_TEE("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
for (int i = 0; i < n_kv; i++) { for (int i = 0; i < n_kv; i++) {
const char * name = gguf_get_key(ctx, i); const char * name = gguf_get_key(ctx, i);
const enum gguf_type type = gguf_get_kv_type(ctx, i); const enum gguf_type type = gguf_get_kv_type(ctx, i);
@ -920,7 +942,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
} }
replace_all(value, "\n", "\\n"); replace_all(value, "\n", "\\n");
printf("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str()); LOG_TEE("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
} }
// print type counts // print type counts
@ -929,7 +951,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
continue; continue;
} }
printf("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second); LOG_TEE("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
} }
} }
@ -944,7 +966,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
size_t tensor_size = ggml_nbytes(cur); size_t tensor_size = ggml_nbytes(cur);
model_size += tensor_size; model_size += tensor_size;
if (verbosity >= 3) { if (verbosity >= 3) {
printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n", LOG_TEE("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
__func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type)); __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
} }
} }
@ -971,18 +993,18 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
#ifdef GGML_USE_CUDA #ifdef GGML_USE_CUDA
new_clip->backend = ggml_backend_cuda_init(0); new_clip->backend = ggml_backend_cuda_init(0);
printf("%s: CLIP using CUDA backend\n", __func__); LOG_TEE("%s: CLIP using CUDA backend\n", __func__);
#endif #endif
#ifdef GGML_USE_METAL #ifdef GGML_USE_METAL
new_clip->backend = ggml_backend_metal_init(); new_clip->backend = ggml_backend_metal_init();
printf("%s: CLIP using Metal backend\n", __func__); LOG_TEE("%s: CLIP using Metal backend\n", __func__);
#endif #endif
if (!new_clip->backend) { if (!new_clip->backend) {
new_clip->backend = ggml_backend_cpu_init(); new_clip->backend = ggml_backend_cpu_init();
printf("%s: CLIP using CPU backend\n", __func__); LOG_TEE("%s: CLIP using CPU backend\n", __func__);
} }
// model size and capabilities // model size and capabilities
@ -1006,15 +1028,15 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
new_clip->use_gelu = gguf_get_val_bool(ctx, idx); new_clip->use_gelu = gguf_get_val_bool(ctx, idx);
if (verbosity >= 1) { if (verbosity >= 1) {
printf("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder); LOG_TEE("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
printf("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder); LOG_TEE("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
printf("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector); LOG_TEE("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
printf("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0); LOG_TEE("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
printf("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0); LOG_TEE("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
} }
} }
printf("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors); LOG_TEE("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors);
// load tensors // load tensors
{ {
@ -1027,7 +1049,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
new_clip->ctx_data = ggml_init(params); new_clip->ctx_data = ggml_init(params);
if (!new_clip->ctx_data) { if (!new_clip->ctx_data) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__); LOG_TEE("%s: ggml_init() failed\n", __func__);
clip_free(new_clip); clip_free(new_clip);
gguf_free(ctx); gguf_free(ctx);
return nullptr; return nullptr;
@ -1035,7 +1057,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
auto fin = std::ifstream(fname, std::ios::binary); auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) { if (!fin) {
printf("cannot open model file for loading tensors\n"); LOG_TEE("cannot open model file for loading tensors\n");
clip_free(new_clip); clip_free(new_clip);
gguf_free(ctx); gguf_free(ctx);
return nullptr; return nullptr;
@ -1057,7 +1079,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i); const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
fin.seekg(offset, std::ios::beg); fin.seekg(offset, std::ios::beg);
if (!fin) { if (!fin) {
printf("%s: failed to seek for tensor %s\n", __func__, name); LOG_TEE("%s: failed to seek for tensor %s\n", __func__, name);
clip_free(new_clip); clip_free(new_clip);
gguf_free(ctx); gguf_free(ctx);
return nullptr; return nullptr;
@ -1128,34 +1150,61 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
} }
if (verbosity >= 2) { if (verbosity >= 2) {
printf("\n%s: vision model hparams\n", __func__); LOG_TEE("\n%s: vision model hparams\n", __func__);
printf("image_size %d\n", hparams.image_size); LOG_TEE("image_size %d\n", hparams.image_size);
printf("patch_size %d\n", hparams.patch_size); LOG_TEE("patch_size %d\n", hparams.patch_size);
printf("v_hidden_size %d\n", hparams.hidden_size); LOG_TEE("v_hidden_size %d\n", hparams.hidden_size);
printf("v_n_intermediate %d\n", hparams.n_intermediate); LOG_TEE("v_n_intermediate %d\n", hparams.n_intermediate);
printf("v_projection_dim %d\n", hparams.projection_dim); LOG_TEE("v_projection_dim %d\n", hparams.projection_dim);
printf("v_n_head %d\n", hparams.n_head); LOG_TEE("v_n_head %d\n", hparams.n_head);
printf("v_n_layer %d\n", hparams.n_layer); LOG_TEE("v_n_layer %d\n", hparams.n_layer);
printf("v_eps %f\n", hparams.eps); LOG_TEE("v_eps %f\n", hparams.eps);
printf("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]); LOG_TEE("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]);
printf("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]); LOG_TEE("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]);
printf("v_image_grid_pinpoints: "); LOG_TEE("v_image_grid_pinpoints: ");
for (int i = 0; i < 32 && (hparams.image_grid_pinpoints[i] != 0); ++i) { for (int i = 0; i < 32 && (hparams.image_grid_pinpoints[i] != 0); ++i) {
printf("%d ", hparams.image_grid_pinpoints[i]); LOG_TEE("%d ", hparams.image_grid_pinpoints[i]);
} }
printf("\n"); LOG_TEE("\n");
printf("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type); LOG_TEE("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type);
} }
try { try {
vision_model.patch_embeddings = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD); vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD);
vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v")); new_clip->has_class_embedding = true;
} catch (const std::exception& e) {
new_clip->has_class_embedding = false;
}
try {
vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight")); vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight"));
vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias")); vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
new_clip->has_pre_norm = true;
} catch (std::exception & e) {
new_clip->has_pre_norm = false;
}
try {
vision_model.post_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "weight"));
vision_model.post_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "bias"));
new_clip->has_post_norm = true;
} catch (std::exception & e) {
new_clip->has_post_norm = false;
}
try {
vision_model.patch_bias = get_tensor(new_clip->ctx_data, TN_PATCH_BIAS);
new_clip->has_patch_bias = true;
} catch (std::exception & e) {
new_clip->has_patch_bias = false;
}
try {
vision_model.patch_embeddings = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
} catch(const std::exception& e) { } catch(const std::exception& e) {
fprintf(stderr, "%s: failed to load vision model tensors\n", __func__); LOG_TEE("%s: failed to load vision model tensors\n", __func__);
} }
// LLaVA projection // LLaVA projection
@ -1184,7 +1233,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
} catch (std::runtime_error & e) { } } catch (std::runtime_error & e) { }
try { try {
vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE); vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE);
// fprintf(stderr, "%s: image_newline tensor (llava-1.6) found\n", __func__); // LOG_TEE("%s: image_newline tensor (llava-1.6) found\n", __func__);
} catch (std::runtime_error & e) { } } catch (std::runtime_error & e) { }
} else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) { } else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) {
// MobileVLM projection // MobileVLM projection
@ -1264,7 +1313,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch); ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch);
ggml_gallocr_reserve(new_clip->compute_alloc, gf); ggml_gallocr_reserve(new_clip->compute_alloc, gf);
size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0); size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0);
printf("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0); LOG_TEE("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
} }
return new_clip; return new_clip;
@ -1304,7 +1353,7 @@ bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
int nx, ny, nc; int nx, ny, nc;
auto * data = stbi_load(fname, &nx, &ny, &nc, 3); auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
if (!data) { if (!data) {
fprintf(stderr, "%s: failed to load image '%s'\n", __func__, fname); LOG_TEE("%s: failed to load image '%s'\n", __func__, fname);
return false; return false;
} }
build_clip_img_from_data(data, nx, ny, img); build_clip_img_from_data(data, nx, ny, img);
@ -1316,7 +1365,7 @@ bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length
int nx, ny, nc; int nx, ny, nc;
auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3); auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
if (!data) { if (!data) {
fprintf(stderr, "%s: failed to decode image bytes\n", __func__); LOG_TEE("%s: failed to decode image bytes\n", __func__);
return false; return false;
} }
build_clip_img_from_data(data, nx, ny, img); build_clip_img_from_data(data, nx, ny, img);
@ -1325,7 +1374,7 @@ bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length
} }
// Linear interpolation between two points // Linear interpolation between two points
inline float lerp(float s, float e, float t) { inline float clip_lerp(float s, float e, float t) {
return s + (e - s) * t; return s + (e - s) * t;
} }
// Bilinear resize function // Bilinear resize function
@ -1347,17 +1396,17 @@ static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int ta
float y_lerp = py - y_floor; float y_lerp = py - y_floor;
for (int c = 0; c < 3; c++) { for (int c = 0; c < 3; c++) {
float top = lerp( float top = clip_lerp(
static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]), static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]), static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
x_lerp x_lerp
); );
float bottom = lerp( float bottom = clip_lerp(
static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]), static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]), static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
x_lerp x_lerp
); );
dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp)); dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(clip_lerp(top, bottom, y_lerp));
} }
} }
} }
@ -1506,7 +1555,7 @@ static std::pair<int, int> select_best_resolution(const std::pair<int, int> & or
int downscaled_height = static_cast<int>(original_height * scale); int downscaled_height = static_cast<int>(original_height * scale);
int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height); int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
int wasted_resolution = (width * height) - effective_resolution; int wasted_resolution = (width * height) - effective_resolution;
// fprintf(stderr, "resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution); // LOG_TEE("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) { if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
max_effective_resolution = effective_resolution; max_effective_resolution = effective_resolution;
min_wasted_resolution = wasted_resolution; min_wasted_resolution = wasted_resolution;
@ -1545,7 +1594,7 @@ static std::vector<clip_image_u8*> divide_to_patches_u8(const clip_image_u8 & im
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) { bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) {
bool pad_to_square = true; bool pad_to_square = true;
if (!ctx->has_vision_encoder) { if (!ctx->has_vision_encoder) {
printf("This gguf file seems to have no vision encoder\n"); LOG_TEE("This gguf file seems to have no vision encoder\n");
return false; return false;
} }
auto & params = ctx->vision_model.hparams; auto & params = ctx->vision_model.hparams;
@ -1622,7 +1671,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
} }
for (size_t i = 0; i < patches.size(); i++) { for (size_t i = 0; i < patches.size(); i++) {
// printf("patch %d: %d %d\n", i, patches[i]->nx, patches[i]->ny); // LOG_TEE("patch %d: %d %d\n", i, patches[i]->nx, patches[i]->ny);
clip_image_u8_free(patches[i]); clip_image_u8_free(patches[i]);
} }
@ -1765,7 +1814,7 @@ int clip_n_patches(const struct clip_ctx * ctx) {
bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) { bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
if (!ctx->has_vision_encoder) { if (!ctx->has_vision_encoder) {
printf("This gguf file seems to have no vision encoder\n"); LOG_TEE("This gguf file seems to have no vision encoder\n");
return false; return false;
} }
@ -1777,7 +1826,7 @@ bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f3
bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) { bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) {
if (!ctx->has_vision_encoder) { if (!ctx->has_vision_encoder) {
printf("This gguf file seems to have no vision encoder\n"); LOG_TEE("This gguf file seems to have no vision encoder\n");
return false; return false;
} }
@ -1939,7 +1988,7 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
new_type = type; new_type = type;
if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) { if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
// fprintf(stderr, "%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type)); // LOG_TEE("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
} }
const size_t n_elms = ggml_nelements(cur); const size_t n_elms = ggml_nelements(cur);
float * f32_data; float * f32_data;
@ -1958,7 +2007,7 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
f32_data = (float *)conv_buf.data(); f32_data = (float *)conv_buf.data();
break; break;
default: default:
printf("Please use an input file in f32 or f16\n"); LOG_TEE("Please use an input file in f32 or f16\n");
gguf_free(ctx_out); gguf_free(ctx_out);
return false; return false;
} }
@ -1985,7 +2034,7 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
fout.put(0); fout.put(0);
} }
printf("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize, LOG_TEE("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0); orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
} }
@ -2001,8 +2050,8 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
gguf_free(ctx_out); gguf_free(ctx_out);
{ {
printf("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0); LOG_TEE("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
printf("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0); LOG_TEE("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
} }
return true; return true;

View File

@ -1,4 +1,5 @@
#include "ggml.h" #include "ggml.h"
#include "log.h"
#include "common.h" #include "common.h"
#include "clip.h" #include "clip.h"
#include "llava.h" #include "llava.h"
@ -18,7 +19,7 @@ static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_toke
n_eval = n_batch; n_eval = n_batch;
} }
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) { if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
fprintf(stderr, "%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past); LOG_TEE("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
return false; return false;
} }
*n_past += n_eval; *n_past += n_eval;
@ -45,7 +46,7 @@ static const char * sample(struct llama_sampling_context * ctx_sampling,
const llama_token id = llama_sampling_sample(ctx_sampling, ctx_llama, NULL); const llama_token id = llama_sampling_sample(ctx_sampling, ctx_llama, NULL);
llama_sampling_accept(ctx_sampling, ctx_llama, id, true); llama_sampling_accept(ctx_sampling, ctx_llama, id, true);
static std::string ret; static std::string ret;
if (id == llama_token_eos(llama_get_model(ctx_llama))) { if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
ret = "</s>"; ret = "</s>";
} else { } else {
ret = llama_token_to_piece(ctx_llama, id); ret = llama_token_to_piece(ctx_llama, id);
@ -73,7 +74,7 @@ static llava_image_embed * llava_image_embed_make_with_prompt_base64(struct clip
size_t img_base64_str_start, img_base64_str_end; size_t img_base64_str_start, img_base64_str_end;
find_image_tag_in_prompt(prompt, img_base64_str_start, img_base64_str_end); find_image_tag_in_prompt(prompt, img_base64_str_start, img_base64_str_end);
if (img_base64_str_start == std::string::npos || img_base64_str_end == std::string::npos) { if (img_base64_str_start == std::string::npos || img_base64_str_end == std::string::npos) {
fprintf(stderr, "%s: invalid base64 image tag. must be %s<base64 byte string>%s\n", __func__, IMG_BASE64_TAG_BEGIN, IMG_BASE64_TAG_END); LOG_TEE("%s: invalid base64 image tag. must be %s<base64 byte string>%s\n", __func__, IMG_BASE64_TAG_BEGIN, IMG_BASE64_TAG_END);
return NULL; return NULL;
} }
@ -87,7 +88,7 @@ static llava_image_embed * llava_image_embed_make_with_prompt_base64(struct clip
auto embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, img_bytes.data(), img_bytes.size()); auto embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, img_bytes.data(), img_bytes.size());
if (!embed) { if (!embed) {
fprintf(stderr, "%s: could not load image from base64 string.\n", __func__); LOG_TEE("%s: could not load image from base64 string.\n", __func__);
return NULL; return NULL;
} }
@ -112,8 +113,8 @@ struct llava_context {
}; };
static void show_additional_info(int /*argc*/, char ** argv) { static void show_additional_info(int /*argc*/, char ** argv) {
fprintf(stderr, "\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]); LOG_TEE("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
fprintf(stderr, " note: a lower temperature value like 0.1 is recommended for better quality.\n"); LOG_TEE(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
} }
static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_params * params) { static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_params * params) {
@ -123,18 +124,18 @@ static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_para
auto prompt = params->prompt; auto prompt = params->prompt;
if (prompt_contains_image(prompt)) { if (prompt_contains_image(prompt)) {
if (!params->image.empty()) { if (!params->image.empty()) {
fprintf(stderr, "using base64 encoded image instead of command line image path\n"); LOG_TEE("using base64 encoded image instead of command line image path\n");
} }
embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->n_threads, prompt); embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->n_threads, prompt);
if (!embed) { if (!embed) {
fprintf(stderr, "%s: can't load image from prompt\n", __func__); LOG_TEE("%s: can't load image from prompt\n", __func__);
return NULL; return NULL;
} }
params->prompt = remove_image_from_prompt(prompt); params->prompt = remove_image_from_prompt(prompt);
} else { } else {
embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->n_threads, params->image.c_str()); embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->n_threads, params->image.c_str());
if (!embed) { if (!embed) {
fprintf(stderr, "%s: is %s really an image file?\n", __func__, params->image.c_str()); LOG_TEE("%s: is %s really an image file?\n", __func__, params->image.c_str());
return NULL; return NULL;
} }
} }
@ -153,18 +154,18 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
// new templating mode: Provide the full prompt including system message and use <image> as a placeholder for the image // new templating mode: Provide the full prompt including system message and use <image> as a placeholder for the image
system_prompt = prompt.substr(0, image_pos); system_prompt = prompt.substr(0, image_pos);
user_prompt = prompt.substr(image_pos + std::string("<image>").length()); user_prompt = prompt.substr(image_pos + std::string("<image>").length());
printf("system_prompt: %s\n", system_prompt.c_str()); LOG_TEE("system_prompt: %s\n", system_prompt.c_str());
if (params->verbose_prompt) { if (params->verbose_prompt) {
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, system_prompt, true, true); auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, system_prompt, true, true);
for (int i = 0; i < (int) tmp.size(); i++) { for (int i = 0; i < (int) tmp.size(); i++) {
printf("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str()); LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
} }
} }
printf("user_prompt: %s\n", user_prompt.c_str()); LOG_TEE("user_prompt: %s\n", user_prompt.c_str());
if (params->verbose_prompt) { if (params->verbose_prompt) {
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, user_prompt, true, true); auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
for (int i = 0; i < (int) tmp.size(); i++) { for (int i = 0; i < (int) tmp.size(); i++) {
printf("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str()); LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
} }
} }
} else { } else {
@ -174,7 +175,7 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
if (params->verbose_prompt) { if (params->verbose_prompt) {
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, user_prompt, true, true); auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
for (int i = 0; i < (int) tmp.size(); i++) { for (int i = 0; i < (int) tmp.size(); i++) {
printf("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str()); LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
} }
} }
} }
@ -185,7 +186,7 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
// generate the response // generate the response
fprintf(stderr, "\n"); LOG_TEE("\n");
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams); struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams);
std::string response = ""; std::string response = "";
@ -224,7 +225,7 @@ static struct llava_context * llava_init(gpt_params * params) {
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params); llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
if (model == NULL) { if (model == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__); LOG_TEE("%s: error: unable to load model\n" , __func__);
return NULL; return NULL;
} }
@ -234,7 +235,7 @@ static struct llava_context * llava_init(gpt_params * params) {
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params); llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
if (ctx_llama == NULL) { if (ctx_llama == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); LOG_TEE("%s: error: failed to create the llama_context\n" , __func__);
return NULL; return NULL;
} }
@ -257,6 +258,12 @@ static void llava_free(struct llava_context * ctx_llava) {
llama_backend_free(); llama_backend_free();
} }
static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) {
(void) level;
(void) user_data;
LOG_TEE("%s", text);
}
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
ggml_time_init(); ggml_time_init();
@ -266,6 +273,14 @@ int main(int argc, char ** argv) {
show_additional_info(argc, argv); show_additional_info(argc, argv);
return 1; return 1;
} }
#ifndef LOG_DISABLE_LOGS
log_set_target(log_filename_generator("llava", "log"));
LOG_TEE("Log start\n");
log_dump_cmdline(argc, argv);
llama_log_set(llama_log_callback_logTee, nullptr);
#endif // LOG_DISABLE_LOGS
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) { if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
gpt_print_usage(argc, argv, params); gpt_print_usage(argc, argv, params);
show_additional_info(argc, argv); show_additional_info(argc, argv);
@ -274,7 +289,7 @@ int main(int argc, char ** argv) {
auto ctx_llava = llava_init(&params); auto ctx_llava = llava_init(&params);
if (ctx_llava == NULL) { if (ctx_llava == NULL) {
fprintf(stderr, "%s: error: failed to init llava\n", __func__); LOG_TEE("%s: error: failed to init llava\n", __func__);
return 1; return 1;
} }

View File

@ -54,7 +54,7 @@ static std::pair<int, int> select_best_resolution(const std::pair<int, int>& ori
int downscaled_height = static_cast<int>(original_height * scale); int downscaled_height = static_cast<int>(original_height * scale);
int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height); int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
int wasted_resolution = (width * height) - effective_resolution; int wasted_resolution = (width * height) - effective_resolution;
// fprintf(stderr, "resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution); // LOG_TEE("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) { if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
max_effective_resolution = effective_resolution; max_effective_resolution = effective_resolution;
min_wasted_resolution = wasted_resolution; min_wasted_resolution = wasted_resolution;
@ -154,13 +154,13 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
model.newline = ggml_new_tensor_1d(model.ctx, GGML_TYPE_F32, newline_tmp->ne[0]); model.newline = ggml_new_tensor_1d(model.ctx, GGML_TYPE_F32, newline_tmp->ne[0]);
if (newline_tmp->backend != GGML_BACKEND_TYPE_CPU) { if (newline_tmp->backend != GGML_BACKEND_TYPE_CPU) {
if (newline_tmp->buffer == NULL) { if (newline_tmp->buffer == NULL) {
printf("newline_tmp tensor buffer is NULL\n"); LOG_TEE("newline_tmp tensor buffer is NULL\n");
} }
ggml_backend_tensor_get(newline_tmp, model.newline->data, 0, ggml_nbytes(newline_tmp)); ggml_backend_tensor_get(newline_tmp, model.newline->data, 0, ggml_nbytes(newline_tmp));
} else { } else {
model.newline->data = newline_tmp->data; model.newline->data = newline_tmp->data;
if (model.newline->data == NULL) { if (model.newline->data == NULL) {
printf("newline_tmp tensor data is NULL\n"); LOG_TEE("newline_tmp tensor data is NULL\n");
} }
} }
@ -224,7 +224,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
img_res_v.size = 0; img_res_v.size = 0;
img_res_v.data = nullptr; img_res_v.data = nullptr;
if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) { if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) {
fprintf(stderr, "%s: unable to preprocess image\n", __func__); LOG_TEE("%s: unable to preprocess image\n", __func__);
delete[] img_res_v.data; delete[] img_res_v.data;
return false; return false;
} }
@ -239,7 +239,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096 bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096
delete[] img_res_v.data; delete[] img_res_v.data;
if (!encoded) { if (!encoded) {
fprintf(stderr, "Unable to encode image\n"); LOG_TEE("Unable to encode image\n");
return false; return false;
} }
@ -252,12 +252,12 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184 image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184
const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
if (!encoded) { if (!encoded) {
fprintf(stderr, "Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size); LOG_TEE("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
return false; return false;
} }
} }
const int64_t t_img_enc_batch_us = ggml_time_us(); const int64_t t_img_enc_batch_us = ggml_time_us();
printf("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0); LOG_TEE("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
const int32_t * image_grid = clip_image_grid(ctx_clip); const int32_t * image_grid = clip_image_grid(ctx_clip);
@ -290,12 +290,12 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
// clip_image_save_to_bmp(*tmp, "image_feature.bmp"); // clip_image_save_to_bmp(*tmp, "image_feature.bmp");
} }
printf("%s: image embedding created: %d tokens\n", __func__, *n_img_pos); LOG_TEE("%s: image embedding created: %d tokens\n", __func__, *n_img_pos);
const int64_t t_img_enc_end_us = ggml_time_us(); const int64_t t_img_enc_end_us = ggml_time_us();
float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0; float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;
printf("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos); LOG_TEE("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos);
return true; return true;
} }
@ -305,7 +305,7 @@ bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx *
int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama)); int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
auto n_image_embd = clip_n_mmproj_embd(ctx_clip); auto n_image_embd = clip_n_mmproj_embd(ctx_clip);
if (n_image_embd != n_llama_embd) { if (n_image_embd != n_llama_embd) {
printf("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd); LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd);
return false; return false;
} }
return true; return true;
@ -314,13 +314,13 @@ bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx *
bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) { bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*6); // TODO: base on gridsize/llava model float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*6); // TODO: base on gridsize/llava model
if (!image_embd) { if (!image_embd) {
fprintf(stderr, "Unable to allocate memory for image embeddings\n"); LOG_TEE("Unable to allocate memory for image embeddings\n");
return false; return false;
} }
int n_img_pos; int n_img_pos;
if (!encode_image_with_clip(ctx_clip, n_threads, img, image_embd, &n_img_pos)) { if (!encode_image_with_clip(ctx_clip, n_threads, img, image_embd, &n_img_pos)) {
fprintf(stderr, "%s: cannot encode image, aborting\n", __func__); LOG_TEE("%s: cannot encode image, aborting\n", __func__);
free(image_embd); free(image_embd);
return false; return false;
} }
@ -340,7 +340,7 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
} }
llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, }; llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
if (llama_decode(ctx_llama, batch)) { if (llama_decode(ctx_llama, batch)) {
fprintf(stderr, "%s : failed to eval\n", __func__); LOG_TEE("%s : failed to eval\n", __func__);
return false; return false;
} }
*n_past += n_eval; *n_past += n_eval;
@ -352,7 +352,7 @@ struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * c
clip_image_u8 * img = clip_image_u8_init(); clip_image_u8 * img = clip_image_u8_init();
if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) { if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
clip_image_u8_free(img); clip_image_u8_free(img);
fprintf(stderr, "%s: can't load image from bytes, is it a valid image?", __func__); LOG_TEE("%s: can't load image from bytes, is it a valid image?", __func__);
return NULL; return NULL;
} }
@ -361,7 +361,7 @@ struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * c
bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, img, &image_embed, &n_image_pos); bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, img, &image_embed, &n_image_pos);
if (!image_embed_result) { if (!image_embed_result) {
clip_image_u8_free(img); clip_image_u8_free(img);
fprintf(stderr, "%s: coulnd't embed the image\n", __func__); LOG_TEE("%s: coulnd't embed the image\n", __func__);
return NULL; return NULL;
} }
@ -375,7 +375,7 @@ struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * c
static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) { static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) {
auto file = fopen(path, "rb"); auto file = fopen(path, "rb");
if (file == NULL) { if (file == NULL) {
fprintf(stderr, "%s: can't read file %s\n", __func__, path); LOG_TEE("%s: can't read file %s\n", __func__, path);
return false; return false;
} }
@ -385,7 +385,7 @@ static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long
auto buffer = (unsigned char *)malloc(fileSize); // Allocate memory to hold the file data auto buffer = (unsigned char *)malloc(fileSize); // Allocate memory to hold the file data
if (buffer == NULL) { if (buffer == NULL) {
fprintf(stderr, "%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path); LOG_TEE("%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path);
perror("Memory allocation error"); perror("Memory allocation error");
fclose(file); fclose(file);
return false; return false;
@ -410,7 +410,7 @@ struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx
long image_bytes_length; long image_bytes_length;
auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length); auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length);
if (!loaded) { if (!loaded) {
fprintf(stderr, "%s: failed to load %s\n", __func__, image_path); LOG_TEE("%s: failed to load %s\n", __func__, image_path);
return NULL; return NULL;
} }

View File

@ -299,7 +299,7 @@ int main(int argc, char ** argv) {
} }
fflush(stdout); fflush(stdout);
if (id == llama_token_eos(model)) { if (llama_token_is_eog(model, id)) {
has_eos = true; has_eos = true;
} }

View File

@ -30,7 +30,6 @@ int main(int argc, char ** argv){
// load the model // load the model
std::tie(model, ctx) = llama_init_from_gpt_params(params); std::tie(model, ctx) = llama_init_from_gpt_params(params);
llama_set_rng_seed(ctx, params.seed);
GGML_ASSERT(llama_n_vocab(model) < (1 << 16)); GGML_ASSERT(llama_n_vocab(model) < (1 << 16));
// tokenize the prompt // tokenize the prompt

View File

@ -38,7 +38,6 @@ int main(int argc, char ** argv){
// load the model // load the model
std::tie(model, ctx) = llama_init_from_gpt_params(params); std::tie(model, ctx) = llama_init_from_gpt_params(params);
llama_set_rng_seed(ctx, params.seed);
GGML_ASSERT(llama_n_vocab(model) < (1 << 16)); GGML_ASSERT(llama_n_vocab(model) < (1 << 16));
// tokenize the prompt // tokenize the prompt
@ -141,7 +140,7 @@ int main(int argc, char ** argv){
printf("%s", token_str.c_str()); printf("%s", token_str.c_str());
} }
if (id == llama_token_eos(model)) { if (llama_token_is_eog(model, id)) {
has_eos = true; has_eos = true;
} }

View File

@ -304,13 +304,15 @@ These options help improve the performance and memory usage of the LLaMA models.
- `--prompt-cache FNAME`: Specify a file to cache the model state after the initial prompt. This can significantly speed up the startup time when you're using longer prompts. The file is created during the first run and is reused and updated in subsequent runs. **Note**: Restoring a cached prompt does not imply restoring the exact state of the session at the point it was saved. So even when specifying a specific seed, you are not guaranteed to get the same sequence of tokens as the original generation. - `--prompt-cache FNAME`: Specify a file to cache the model state after the initial prompt. This can significantly speed up the startup time when you're using longer prompts. The file is created during the first run and is reused and updated in subsequent runs. **Note**: Restoring a cached prompt does not imply restoring the exact state of the session at the point it was saved. So even when specifying a specific seed, you are not guaranteed to get the same sequence of tokens as the original generation.
### Grammars ### Grammars & JSON schemas
- `--grammar GRAMMAR`, `--grammar-file FILE`: Specify a grammar (defined inline or in a file) to constrain model output to a specific format. For example, you could force the model to output JSON or to speak only in emojis. See the [GBNF guide](../../grammars/README.md) for details on the syntax. - `--grammar GRAMMAR`, `--grammar-file FILE`: Specify a grammar (defined inline or in a file) to constrain model output to a specific format. For example, you could force the model to output JSON or to speak only in emojis. See the [GBNF guide](../../grammars/README.md) for details on the syntax.
- `--json-schema SCHEMA`: Specify a [JSON schema](https://json-schema.org/) to constrain model output to (e.g. `{}` for any JSON object, or `{"items": {"type": "string", "minLength": 10, "maxLength": 100}, "minItems": 10}` for a JSON array of strings with size constraints). If a schema uses external `$ref`s, you should use `--grammar "$( python examples/json_schema_to_grammar.py myschema.json )"` instead.
### Quantization ### Quantization
For information about 4-bit quantization, which can significantly improve performance and reduce memory usage, please refer to llama.cpp's primary [README](../../README.md#prepare-data--run). For information about 4-bit quantization, which can significantly improve performance and reduce memory usage, please refer to llama.cpp's primary [README](../../README.md#prepare-and-quantize).
## Additional Options ## Additional Options

View File

@ -240,7 +240,6 @@ int main(int argc, char ** argv) {
return 1; return 1;
} }
session_tokens.resize(n_token_count_out); session_tokens.resize(n_token_count_out);
llama_set_rng_seed(ctx, params.seed);
LOG_TEE("%s: loaded a session with prompt size of %d tokens\n", __func__, (int)session_tokens.size()); LOG_TEE("%s: loaded a session with prompt size of %d tokens\n", __func__, (int)session_tokens.size());
} }
} }
@ -795,8 +794,8 @@ int main(int argc, char ** argv) {
} }
} }
// deal with end of text token in interactive mode // deal with end of generation tokens in interactive mode
if (llama_sampling_last(ctx_sampling) == llama_token_eos(model)) { if (llama_token_is_eog(model, llama_sampling_last(ctx_sampling))) {
LOG("found EOS token\n"); LOG("found EOS token\n");
if (params.interactive) { if (params.interactive) {
@ -920,8 +919,8 @@ int main(int argc, char ** argv) {
} }
} }
// end of text token // end of generation
if (!embd.empty() && embd.back() == llama_token_eos(model) && !(params.instruct || params.interactive || params.chatml)) { if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !(params.instruct || params.interactive || params.chatml)) {
LOG_TEE(" [end of text]\n"); LOG_TEE(" [end of text]\n");
break; break;
} }

View File

@ -359,7 +359,7 @@ int main(int argc, char ** argv) {
// client.id, client.seq_id, id, client.n_decoded, client.i_batch, token_str.c_str()); // client.id, client.seq_id, id, client.n_decoded, client.i_batch, token_str.c_str());
if (client.n_decoded > 2 && if (client.n_decoded > 2 &&
(id == llama_token_eos(model) || (llama_token_is_eog(model, id) ||
(params.n_predict > 0 && client.n_decoded + client.n_prompt >= params.n_predict) || (params.n_predict > 0 && client.n_decoded + client.n_prompt >= params.n_predict) ||
client.response.find("User:") != std::string::npos || client.response.find("User:") != std::string::npos ||
client.response.find('\n') != std::string::npos)) { client.response.find('\n') != std::string::npos)) {

View File

@ -252,8 +252,8 @@ int main(int argc, char ** argv) {
// sample the most likely token // sample the most likely token
const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p); const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
// is it an end of stream? // is it an end of generation?
if (new_token_id == llama_token_eos(model) || n_cur == n_len) { if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
LOG_TEE("\n"); LOG_TEE("\n");
break; break;

View File

@ -3,19 +3,18 @@
TODO TODO
## Llama 2 70B Scorechart ## Llama 2 70B Scorechart
Quantization | Model size (GiB) | Perplexity | Delta to fp16 | Quantization | Model size (GiB) | Perplexity | Delta to fp16 |
-- | -- | -- | -- |--------------|------------------|------------|---------------|
Q4_0 | 36.20 | 3.5550 | 3.61% | Q4_0 | 36.20 | 3.5550 | 3.61% |
Q4_1 | 40.20 | 3.5125 | 2.37% | Q4_1 | 40.20 | 3.5125 | 2.37% |
Q5_0 | 44.20 | 3.4744 | 1.26% | Q5_0 | 44.20 | 3.4744 | 1.26% |
Q2_K | 27.27 | 3.7339 | 8.82% | Q2_K | 27.27 | 3.7339 | 8.82% |
Q3_K_S | 27.86 | 3.7019 | 7.89% | Q3_K_S | 27.86 | 3.7019 | 7.89% |
Q3_K_M | 30.83 | 3.5932 | 4.72% | Q3_K_M | 30.83 | 3.5932 | 4.72% |
Q3_K_L | 33.67 | 3.5617 | 3.80% | Q3_K_L | 33.67 | 3.5617 | 3.80% |
Q4_K_S | 36.39 | 3.4852 | 1.57% | Q4_K_S | 36.39 | 3.4852 | 1.57% |
Q4_K_M | 38.54 | 3.4725 | 1.20% | Q4_K_M | 38.54 | 3.4725 | 1.20% |
Q5_K_S | 44.20 | 3.4483 | 0.50% | Q5_K_S | 44.20 | 3.4483 | 0.50% |
Q5_K_M | 45.41 | 3.4451 | 0.40% | Q5_K_M | 45.41 | 3.4451 | 0.40% |
Q6_K | 52.70 | 3.4367 | 0.16% | Q6_K | 52.70 | 3.4367 | 0.16% |
fp16 | 128.5 | 3.4313 | - | fp16 | 128.5 | 3.4313 | - |

View File

@ -1852,12 +1852,20 @@ int main(int argc, char ** argv) {
const int32_t n_ctx = params.n_ctx; const int32_t n_ctx = params.n_ctx;
if (n_ctx <= 0) {
fprintf(stderr, "%s: perplexity tool requires '--ctx-size' > 0\n", __func__);
return 1;
}
const bool ppl = !params.hellaswag && !params.winogrande && !params.multiple_choice && !params.kl_divergence; const bool ppl = !params.hellaswag && !params.winogrande && !params.multiple_choice && !params.kl_divergence;
if (ppl) { if (ppl) {
int n_seq = std::max(1, params.n_batch / n_ctx); const int32_t n_seq = std::max(1, params.n_batch / n_ctx);
int32_t n_kv = n_seq * n_ctx; const int32_t n_kv = n_seq * n_ctx;
params.n_parallel = n_seq; params.n_parallel = n_seq;
params.n_ctx = n_kv; params.n_ctx = n_kv;
params.n_batch = std::min(params.n_batch, n_kv); params.n_batch = std::min(params.n_batch, n_kv);
} else { } else {
params.n_batch = std::min(params.n_batch, params.n_ctx); params.n_batch = std::min(params.n_batch, params.n_ctx);

View File

@ -1,6 +1,6 @@
set(TARGET quantize) set(TARGET quantize)
add_executable(${TARGET} quantize.cpp) add_executable(${TARGET} quantize.cpp)
install(TARGETS ${TARGET} RUNTIME) install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE llama build_info ${CMAKE_THREAD_LIBS_INIT}) target_link_libraries(${TARGET} PRIVATE llama common ${CMAKE_THREAD_LIBS_INIT})
target_include_directories(${TARGET} PRIVATE ../../common) target_include_directories(${TARGET} PRIVATE ../../common)
target_compile_features(${TARGET} PRIVATE cxx_std_11) target_compile_features(${TARGET} PRIVATE cxx_std_11)

View File

@ -4,17 +4,17 @@ TODO
## Llama 2 7B ## Llama 2 7B
Quantization | Bits per Weight (BPW) | Quantization | Bits per Weight (BPW) |
-- | -- |--------------|-----------------------|
Q2_K | 3.35 | Q2_K | 3.35 |
Q3_K_S | 3.50 | Q3_K_S | 3.50 |
Q3_K_M | 3.91 | Q3_K_M | 3.91 |
Q3_K_L | 4.27 | Q3_K_L | 4.27 |
Q4_K_S | 4.58 | Q4_K_S | 4.58 |
Q4_K_M | 4.84 | Q4_K_M | 4.84 |
Q5_K_S | 5.52 | Q5_K_S | 5.52 |
Q5_K_M | 5.68 | Q5_K_M | 5.68 |
Q6_K | 6.56 | Q6_K | 6.56 |
## Llama 2 13B ## Llama 2 13B
Quantization | Bits per Weight (BPW) Quantization | Bits per Weight (BPW)

View File

@ -8,7 +8,6 @@
#include <unordered_map> #include <unordered_map>
#include <fstream> #include <fstream>
#include <cmath> #include <cmath>
#include <algorithm>
struct quant_option { struct quant_option {
std::string name; std::string name;
@ -53,6 +52,10 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
{ "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", }, { "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", },
}; };
static const char * const LLM_KV_QUANTIZE_IMATRIX_FILE = "quantize.imatrix.file";
static const char * const LLM_KV_QUANTIZE_IMATRIX_DATASET = "quantize.imatrix.dataset";
static const char * const LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES = "quantize.imatrix.entries_count";
static const char * const LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS = "quantize.imatrix.chunks_count";
static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) { static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) {
std::string ftype_str; std::string ftype_str;
@ -97,6 +100,7 @@ static void usage(const char * executable) {
printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n"); printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor\n"); printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor\n");
printf(" --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n"); printf(" --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n");
printf(" --keep-split: will generate quatized model in the same shards as input");
printf(" --override-kv KEY=TYPE:VALUE\n"); printf(" --override-kv KEY=TYPE:VALUE\n");
printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n"); printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n");
printf("Note: --include-weights and --exclude-weights cannot be used together\n"); printf("Note: --include-weights and --exclude-weights cannot be used together\n");
@ -112,7 +116,7 @@ static void usage(const char * executable) {
exit(1); exit(1);
} }
static void load_imatrix(const std::string & imatrix_file, std::unordered_map<std::string, std::vector<float>> & imatrix_data) { static int load_imatrix(const std::string & imatrix_file, std::string & imatrix_dataset, std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
std::ifstream in(imatrix_file.c_str(), std::ios::binary); std::ifstream in(imatrix_file.c_str(), std::ios::binary);
if (!in) { if (!in) {
printf("%s: failed to open %s\n",__func__, imatrix_file.c_str()); printf("%s: failed to open %s\n",__func__, imatrix_file.c_str());
@ -159,18 +163,33 @@ static void load_imatrix(const std::string & imatrix_file, std::unordered_map<st
printf("%s: loaded data (size = %6d, ncall = %6d) for '%s'\n", __func__, int(e.size()), ncall, name.c_str()); printf("%s: loaded data (size = %6d, ncall = %6d) for '%s'\n", __func__, int(e.size()), ncall, name.c_str());
} }
} }
printf("%s: loaded %d importance matrix entries from %s\n", __func__, int(imatrix_data.size()), imatrix_file.c_str());
// latest imatrix version contains the dataset filename at the end of the file
int m_last_call = 0;
if (in.peek() != EOF) {
in.read((char *)&m_last_call, sizeof(m_last_call));
int dataset_len;
in.read((char *)&dataset_len, sizeof(dataset_len));
std::vector<char> dataset_as_vec(dataset_len);
in.read(dataset_as_vec.data(), dataset_len);
imatrix_dataset.assign(dataset_as_vec.begin(), dataset_as_vec.end());
printf("%s: imatrix dataset='%s'\n", __func__, imatrix_dataset.c_str());
}
printf("%s: loaded %d importance matrix entries from %s computed on %d chunks\n", __func__, int(imatrix_data.size()), imatrix_file.c_str(), m_last_call);
return m_last_call;
} }
static void prepare_imatrix(const std::string & imatrix_file, static int prepare_imatrix(const std::string & imatrix_file,
std::string & imatrix_dataset,
const std::vector<std::string> & included_weights, const std::vector<std::string> & included_weights,
const std::vector<std::string> & excluded_weights, const std::vector<std::string> & excluded_weights,
std::unordered_map<std::string, std::vector<float>> & imatrix_data) { std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
int m_last_call = -1;
if (!imatrix_file.empty()) { if (!imatrix_file.empty()) {
load_imatrix(imatrix_file, imatrix_data); m_last_call = load_imatrix(imatrix_file, imatrix_dataset, imatrix_data);
} }
if (imatrix_data.empty()) { if (imatrix_data.empty()) {
return; return m_last_call;
} }
if (!excluded_weights.empty()) { if (!excluded_weights.empty()) {
for (auto& name : excluded_weights) { for (auto& name : excluded_weights) {
@ -196,6 +215,7 @@ static void prepare_imatrix(const std::string & imatrix_file,
if (!imatrix_data.empty()) { if (!imatrix_data.empty()) {
printf("%s: have %d importance matrix entries\n", __func__, int(imatrix_data.size())); printf("%s: have %d importance matrix entries\n", __func__, int(imatrix_data.size()));
} }
return m_last_call;
} }
static ggml_type parse_ggml_type(const char * arg) { static ggml_type parse_ggml_type(const char * arg) {
@ -210,43 +230,6 @@ static ggml_type parse_ggml_type(const char * arg) {
return result; return result;
} }
static bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
const char* sep = strchr(data, '=');
if (sep == nullptr || sep - data >= 128) {
fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data);
return false;
}
llama_model_kv_override kvo;
std::strncpy(kvo.key, data, sep - data);
kvo.key[sep - data] = 0;
sep++;
if (strncmp(sep, "int:", 4) == 0) {
sep += 4;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
kvo.int_value = std::atol(sep);
} else if (strncmp(sep, "float:", 6) == 0) {
sep += 6;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
kvo.float_value = std::atof(sep);
} else if (strncmp(sep, "bool:", 5) == 0) {
sep += 5;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
if (std::strcmp(sep, "true") == 0) {
kvo.bool_value = true;
} else if (std::strcmp(sep, "false") == 0) {
kvo.bool_value = false;
} else {
fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data);
return false;
}
} else {
fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data);
return false;
}
overrides.emplace_back(std::move(kvo));
return true;
}
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
if (argc < 3) { if (argc < 3) {
usage(argv[0]); usage(argv[0]);
@ -300,6 +283,8 @@ int main(int argc, char ** argv) {
} else { } else {
usage(argv[0]); usage(argv[0]);
} }
} else if (strcmp(argv[arg_idx], "--keep-split")) {
params.keep_split = true;
} else { } else {
usage(argv[0]); usage(argv[0]);
} }
@ -313,10 +298,43 @@ int main(int argc, char ** argv) {
usage(argv[0]); usage(argv[0]);
} }
std::string imatrix_dataset;
std::unordered_map<std::string, std::vector<float>> imatrix_data; std::unordered_map<std::string, std::vector<float>> imatrix_data;
prepare_imatrix(imatrix_file, included_weights, excluded_weights, imatrix_data); int m_last_call = prepare_imatrix(imatrix_file, imatrix_dataset, included_weights, excluded_weights, imatrix_data);
if (!imatrix_data.empty()) { if (!imatrix_data.empty()) {
params.imatrix = &imatrix_data; params.imatrix = &imatrix_data;
{
llama_model_kv_override kvo;
std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_FILE);
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
strncpy(kvo.val_str, imatrix_file.c_str(), 127);
kvo.val_str[127] = '\0';
kv_overrides.emplace_back(std::move(kvo));
}
if (!imatrix_dataset.empty()) {
llama_model_kv_override kvo;
std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_DATASET);
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
strncpy(kvo.val_str, imatrix_dataset.c_str(), 127);
kvo.val_str[127] = '\0';
kv_overrides.emplace_back(std::move(kvo));
}
{
llama_model_kv_override kvo;
std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES);
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
kvo.val_i64 = imatrix_data.size();
kv_overrides.emplace_back(std::move(kvo));
}
if (m_last_call > 0) {
llama_model_kv_override kvo;
std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS);
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
kvo.val_i64 = m_last_call;
kv_overrides.emplace_back(std::move(kvo));
}
} }
if (!kv_overrides.empty()) { if (!kv_overrides.empty()) {
kv_overrides.emplace_back(); kv_overrides.emplace_back();
@ -332,20 +350,28 @@ int main(int argc, char ** argv) {
std::string fname_out; std::string fname_out;
std::string ftype_str; std::string ftype_str;
std::string suffix = ".gguf";
if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) { if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
std::string fpath; std::string fpath;
const size_t pos = fname_inp.find_last_of("/\\"); const size_t pos = fname_inp.find_last_of("/\\");
if (pos != std::string::npos) { if (pos != std::string::npos) {
fpath = fname_inp.substr(0, pos + 1); fpath = fname_inp.substr(0, pos + 1);
} }
// export as [inp path]/ggml-model-[ftype].gguf
fname_out = fpath + "ggml-model-" + ftype_str + ".gguf"; // export as [inp path]/ggml-model-[ftype]. Only add extension if there is no splitting
fname_out = fpath + "ggml-model-" + ftype_str;
if (!params.keep_split) {
fname_out += suffix;
}
arg_idx++; arg_idx++;
if (ftype_str == "COPY") { if (ftype_str == "COPY") {
params.only_copy = true; params.only_copy = true;
} }
} else { } else {
fname_out = argv[arg_idx]; fname_out = argv[arg_idx];
if (params.keep_split && fname_out.find(suffix) != std::string::npos) {
fname_out = fname_out.substr(0, fname_out.length() - suffix.length());
}
arg_idx++; arg_idx++;
if (argc <= arg_idx) { if (argc <= arg_idx) {

View File

@ -0,0 +1,65 @@
#!/bin/bash
set -eu
if [ $# -lt 1 ]
then
echo "usage: $0 path_to_build_binary [path_to_temp_folder]"
echo "example: $0 ../../build/bin ../../tmp"
exit 1
fi
if [ $# -gt 1 ]
then
TMP_DIR=$2
else
TMP_DIR=/tmp
fi
set -x
SPLIT=$1/gguf-split
QUANTIZE=$1/quantize
MAIN=$1/main
WORK_PATH=$TMP_DIR/quantize
ROOT_DIR=$(realpath $(dirname $0)/../../)
mkdir -p "$WORK_PATH"
# Clean up in case of previously failed test
rm -f $WORK_PATH/ggml-model-split*.gguf $WORK_PATH/ggml-model-requant*.gguf
# 1. Get a model
(
cd $WORK_PATH
"$ROOT_DIR"/scripts/hf.sh --repo ggml-org/gemma-1.1-2b-it-Q8_0-GGUF --file gemma-1.1-2b-it.Q8_0.gguf
)
echo PASS
# 2. Split model
$SPLIT --split-max-tensors 28 $WORK_PATH/gemma-1.1-2b-it.Q8_0.gguf $WORK_PATH/ggml-model-split
echo PASS
echo
# 3. Requant model with '--keep_split'
$QUANTIZE --allow-requantize --keep_split $WORK_PATH/ggml-model-split-00001-of-00006.gguf $WORK_PATH/ggml-model-requant.gguf Q4_K
echo PASS
echo
# 3a. Test the requanted model is loading properly
$MAIN --model $WORK_PATH/ggml-model-requant-00001-of-00006.gguf --random-prompt --n-predict 32
echo PASS
echo
# 4. Requant mode without '--keep_split'
$QUANTIZE --allow-requantize $WORK_PATH/ggml-model-split-00001-of-00006.gguf $WORK_PATH/ggml-model-requant-merge.gguf Q4_K
echo PASS
echo
# 4b. Test the requanted model is loading properly
$MAIN --model $WORK_PATH/ggml-model-requant-merge.gguf --random-prompt --n-predict 32
echo PASS
echo
# Clean up
rm -f $WORK_PATH/ggml-model-split*.gguf $WORK_PATH/ggml-model-requant*.gguf

View File

@ -8,7 +8,7 @@ print(subprocess.check_output(
"python", "python",
os.path.join( os.path.join(
os.path.dirname(os.path.realpath(__file__)), os.path.dirname(os.path.realpath(__file__)),
"json-schema-to-grammar.py"), "json_schema_to_grammar.py"),
*rest, *rest,
"-", "-",
"--raw-pattern", "--raw-pattern",

View File

@ -1,17 +1,34 @@
set(TARGET server) set(TARGET server)
option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON) option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
option(LLAMA_SERVER_SSL "Build SSL support for the server" OFF) option(LLAMA_SERVER_SSL "Build SSL support for the server" OFF)
include_directories(${CMAKE_CURRENT_SOURCE_DIR}) include_directories(${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY_DIR})
add_executable(${TARGET} set(TARGET_SRCS
server.cpp server.cpp
utils.hpp utils.hpp
httplib.h httplib.h
) )
set(PUBLIC_ASSETS
index.html
index.js
completion.js
json-schema-to-grammar.mjs
)
foreach(asset ${PUBLIC_ASSETS})
set(input "${CMAKE_CURRENT_SOURCE_DIR}/public/${asset}")
set(output "${CMAKE_CURRENT_BINARY_DIR}/${asset}.hpp")
list(APPEND TARGET_SRCS ${output})
add_custom_command(
DEPENDS "${input}"
OUTPUT "${output}"
COMMAND "${CMAKE_COMMAND}" "-DINPUT=${input}" "-DOUTPUT=${output}" -P "${PROJECT_SOURCE_DIR}/scripts/xxd.cmake"
)
endforeach()
add_executable(${TARGET} ${TARGET_SRCS})
install(TARGETS ${TARGET} RUNTIME) install(TARGETS ${TARGET} RUNTIME)
target_compile_definitions(${TARGET} PRIVATE target_compile_definitions(${TARGET} PRIVATE
SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}> SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
) )
target_link_libraries(${TARGET} PRIVATE common json-schema-to-grammar ${CMAKE_THREAD_LIBS_INIT}) target_link_libraries(${TARGET} PRIVATE common ${CMAKE_THREAD_LIBS_INIT})
if (LLAMA_SERVER_SSL) if (LLAMA_SERVER_SSL)
find_package(OpenSSL REQUIRED) find_package(OpenSSL REQUIRED)
target_link_libraries(${TARGET} PRIVATE OpenSSL::SSL OpenSSL::Crypto) target_link_libraries(${TARGET} PRIVATE OpenSSL::SSL OpenSSL::Crypto)

View File

@ -11,6 +11,7 @@ Set of LLM REST APIs and a simple web front end to interact with llama.cpp.
* Continuous batching * Continuous batching
* Multimodal (wip) * Multimodal (wip)
* Monitoring endpoints * Monitoring endpoints
* Schema-constrained JSON response format
The project is under active development, and we are [looking for feedback and contributors](https://github.com/ggerganov/llama.cpp/issues/4216). The project is under active development, and we are [looking for feedback and contributors](https://github.com/ggerganov/llama.cpp/issues/4216).
@ -250,6 +251,8 @@ node index.js
`grammar`: Set grammar for grammar-based sampling. Default: no grammar `grammar`: Set grammar for grammar-based sampling. Default: no grammar
`json_schema`: Set a JSON schema for grammar-based sampling (e.g. `{"items": {"type": "string"}, "minItems": 10, "maxItems": 100}` of a list of strings, or `{}` for any JSON). See [tests](../../tests/test-json-schema-to-grammar.cpp) for supported features. Default: no JSON schema.
`seed`: Set the random number generator (RNG) seed. Default: `-1`, which is a random seed. `seed`: Set the random number generator (RNG) seed. Default: `-1`, which is a random seed.
`ignore_eos`: Ignore end of stream token and continue generating. Default: `false` `ignore_eos`: Ignore end of stream token and continue generating. Default: `false`
@ -365,6 +368,8 @@ Notice that each `probs` is an array of length `n_probs`.
See [OpenAI Chat Completions API documentation](https://platform.openai.com/docs/api-reference/chat). While some OpenAI-specific features such as function calling aren't supported, llama.cpp `/completion`-specific features such as `mirostat` are supported. See [OpenAI Chat Completions API documentation](https://platform.openai.com/docs/api-reference/chat). While some OpenAI-specific features such as function calling aren't supported, llama.cpp `/completion`-specific features such as `mirostat` are supported.
The `response_format` parameter supports both plain JSON output (e.g. `{"type": "json_object"}`) and schema-constrained JSON (e.g. `{"type": "json_object", "schema": {"type": "string", "minLength": 10, "maxLength": 100}}`), similar to other OpenAI-inspired API providers.
*Examples:* *Examples:*
You can use either Python `openai` library with appropriate checkpoints: You can use either Python `openai` library with appropriate checkpoints:

View File

@ -90,7 +90,8 @@ export default function () {
"model": model, "model": model,
"stream": true, "stream": true,
"seed": 42, "seed": 42,
"max_tokens": max_tokens "max_tokens": max_tokens,
"stop": ["<|im_end|>"] // This is temporary for phi-2 base (i.e. not instructed) since the server expects that the model always to emit BOS
} }
const params = {method: 'POST', body: JSON.stringify(payload)}; const params = {method: 'POST', body: JSON.stringify(payload)};

View File

@ -1,496 +0,0 @@
unsigned char completion_js[] = {
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x44,
0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x0a,
0x20, 0x20, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x3a, 0x20, 0x74, 0x72,
0x75, 0x65, 0x2c, 0x0a, 0x20, 0x20, 0x6e, 0x5f, 0x70, 0x72, 0x65, 0x64,
0x69, 0x63, 0x74, 0x3a, 0x20, 0x35, 0x30, 0x30, 0x2c, 0x0a, 0x20, 0x20,
0x74, 0x65, 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x3a,
0x20, 0x30, 0x2e, 0x32, 0x2c, 0x0a, 0x20, 0x20, 0x73, 0x74, 0x6f, 0x70,
0x3a, 0x20, 0x5b, 0x22, 0x3c, 0x2f, 0x73, 0x3e, 0x22, 0x5d, 0x0a, 0x7d,
0x3b, 0x0a, 0x0a, 0x6c, 0x65, 0x74, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72,
0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e,
0x67, 0x73, 0x20, 0x3d, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x3b, 0x0a, 0x0a,
0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65,
0x73, 0x20, 0x74, 0x68, 0x65, 0x20, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74,
0x20, 0x61, 0x73, 0x20, 0x61, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61,
0x74, 0x6f, 0x72, 0x2e, 0x20, 0x52, 0x65, 0x63, 0x6f, 0x6d, 0x6d, 0x65,
0x6e, 0x64, 0x65, 0x64, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x6d, 0x6f, 0x73,
0x74, 0x20, 0x75, 0x73, 0x65, 0x20, 0x63, 0x61, 0x73, 0x65, 0x73, 0x2e,
0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70,
0x6c, 0x65, 0x3a, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20,
0x20, 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x7b, 0x20, 0x6c, 0x6c,
0x61, 0x6d, 0x61, 0x20, 0x7d, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x27,
0x2f, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x2e,
0x6a, 0x73, 0x27, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20,
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x71, 0x75, 0x65,
0x73, 0x74, 0x20, 0x3d, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x22,
0x54, 0x65, 0x6c, 0x6c, 0x20, 0x6d, 0x65, 0x20, 0x61, 0x20, 0x6a, 0x6f,
0x6b, 0x65, 0x22, 0x2c, 0x20, 0x7b, 0x6e, 0x5f, 0x70, 0x72, 0x65, 0x64,
0x69, 0x63, 0x74, 0x3a, 0x20, 0x38, 0x30, 0x30, 0x7d, 0x29, 0x0a, 0x2f,
0x2f, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61,
0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68,
0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x72, 0x65, 0x71, 0x75, 0x65,
0x73, 0x74, 0x29, 0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77,
0x72, 0x69, 0x74, 0x65, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64,
0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29,
0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x2f, 0x2f, 0x0a,
0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x61, 0x73, 0x79, 0x6e, 0x63,
0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x2a, 0x20, 0x6c,
0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c,
0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x7d,
0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d, 0x20, 0x7b,
0x7d, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63,
0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x3d, 0x20,
0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x72,
0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x3b, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e,
0x73, 0x74, 0x20, 0x61, 0x70, 0x69, 0x5f, 0x75, 0x72, 0x6c, 0x20, 0x3d,
0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x2e, 0x61, 0x70, 0x69, 0x5f,
0x75, 0x72, 0x6c, 0x20, 0x7c, 0x7c, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x0a,
0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x63, 0x6f, 0x6e, 0x74, 0x72,
0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20,
0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x41, 0x62, 0x6f, 0x72, 0x74, 0x43,
0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x28, 0x29, 0x3b,
0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73,
0x74, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e,
0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x20, 0x2e,
0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x44, 0x65, 0x66, 0x61, 0x75,
0x6c, 0x74, 0x73, 0x2c, 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61,
0x6d, 0x73, 0x2c, 0x20, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x20, 0x7d,
0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72,
0x65, 0x73, 0x70, 0x6f, 0x6e, 0x73, 0x65, 0x20, 0x3d, 0x20, 0x61, 0x77,
0x61, 0x69, 0x74, 0x20, 0x66, 0x65, 0x74, 0x63, 0x68, 0x28, 0x60, 0x24,
0x7b, 0x61, 0x70, 0x69, 0x5f, 0x75, 0x72, 0x6c, 0x7d, 0x2f, 0x63, 0x6f,
0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x60, 0x2c, 0x20, 0x7b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x65, 0x74, 0x68, 0x6f, 0x64, 0x3a,
0x20, 0x27, 0x50, 0x4f, 0x53, 0x54, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x62, 0x6f, 0x64, 0x79, 0x3a, 0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x2e,
0x73, 0x74, 0x72, 0x69, 0x6e, 0x67, 0x69, 0x66, 0x79, 0x28, 0x63, 0x6f,
0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x50, 0x61, 0x72, 0x61,
0x6d, 0x73, 0x29, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x68, 0x65, 0x61,
0x64, 0x65, 0x72, 0x73, 0x3a, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x27, 0x43, 0x6f, 0x6e, 0x6e, 0x65, 0x63, 0x74, 0x69, 0x6f,
0x6e, 0x27, 0x3a, 0x20, 0x27, 0x6b, 0x65, 0x65, 0x70, 0x2d, 0x61, 0x6c,
0x69, 0x76, 0x65, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x27, 0x43, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x2d, 0x54, 0x79, 0x70,
0x65, 0x27, 0x3a, 0x20, 0x27, 0x61, 0x70, 0x70, 0x6c, 0x69, 0x63, 0x61,
0x74, 0x69, 0x6f, 0x6e, 0x2f, 0x6a, 0x73, 0x6f, 0x6e, 0x27, 0x2c, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x27, 0x41, 0x63, 0x63, 0x65, 0x70,
0x74, 0x27, 0x3a, 0x20, 0x27, 0x74, 0x65, 0x78, 0x74, 0x2f, 0x65, 0x76,
0x65, 0x6e, 0x74, 0x2d, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x27, 0x2c,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x2e, 0x2e, 0x28, 0x70,
0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x61, 0x70, 0x69, 0x5f, 0x6b, 0x65,
0x79, 0x20, 0x3f, 0x20, 0x7b, 0x27, 0x41, 0x75, 0x74, 0x68, 0x6f, 0x72,
0x69, 0x7a, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x27, 0x3a, 0x20, 0x60, 0x42,
0x65, 0x61, 0x72, 0x65, 0x72, 0x20, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61,
0x6d, 0x73, 0x2e, 0x61, 0x70, 0x69, 0x5f, 0x6b, 0x65, 0x79, 0x7d, 0x60,
0x7d, 0x20, 0x3a, 0x20, 0x7b, 0x7d, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x7d, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61,
0x6c, 0x3a, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65,
0x72, 0x2e, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x2c, 0x0a, 0x20, 0x20,
0x7d, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
0x20, 0x72, 0x65, 0x61, 0x64, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x72, 0x65,
0x73, 0x70, 0x6f, 0x6e, 0x73, 0x65, 0x2e, 0x62, 0x6f, 0x64, 0x79, 0x2e,
0x67, 0x65, 0x74, 0x52, 0x65, 0x61, 0x64, 0x65, 0x72, 0x28, 0x29, 0x3b,
0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x64, 0x65, 0x63,
0x6f, 0x64, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x54,
0x65, 0x78, 0x74, 0x44, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x72, 0x28, 0x29,
0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e,
0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20,
0x20, 0x6c, 0x65, 0x74, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65,
0x72, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x20, 0x2f, 0x2f, 0x20, 0x42,
0x75, 0x66, 0x66, 0x65, 0x72, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x70, 0x61,
0x72, 0x74, 0x69, 0x61, 0x6c, 0x6c, 0x79, 0x20, 0x72, 0x65, 0x61, 0x64,
0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x0a, 0x0a, 0x20, 0x20, 0x74, 0x72,
0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20,
0x63, 0x6f, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x74, 0x72, 0x75, 0x65, 0x3b,
0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x77, 0x68, 0x69, 0x6c, 0x65, 0x20,
0x28, 0x63, 0x6f, 0x6e, 0x74, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x73,
0x75, 0x6c, 0x74, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20,
0x72, 0x65, 0x61, 0x64, 0x65, 0x72, 0x2e, 0x72, 0x65, 0x61, 0x64, 0x28,
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20,
0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x6f, 0x6e, 0x65,
0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x62, 0x72, 0x65, 0x61, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f,
0x20, 0x41, 0x64, 0x64, 0x20, 0x61, 0x6e, 0x79, 0x20, 0x6c, 0x65, 0x66,
0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x64, 0x61, 0x74, 0x61, 0x20, 0x74,
0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e,
0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x64,
0x61, 0x74, 0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
0x6e, 0x73, 0x74, 0x20, 0x74, 0x65, 0x78, 0x74, 0x20, 0x3d, 0x20, 0x6c,
0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x2b, 0x20, 0x64, 0x65,
0x63, 0x6f, 0x64, 0x65, 0x72, 0x2e, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x65,
0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x76, 0x61, 0x6c, 0x75,
0x65, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f,
0x2f, 0x20, 0x43, 0x68, 0x65, 0x63, 0x6b, 0x20, 0x69, 0x66, 0x20, 0x74,
0x68, 0x65, 0x20, 0x6c, 0x61, 0x73, 0x74, 0x20, 0x63, 0x68, 0x61, 0x72,
0x61, 0x63, 0x74, 0x65, 0x72, 0x20, 0x69, 0x73, 0x20, 0x61, 0x20, 0x6c,
0x69, 0x6e, 0x65, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x6e,
0x64, 0x73, 0x57, 0x69, 0x74, 0x68, 0x4c, 0x69, 0x6e, 0x65, 0x42, 0x72,
0x65, 0x61, 0x6b, 0x20, 0x3d, 0x20, 0x74, 0x65, 0x78, 0x74, 0x2e, 0x65,
0x6e, 0x64, 0x73, 0x57, 0x69, 0x74, 0x68, 0x28, 0x27, 0x5c, 0x6e, 0x27,
0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f,
0x20, 0x53, 0x70, 0x6c, 0x69, 0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x74,
0x65, 0x78, 0x74, 0x20, 0x69, 0x6e, 0x74, 0x6f, 0x20, 0x6c, 0x69, 0x6e,
0x65, 0x73, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74,
0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x20, 0x3d, 0x20, 0x74, 0x65, 0x78,
0x74, 0x2e, 0x73, 0x70, 0x6c, 0x69, 0x74, 0x28, 0x27, 0x5c, 0x6e, 0x27,
0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f,
0x20, 0x49, 0x66, 0x20, 0x74, 0x68, 0x65, 0x20, 0x74, 0x65, 0x78, 0x74,
0x20, 0x64, 0x6f, 0x65, 0x73, 0x6e, 0x27, 0x74, 0x20, 0x65, 0x6e, 0x64,
0x20, 0x77, 0x69, 0x74, 0x68, 0x20, 0x61, 0x20, 0x6c, 0x69, 0x6e, 0x65,
0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x2c, 0x20, 0x74, 0x68, 0x65, 0x6e,
0x20, 0x74, 0x68, 0x65, 0x20, 0x6c, 0x61, 0x73, 0x74, 0x20, 0x6c, 0x69,
0x6e, 0x65, 0x20, 0x69, 0x73, 0x20, 0x69, 0x6e, 0x63, 0x6f, 0x6d, 0x70,
0x6c, 0x65, 0x74, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f,
0x2f, 0x20, 0x53, 0x74, 0x6f, 0x72, 0x65, 0x20, 0x69, 0x74, 0x20, 0x69,
0x6e, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x74,
0x6f, 0x20, 0x62, 0x65, 0x20, 0x61, 0x64, 0x64, 0x65, 0x64, 0x20, 0x74,
0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x6e, 0x65, 0x78, 0x74, 0x20, 0x63,
0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x64, 0x61, 0x74, 0x61,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21,
0x65, 0x6e, 0x64, 0x73, 0x57, 0x69, 0x74, 0x68, 0x4c, 0x69, 0x6e, 0x65,
0x42, 0x72, 0x65, 0x61, 0x6b, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65,
0x72, 0x20, 0x3d, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x2e, 0x70, 0x6f,
0x70, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d,
0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72,
0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x20, 0x2f, 0x2f, 0x20, 0x52, 0x65,
0x73, 0x65, 0x74, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72,
0x20, 0x69, 0x66, 0x20, 0x77, 0x65, 0x20, 0x68, 0x61, 0x76, 0x65, 0x20,
0x61, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b,
0x20, 0x61, 0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x65, 0x6e, 0x64, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x50, 0x61, 0x72, 0x73, 0x65, 0x20,
0x61, 0x6c, 0x6c, 0x20, 0x73, 0x73, 0x65, 0x20, 0x65, 0x76, 0x65, 0x6e,
0x74, 0x73, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x61, 0x64, 0x64, 0x20, 0x74,
0x68, 0x65, 0x6d, 0x20, 0x74, 0x6f, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c,
0x74, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73,
0x74, 0x20, 0x72, 0x65, 0x67, 0x65, 0x78, 0x20, 0x3d, 0x20, 0x2f, 0x5e,
0x28, 0x5c, 0x53, 0x2b, 0x29, 0x3a, 0x5c, 0x73, 0x28, 0x2e, 0x2a, 0x29,
0x24, 0x2f, 0x67, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x66, 0x6f, 0x72, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c,
0x69, 0x6e, 0x65, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73,
0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6d, 0x61, 0x74, 0x63, 0x68, 0x20,
0x3d, 0x20, 0x72, 0x65, 0x67, 0x65, 0x78, 0x2e, 0x65, 0x78, 0x65, 0x63,
0x28, 0x6c, 0x69, 0x6e, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x6d, 0x61, 0x74, 0x63,
0x68, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x5b, 0x6d, 0x61,
0x74, 0x63, 0x68, 0x5b, 0x31, 0x5d, 0x5d, 0x20, 0x3d, 0x20, 0x6d, 0x61,
0x74, 0x63, 0x68, 0x5b, 0x32, 0x5d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x73, 0x69, 0x6e, 0x63,
0x65, 0x20, 0x77, 0x65, 0x20, 0x6b, 0x6e, 0x6f, 0x77, 0x20, 0x74, 0x68,
0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e,
0x63, 0x70, 0x70, 0x2c, 0x20, 0x6c, 0x65, 0x74, 0x27, 0x73, 0x20, 0x6a,
0x75, 0x73, 0x74, 0x20, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x20, 0x74,
0x68, 0x65, 0x20, 0x6a, 0x73, 0x6f, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x64,
0x61, 0x74, 0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74,
0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73,
0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x20, 0x3d, 0x20, 0x4a,
0x53, 0x4f, 0x4e, 0x2e, 0x70, 0x61, 0x72, 0x73, 0x65, 0x28, 0x72, 0x65,
0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x3b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x72,
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63,
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20,
0x79, 0x69, 0x65, 0x6c, 0x64, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x79, 0x69, 0x65, 0x6c, 0x64, 0x20,
0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20,
0x69, 0x66, 0x20, 0x77, 0x65, 0x20, 0x67, 0x6f, 0x74, 0x20, 0x61, 0x20,
0x73, 0x74, 0x6f, 0x70, 0x20, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x20, 0x66,
0x72, 0x6f, 0x6d, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x2c, 0x20,
0x77, 0x65, 0x20, 0x77, 0x69, 0x6c, 0x6c, 0x20, 0x62, 0x72, 0x65, 0x61,
0x6b, 0x20, 0x68, 0x65, 0x72, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72,
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x73,
0x74, 0x6f, 0x70, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20,
0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61,
0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f,
0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69,
0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20,
0x3d, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74,
0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e,
0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x20, 0x3d, 0x20,
0x66, 0x61, 0x6c, 0x73, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x72, 0x65,
0x61, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75,
0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x20, 0x7b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x74, 0x72, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x75,
0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x3d, 0x20, 0x4a,
0x53, 0x4f, 0x4e, 0x2e, 0x70, 0x61, 0x72, 0x73, 0x65, 0x28, 0x72, 0x65,
0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x3b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c,
0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e, 0x6d, 0x65, 0x73, 0x73,
0x61, 0x67, 0x65, 0x2e, 0x69, 0x6e, 0x63, 0x6c, 0x75, 0x64, 0x65, 0x73,
0x28, 0x27, 0x73, 0x6c, 0x6f, 0x74, 0x20, 0x75, 0x6e, 0x61, 0x76, 0x61,
0x69, 0x6c, 0x61, 0x62, 0x6c, 0x65, 0x27, 0x29, 0x29, 0x20, 0x7b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x54, 0x68, 0x72, 0x6f, 0x77,
0x20, 0x61, 0x6e, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x74, 0x6f,
0x20, 0x62, 0x65, 0x20, 0x63, 0x61, 0x75, 0x67, 0x68, 0x74, 0x20, 0x62,
0x79, 0x20, 0x75, 0x70, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x20, 0x63,
0x61, 0x6c, 0x6c, 0x65, 0x72, 0x73, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74,
0x68, 0x72, 0x6f, 0x77, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x45, 0x72, 0x72,
0x6f, 0x72, 0x28, 0x27, 0x73, 0x6c, 0x6f, 0x74, 0x20, 0x75, 0x6e, 0x61,
0x76, 0x61, 0x69, 0x6c, 0x61, 0x62, 0x6c, 0x65, 0x27, 0x29, 0x3b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x7d, 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x65,
0x72, 0x72, 0x6f, 0x72, 0x28, 0x60, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e,
0x63, 0x70, 0x70, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x5b, 0x24,
0x7b, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f,
0x72, 0x2e, 0x63, 0x6f, 0x64, 0x65, 0x7d, 0x20, 0x2d, 0x20, 0x24, 0x7b,
0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72,
0x2e, 0x74, 0x79, 0x70, 0x65, 0x7d, 0x5d, 0x3a, 0x20, 0x24, 0x7b, 0x72,
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e,
0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x7d, 0x60, 0x29, 0x3b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68, 0x28,
0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f,
0x6c, 0x65, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x60, 0x6c, 0x6c,
0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70, 0x70, 0x20, 0x65, 0x72, 0x72, 0x6f,
0x72, 0x20, 0x24, 0x7b, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65,
0x72, 0x72, 0x6f, 0x72, 0x7d, 0x60, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68, 0x20, 0x28, 0x65, 0x29, 0x20,
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x65, 0x2e,
0x6e, 0x61, 0x6d, 0x65, 0x20, 0x21, 0x3d, 0x3d, 0x20, 0x27, 0x41, 0x62,
0x6f, 0x72, 0x74, 0x45, 0x72, 0x72, 0x6f, 0x72, 0x27, 0x29, 0x20, 0x7b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f,
0x6c, 0x65, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x22, 0x6c, 0x6c,
0x61, 0x6d, 0x61, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x3a, 0x20, 0x22,
0x2c, 0x20, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x65, 0x3b,
0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x66, 0x69, 0x6e, 0x61, 0x6c,
0x6c, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e,
0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x61, 0x62, 0x6f, 0x72,
0x74, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20,
0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65,
0x6e, 0x74, 0x3b, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x61,
0x6c, 0x6c, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72, 0x65,
0x74, 0x75, 0x72, 0x6e, 0x20, 0x61, 0x6e, 0x20, 0x65, 0x76, 0x65, 0x6e,
0x74, 0x20, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x74, 0x68, 0x61,
0x74, 0x20, 0x79, 0x6f, 0x75, 0x20, 0x63, 0x61, 0x6e, 0x20, 0x73, 0x75,
0x62, 0x73, 0x63, 0x72, 0x69, 0x62, 0x65, 0x20, 0x74, 0x6f, 0x0a, 0x2f,
0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65,
0x3a, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x69,
0x6d, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x7b, 0x20, 0x6c, 0x6c, 0x61, 0x6d,
0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74,
0x20, 0x7d, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x27, 0x2f, 0x63, 0x6f,
0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x6a, 0x73, 0x27,
0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x6e, 0x20, 0x3d, 0x20, 0x6c,
0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72,
0x67, 0x65, 0x74, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x0a,
0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x6e, 0x2e, 0x61,
0x64, 0x64, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x4c, 0x69, 0x73, 0x74, 0x65,
0x6e, 0x65, 0x72, 0x28, 0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65,
0x22, 0x2c, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x29, 0x20, 0x3d,
0x3e, 0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69,
0x74, 0x65, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x65, 0x74,
0x61, 0x69, 0x6c, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29,
0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x2f, 0x2f,
0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73,
0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e, 0x74,
0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72,
0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73,
0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69,
0x67, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b,
0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x76, 0x65,
0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x6e,
0x65, 0x77, 0x20, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67,
0x65, 0x74, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x28, 0x61, 0x73, 0x79,
0x6e, 0x63, 0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65,
0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28,
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20,
0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x72, 0x6f,
0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c,
0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x29, 0x29, 0x20, 0x7b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68,
0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x20, 0x7b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74,
0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b,
0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e,
0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65,
0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64,
0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74,
0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45,
0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67,
0x65, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c,
0x3a, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61,
0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28,
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x67,
0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65,
0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54,
0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74,
0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20,
0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28,
0x22, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f,
0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20, 0x7b,
0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75,
0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65,
0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69,
0x6e, 0x67, 0x73, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69,
0x66, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74,
0x61, 0x2e, 0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65,
0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73,
0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e,
0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65,
0x6e, 0x74, 0x28, 0x22, 0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x22,
0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20,
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74,
0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54,
0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74,
0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20,
0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28,
0x22, 0x64, 0x6f, 0x6e, 0x65, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65,
0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x7b, 0x20, 0x63, 0x6f, 0x6e, 0x74,
0x65, 0x6e, 0x74, 0x20, 0x7d, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20,
0x20, 0x7d, 0x29, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74,
0x75, 0x72, 0x6e, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72,
0x67, 0x65, 0x74, 0x3b, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43,
0x61, 0x6c, 0x6c, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72,
0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x61, 0x20, 0x70, 0x72, 0x6f, 0x6d,
0x69, 0x73, 0x65, 0x20, 0x74, 0x68, 0x61, 0x74, 0x20, 0x72, 0x65, 0x73,
0x6f, 0x6c, 0x76, 0x65, 0x73, 0x20, 0x74, 0x6f, 0x20, 0x74, 0x68, 0x65,
0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65, 0x64, 0x20, 0x74,
0x65, 0x78, 0x74, 0x2e, 0x20, 0x54, 0x68, 0x69, 0x73, 0x20, 0x64, 0x6f,
0x65, 0x73, 0x20, 0x6e, 0x6f, 0x74, 0x20, 0x73, 0x75, 0x70, 0x70, 0x6f,
0x72, 0x74, 0x20, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x69, 0x6e, 0x67,
0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70,
0x6c, 0x65, 0x3a, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20,
0x20, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69,
0x73, 0x65, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x2e, 0x74,
0x68, 0x65, 0x6e, 0x28, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74,
0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74,
0x2e, 0x77, 0x72, 0x69, 0x74, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65,
0x6e, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d,
0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20,
0x6f, 0x72, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20,
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65,
0x6e, 0x74, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x6c,
0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28,
0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20,
0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e,
0x77, 0x72, 0x69, 0x74, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e,
0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74,
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61,
0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x20, 0x3d, 0x20, 0x28, 0x70,
0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d,
0x73, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66,
0x69, 0x67, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20,
0x7b, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6e,
0x65, 0x77, 0x20, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x61,
0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76,
0x65, 0x2c, 0x20, 0x72, 0x65, 0x6a, 0x65, 0x63, 0x74, 0x29, 0x20, 0x3d,
0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20,
0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22,
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x72, 0x79, 0x20, 0x7b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77,
0x61, 0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63,
0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d,
0x61, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61,
0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67,
0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20,
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63,
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65,
0x73, 0x6f, 0x6c, 0x76, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e,
0x74, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61,
0x74, 0x63, 0x68, 0x20, 0x28, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x20,
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x6a, 0x65,
0x63, 0x74, 0x28, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x3b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x7d,
0x3b, 0x0a, 0x0a, 0x2f, 0x2a, 0x2a, 0x0a, 0x20, 0x2a, 0x20, 0x28, 0x64,
0x65, 0x70, 0x72, 0x65, 0x63, 0x61, 0x74, 0x65, 0x64, 0x29, 0x0a, 0x20,
0x2a, 0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f,
0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x43, 0x6f, 0x6d,
0x70, 0x6c, 0x65, 0x74, 0x65, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e,
0x63, 0x20, 0x28, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63,
0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2c, 0x20, 0x63,
0x61, 0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20,
0x7b, 0x0a, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69,
0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75,
0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28,
0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x6d, 0x70,
0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x7b,
0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20,
0x7d, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x61,
0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b,
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f,
0x20, 0x47, 0x65, 0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x6d, 0x6f, 0x64,
0x65, 0x6c, 0x20, 0x69, 0x6e, 0x66, 0x6f, 0x20, 0x66, 0x72, 0x6f, 0x6d,
0x20, 0x74, 0x68, 0x65, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x2e,
0x20, 0x54, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x75, 0x73, 0x65,
0x66, 0x75, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x67, 0x65, 0x74, 0x74,
0x69, 0x6e, 0x67, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6e, 0x74,
0x65, 0x78, 0x74, 0x20, 0x77, 0x69, 0x6e, 0x64, 0x6f, 0x77, 0x20, 0x61,
0x6e, 0x64, 0x20, 0x73, 0x6f, 0x20, 0x6f, 0x6e, 0x2e, 0x0a, 0x65, 0x78,
0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c,
0x6c, 0x61, 0x6d, 0x61, 0x4d, 0x6f, 0x64, 0x65, 0x6c, 0x49, 0x6e, 0x66,
0x6f, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x63,
0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x29, 0x20,
0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21,
0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73,
0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x61, 0x70, 0x69,
0x5f, 0x75, 0x72, 0x6c, 0x20, 0x3d, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69,
0x67, 0x2e, 0x61, 0x70, 0x69, 0x5f, 0x75, 0x72, 0x6c, 0x20, 0x7c, 0x7c,
0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e,
0x73, 0x74, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x20, 0x3d, 0x20, 0x61,
0x77, 0x61, 0x69, 0x74, 0x20, 0x66, 0x65, 0x74, 0x63, 0x68, 0x28, 0x60,
0x24, 0x7b, 0x61, 0x70, 0x69, 0x5f, 0x75, 0x72, 0x6c, 0x7d, 0x2f, 0x70,
0x72, 0x6f, 0x70, 0x73, 0x60, 0x29, 0x2e, 0x74, 0x68, 0x65, 0x6e, 0x28,
0x72, 0x20, 0x3d, 0x3e, 0x20, 0x72, 0x2e, 0x6a, 0x73, 0x6f, 0x6e, 0x28,
0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x67, 0x65, 0x6e, 0x65,
0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69,
0x6e, 0x67, 0x73, 0x20, 0x3d, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x2e,
0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x5f, 0x67, 0x65, 0x6e, 0x65,
0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69,
0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x72,
0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61,
0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67,
0x73, 0x3b, 0x0a, 0x7d, 0x0a
};
unsigned int completion_js_len = 5909;

View File

@ -8,13 +8,3 @@ PUBLIC=$DIR/public
echo "download js bundle files" echo "download js bundle files"
curl https://npm.reversehttp.com/@preact/signals-core,@preact/signals,htm/preact,preact,preact/hooks > $PUBLIC/index.js curl https://npm.reversehttp.com/@preact/signals-core,@preact/signals,htm/preact,preact,preact/hooks > $PUBLIC/index.js
echo >> $PUBLIC/index.js # add newline echo >> $PUBLIC/index.js # add newline
FILES=$(ls $PUBLIC)
cd $PUBLIC
for FILE in $FILES; do
echo "generate $FILE.hpp"
# use simple flag for old version of xxd
xxd -i $FILE > $DIR/$FILE.hpp
done

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -881,11 +881,11 @@
.replace(/&/g, '&amp;') .replace(/&/g, '&amp;')
.replace(/</g, '&lt;') .replace(/</g, '&lt;')
.replace(/>/g, '&gt;') .replace(/>/g, '&gt;')
.replace(/^#{1,6} (.*)$/gim, '<h3>$1</h3>') .replace(/(^|\n)#{1,6} ([^\n]*)(?=([^`]*`[^`]*`)*[^`]*$)/g, '$1<h3>$2</h3>')
.replace(/\*\*(.*?)\*\*/g, '<strong>$1</strong>') .replace(/\*\*(.*?)\*\*(?=([^`]*`[^`]*`)*[^`]*$)/g, '<strong>$1</strong>')
.replace(/__(.*?)__/g, '<strong>$1</strong>') .replace(/__(.*?)__(?=([^`]*`[^`]*`)*[^`]*$)/g, '<strong>$1</strong>')
.replace(/\*(.*?)\*/g, '<em>$1</em>') .replace(/\*(.*?)\*(?=([^`]*`[^`]*`)*[^`]*$)/g, '<em>$1</em>')
.replace(/_(.*?)_/g, '<em>$1</em>') .replace(/_(.*?)_(?=([^`]*`[^`]*`)*[^`]*$)/g, '<em>$1</em>')
.replace(/```.*?\n([\s\S]*?)```/g, '<pre><code>$1</code></pre>') .replace(/```.*?\n([\s\S]*?)```/g, '<pre><code>$1</code></pre>')
.replace(/`(.*?)`/g, '<code>$1</code>') .replace(/`(.*?)`/g, '<code>$1</code>')
.replace(/\n/gim, '<br />'); .replace(/\n/gim, '<br />');

File diff suppressed because one or more lines are too long

View File

@ -1,33 +1,95 @@
// WARNING: This file was ported from json-schema-to-grammar.py, please fix bugs / add features there first. // WARNING: This file was ported from json_schema_to_grammar.py, please fix bugs / add features there first.
const SPACE_RULE = '" "?'; const SPACE_RULE = '" "?';
function _buildRepetition(itemRule, minItems, maxItems, opts={}) {
const separatorRule = opts.separatorRule ?? '';
const itemRuleIsLiteral = opts.itemRuleIsLiteral ?? false
if (separatorRule === '') {
if (minItems === 0 && maxItems === 1) {
return `${itemRule}?`;
} else if (minItems === 1 && maxItems === undefined) {
return `${itemRule}+`;
}
}
let result = '';
if (minItems > 0) {
if (itemRuleIsLiteral && separatorRule === '') {
result = `"${itemRule.slice(1, -1).repeat(minItems)}"`;
} else {
result = Array.from({ length: minItems }, () => itemRule)
.join(separatorRule !== '' ? ` ${separatorRule} ` : ' ');
}
}
const optRepetitions = (upToN, prefixWithSep=false) => {
const content = separatorRule !== '' && prefixWithSep ? `${separatorRule} ${itemRule}` : itemRule;
if (upToN === 0) {
return '';
} else if (upToN === 1) {
return `(${content})?`;
} else if (separatorRule !== '' && !prefixWithSep) {
return `(${content} ${optRepetitions(upToN - 1, true)})?`;
} else {
return Array.from({ length: upToN }, () => `(${content}`).join(' ').trim() + Array.from({ length: upToN }, () => ')?').join('');
}
};
if (minItems > 0 && maxItems !== minItems) {
result += ' ';
}
if (maxItems !== undefined) {
result += optRepetitions(maxItems - minItems, minItems > 0);
} else {
const itemOperator = `(${separatorRule !== '' ? separatorRule + ' ' : ''}${itemRule})`;
if (minItems === 0 && separatorRule !== '') {
result = `(${itemRule} ${itemOperator}*)?`;
} else {
result += `${itemOperator}*`;
}
}
return result;
}
class BuiltinRule {
constructor(content, deps) {
this.content = content;
this.deps = deps || [];
}
}
const UP_TO_15_DIGITS = _buildRepetition('[0-9]', 0, 15);
const PRIMITIVE_RULES = { const PRIMITIVE_RULES = {
boolean: '("true" | "false") space', boolean : new BuiltinRule('("true" | "false") space', []),
number: '("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? space', 'decimal-part' : new BuiltinRule('[0-9] ' + UP_TO_15_DIGITS, []),
integer: '("-"? ([0-9] | [1-9] [0-9]*)) space', 'integral-part': new BuiltinRule('[0-9] | [1-9] ' + UP_TO_15_DIGITS, []),
value: 'object | array | string | number | boolean', number : new BuiltinRule('("-"? integral-part) ("." decimal-part)? ([eE] [-+]? integral-part)? space', ['integral-part', 'decimal-part']),
object: '"{" space ( string ":" space value ("," space string ":" space value)* )? "}" space', integer : new BuiltinRule('("-"? integral-part) space', ['integral-part']),
array: '"[" space ( value ("," space value)* )? "]" space', value : new BuiltinRule('object | array | string | number | boolean | null', ['object', 'array', 'string', 'number', 'boolean', 'null']),
uuid: '"\\"" ' + [8, 4, 4, 4, 12].map(n => [...new Array(n)].map(_ => '[0-9a-fA-F]').join('')).join(' "-" ') + ' "\\"" space', object : new BuiltinRule('"{" space ( string ":" space value ("," space string ":" space value)* )? "}" space', ['string', 'value']),
string: ` "\\"" ( array : new BuiltinRule('"[" space ( value ("," space value)* )? "]" space', ['value']),
[^"\\\\] | uuid : new BuiltinRule('"\\"" ' + [8, 4, 4, 4, 12].map(n => [...new Array(n)].map(_ => '[0-9a-fA-F]').join('')).join(' "-" ') + ' "\\"" space', []),
"\\\\" (["\\\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]) char : new BuiltinRule(`[^"\\\\] | "\\\\" (["\\\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])`, []),
)* "\\"" space`, string : new BuiltinRule(`"\\"" char* "\\"" space`, ['char']),
null: '"null" space', null : new BuiltinRule('"null" space', []),
}; };
const OBJECT_RULE_NAMES = ['object', 'array', 'string', 'number', 'boolean', 'null', 'value'];
// TODO: support "uri", "email" string formats // TODO: support "uri", "email" string formats
const DATE_RULES = { const STRING_FORMAT_RULES = {
'date' : '[0-9] [0-9] [0-9] [0-9] "-" ( "0" [1-9] | "1" [0-2] ) "-" ( \"0\" [1-9] | [1-2] [0-9] | "3" [0-1] )', 'date' : new BuiltinRule('[0-9] [0-9] [0-9] [0-9] "-" ( "0" [1-9] | "1" [0-2] ) "-" ( \"0\" [1-9] | [1-2] [0-9] | "3" [0-1] )', []),
'time' : '([01] [0-9] | "2" [0-3]) ":" [0-5] [0-9] ":" [0-5] [0-9] ( "." [0-9] [0-9] [0-9] )? ( "Z" | ( "+" | "-" ) ( [01] [0-9] | "2" [0-3] ) ":" [0-5] [0-9] )', 'time' : new BuiltinRule('([01] [0-9] | "2" [0-3]) ":" [0-5] [0-9] ":" [0-5] [0-9] ( "." [0-9] [0-9] [0-9] )? ( "Z" | ( "+" | "-" ) ( [01] [0-9] | "2" [0-3] ) ":" [0-5] [0-9] )', []),
'date-time': 'date "T" time', 'date-time' : new BuiltinRule('date "T" time', ['date', 'time']),
'date-string': '"\\"" date "\\"" space', 'date-string' : new BuiltinRule('"\\"" date "\\"" space', ['date']),
'time-string': '"\\"" time "\\"" space', 'time-string' : new BuiltinRule('"\\"" time "\\"" space', ['time']),
'date-time-string': '"\\"" date-time "\\"" space', 'date-time-string': new BuiltinRule('"\\"" date-time "\\"" space', ['date-time']),
}; }
const RESERVED_NAMES = {'root': true, ...PRIMITIVE_RULES, ...DATE_RULES}; const RESERVED_NAMES = {'root': true, ...PRIMITIVE_RULES, ...STRING_FORMAT_RULES};
const INVALID_RULE_CHARS_RE = /[^\dA-Za-z-]+/g; const INVALID_RULE_CHARS_RE = /[^\dA-Za-z-]+/g;
const GRAMMAR_LITERAL_ESCAPE_RE = /[\n\r"]/g; const GRAMMAR_LITERAL_ESCAPE_RE = /[\n\r"]/g;
@ -158,7 +220,7 @@ export class SchemaConverter {
rule = '[\\U00000000-\\U0010FFFF]'; rule = '[\\U00000000-\\U0010FFFF]';
} else { } else {
// Accept any character... except \n and \r line break chars (\x0A and \xOD) // Accept any character... except \n and \r line break chars (\x0A and \xOD)
rule = '[\\U00000000-\\x09\\x0B\\x0C\\x0E-\\U0010FFFF]'; rule = '[^\\x0A\\x0D]';
} }
return this._addRule('dot', rule); return this._addRule('dot', rule);
}; };
@ -259,13 +321,6 @@ export class SchemaConverter {
let [sub, subIsLiteral] = seq[seq.length - 1]; let [sub, subIsLiteral] = seq[seq.length - 1];
if (minTimes === 0 && maxTimes === Infinity) {
seq[seq.length - 1] = [`${sub}*`, false];
} else if (minTimes === 0 && maxTimes === 1) {
seq[seq.length - 1] = [`${sub}?`, false];
} else if (minTimes === 1 && maxTimes === Infinity) {
seq[seq.length - 1] = [`${sub}+`, false];
} else {
if (!subIsLiteral) { if (!subIsLiteral) {
let id = subRuleIds[sub]; let id = subRuleIds[sub];
if (id === undefined) { if (id === undefined) {
@ -275,10 +330,10 @@ export class SchemaConverter {
sub = id; sub = id;
} }
const repeatedSub = Array.from({ length: minTimes }, () => subIsLiteral ? `"${sub.slice(1, -1).repeat(minTimes)}"` : sub); seq[seq.length - 1] = [
const optionalSub = maxTimes !== undefined ? Array.from({ length: maxTimes - minTimes }, () => `${sub}?`) : [`${sub}*`]; _buildRepetition(subIsLiteral ? `"${sub}"` : sub, minTimes, maxTimes, {itemRuleIsLiteral: subIsLiteral}),
seq[seq.length - 1] = [repeatedSub.concat(optionalSub).join(' '), false]; false
} ];
} else { } else {
let literal = ''; let literal = '';
while (i < length) { while (i < length) {
@ -394,49 +449,50 @@ export class SchemaConverter {
); );
} else { } else {
const itemRuleName = this.visit(items, `${name ?? ''}${name ? '-' : ''}item`); const itemRuleName = this.visit(items, `${name ?? ''}${name ? '-' : ''}item`);
const listItemOperator = `( "," space ${itemRuleName} )`; const minItems = schema.minItems || 0;
let successiveItems = '';
let minItems = schema.minItems || 0;
const maxItems = schema.maxItems; const maxItems = schema.maxItems;
if (minItems > 0) { return this._addRule(ruleName, '"[" space ' + _buildRepetition(itemRuleName, minItems, maxItems, {separatorRule: '"," space'}) + ' "]" space');
successiveItems = listItemOperator.repeat(minItems - 1);
minItems--;
}
if (maxItems !== undefined && maxItems > minItems) {
successiveItems += `${listItemOperator}?`.repeat(maxItems - minItems - 1);
} else {
successiveItems += `${listItemOperator}*`;
}
const rule = minItems === 0
? `"[" space ( ${itemRuleName} ${successiveItems} )? "]" space`
: `"[" space ${itemRuleName} ${successiveItems} "]" space`;
return this._addRule(ruleName, rule);
} }
} else if ((schemaType === undefined || schemaType === 'string') && 'pattern' in schema) { } else if ((schemaType === undefined || schemaType === 'string') && 'pattern' in schema) {
return this._visitPattern(schema.pattern, ruleName); return this._visitPattern(schema.pattern, ruleName);
} else if ((schemaType === undefined || schemaType === 'string') && /^uuid[1-5]?$/.test(schema.format || '')) { } else if ((schemaType === undefined || schemaType === 'string') && /^uuid[1-5]?$/.test(schema.format || '')) {
return this._addRule( return this._addPrimitive(
ruleName === 'root' ? 'root' : schemaFormat, ruleName === 'root' ? 'root' : schemaFormat,
PRIMITIVE_RULES['uuid']) PRIMITIVE_RULES['uuid']
} else if ((schemaType === undefined || schemaType === 'string') && schema.format in DATE_RULES) { );
for (const [t, r] of Object.entries(DATE_RULES)) { } else if ((schemaType === undefined || schemaType === 'string') && `${schema.format}-string` in STRING_FORMAT_RULES) {
this._addRule(t, r); const primName = `${schema.format}-string`
} return this._addRule(ruleName, this._addPrimitive(primName, STRING_FORMAT_RULES[primName]));
return schemaFormat + '-string'; } else if (schemaType === 'string' && ('minLength' in schema || 'maxLength' in schema)) {
const charRuleName = this._addPrimitive('char', PRIMITIVE_RULES['char']);
const minLen = schema.minLength || 0;
const maxLen = schema.maxLength;
return this._addRule(ruleName, '"\\\"" ' + _buildRepetition(charRuleName, minLen, maxLen) + ' "\\\"" space');
} else if ((schemaType === 'object') || (Object.keys(schema).length === 0)) { } else if ((schemaType === 'object') || (Object.keys(schema).length === 0)) {
for (const n of OBJECT_RULE_NAMES) { return this._addRule(ruleName, this._addPrimitive('object', PRIMITIVE_RULES['object']));
this._addRule(n, PRIMITIVE_RULES[n]);
}
return this._addRule(ruleName, 'object');
} else { } else {
if (!(schemaType in PRIMITIVE_RULES)) { if (!(schemaType in PRIMITIVE_RULES)) {
throw new Error(`Unrecognized schema: ${JSON.stringify(schema)}`); throw new Error(`Unrecognized schema: ${JSON.stringify(schema)}`);
} }
// TODO: support minimum, maximum, exclusiveMinimum, exclusiveMaximum at least for zero // TODO: support minimum, maximum, exclusiveMinimum, exclusiveMaximum at least for zero
return this._addRule(ruleName === 'root' ? 'root' : schemaType, PRIMITIVE_RULES[schemaType]); return this._addPrimitive(ruleName === 'root' ? 'root' : schemaType, PRIMITIVE_RULES[schemaType]);
} }
} }
_addPrimitive(name, rule) {
let n = this._addRule(name, rule.content);
for (const dep of rule.deps) {
const depRule = PRIMITIVE_RULES[dep] || STRING_FORMAT_RULES[dep];
if (!depRule) {
throw new Error(`Rule ${dep} not known`);
}
if (!(dep in this._rules)) {
this._addPrimitive(dep, depRule);
}
}
return n;
}
_buildObjectRule(properties, required, name, additionalProperties) { _buildObjectRule(properties, required, name, additionalProperties) {
const propOrder = this._propOrder; const propOrder = this._propOrder;
// sort by position in prop_order (if specified) then by original order // sort by position in prop_order (if specified) then by original order
@ -462,7 +518,7 @@ export class SchemaConverter {
const valueRule = this.visit(additionalProperties === true ? {} : additionalProperties, `${subName}-value`); const valueRule = this.visit(additionalProperties === true ? {} : additionalProperties, `${subName}-value`);
propKvRuleNames['*'] = this._addRule( propKvRuleNames['*'] = this._addRule(
`${subName}-kv`, `${subName}-kv`,
`${this._addRule('string', PRIMITIVE_RULES['string'])} ":" space ${valueRule}`); `${this._addPrimitive('string', PRIMITIVE_RULES['string'])} ":" space ${valueRule}`);
optionalProps.push('*'); optionalProps.push('*');
} }

View File

@ -854,12 +854,12 @@ struct server_context {
slot.sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl); slot.sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
slot.params.n_keep = json_value(data, "n_keep", slot.params.n_keep); slot.params.n_keep = json_value(data, "n_keep", slot.params.n_keep);
slot.params.n_discard = json_value(data, "n_discard", default_params.n_discard); slot.params.n_discard = json_value(data, "n_discard", default_params.n_discard);
slot.params.seed = json_value(data, "seed", default_params.seed); slot.sparams.seed = json_value(data, "seed", default_sparams.seed);
slot.sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs); slot.sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
slot.sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep); slot.sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
// process "json_schema" and "grammar" // process "json_schema" and "grammar"
if (data.contains("json_schema") && data.contains("grammar")) { if (data.contains("json_schema") && !data["json_schema"].is_null() && data.contains("grammar") && !data["grammar"].is_null()) {
send_error(task, "Either \"json_schema\" or \"grammar\" can be specified, but not both", ERROR_TYPE_INVALID_REQUEST); send_error(task, "Either \"json_schema\" or \"grammar\" can be specified, but not both", ERROR_TYPE_INVALID_REQUEST);
return false; return false;
} else if (data.contains("json_schema") && !data.contains("grammar")) { } else if (data.contains("json_schema") && !data.contains("grammar")) {
@ -1028,7 +1028,6 @@ struct server_context {
send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST); send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
return false; return false;
} }
llama_set_rng_seed(ctx, slot.params.seed);
} }
slot.command = SLOT_COMMAND_LOAD_PROMPT; slot.command = SLOT_COMMAND_LOAD_PROMPT;
@ -1083,7 +1082,7 @@ struct server_context {
}; };
if (llama_decode(ctx, batch_view) != 0) { if (llama_decode(ctx, batch_view) != 0) {
LOG_TEE("%s: llama_decode() failed\n", __func__); LOG_ERROR("llama_decode() failed", {});
return; return;
} }
} }
@ -1118,7 +1117,7 @@ struct server_context {
bool process_token(completion_token_output & result, server_slot & slot) { bool process_token(completion_token_output & result, server_slot & slot) {
// remember which tokens were sampled - used for repetition penalties during sampling // remember which tokens were sampled - used for repetition penalties during sampling
const std::string token_str = llama_token_to_piece(ctx, result.tok); const std::string token_str = llama_token_to_piece(ctx, result.tok, false);
slot.sampled = result.tok; slot.sampled = result.tok;
// search stop word and delete it // search stop word and delete it
@ -1201,13 +1200,34 @@ struct server_context {
}); });
} }
if (result.tok == llama_token_eos(model)) { if (llama_token_is_eog(model, result.tok)) {
slot.stopped_eos = true; slot.stopped_eos = true;
slot.has_next_token = false; slot.has_next_token = false;
LOG_VERBOSE("eos token found", {}); LOG_VERBOSE("eos token found", {});
} }
auto n_ctx_train = llama_n_ctx_train(model);
if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.ga_n == 1
&& slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
LOG_WARNING("n_predict is not set and self-context extend is disabled."
" Limiting generated tokens to n_ctx_train to avoid EOS-less generation infinite loop", {
{ "id_slot", slot.id },
{ "params.n_predict", slot.params.n_predict },
{ "slot.n_prompt_tokens", slot.n_prompt_tokens },
{ "slot.n_decoded", slot.n_decoded },
{ "slot.n_predict", slot.n_predict },
{ "n_slots", params.n_parallel },
{ "slot.n_ctx", slot.n_ctx },
{ "n_ctx", n_ctx },
{ "n_ctx_train", n_ctx_train },
{ "ga_n", slot.ga_n },
});
slot.truncated = true;
slot.stopped_limit = true;
slot.has_next_token = false; // stop prediction
}
LOG_VERBOSE("next token", { LOG_VERBOSE("next token", {
{"id_slot", slot.id}, {"id_slot", slot.id},
{"id_task", slot.id_task}, {"id_task", slot.id_task},
@ -1281,7 +1301,11 @@ struct server_context {
} }
void send_error(const int id_task, const int id_multi, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) { void send_error(const int id_task, const int id_multi, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
LOG_TEE("task %i - error: %s\n", id_task, error.c_str()); LOG_ERROR("task error", {
{"id_multi", id_multi},
{"id_task", id_task},
{"error", error},
});
server_task_result res; server_task_result res;
res.id = id_task; res.id = id_task;
@ -2138,7 +2162,7 @@ struct server_context {
}); });
// process the created batch of tokens // process the created batch of tokens
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) { for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i); const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
for (auto & slot : slots) { for (auto & slot : slots) {
@ -2186,7 +2210,11 @@ struct server_context {
if (ret != 0) { if (ret != 0) {
if (n_batch == 1 || ret < 0) { if (n_batch == 1 || ret < 0) {
// if you get here, it means the KV cache is full - try increasing it via the context size // if you get here, it means the KV cache is full - try increasing it via the context size
LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret); LOG_ERROR("failed to decode the batch: KV cache is full - try increasing it via the context size", {
{"i", i},
{"n_batch", ret},
{"ret", ret},
});
for (auto & slot : slots) { for (auto & slot : slots) {
slot.state = SLOT_STATE_PROCESSING; slot.state = SLOT_STATE_PROCESSING;
slot.command = SLOT_COMMAND_NONE; slot.command = SLOT_COMMAND_NONE;
@ -2196,12 +2224,16 @@ struct server_context {
break; // break loop of n_batch break; // break loop of n_batch
} }
LOG_TEE("%s : failed to find free space in the KV cache, retrying with smaller n_batch = %d\n", __func__, n_batch / 2);
// retry with half the batch size to try to find a free slot in the KV cache // retry with half the batch size to try to find a free slot in the KV cache
n_batch /= 2; n_batch /= 2;
i -= n_batch; i -= n_batch;
LOG_WARNING("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation", {
{"i", i},
{"n_batch", n_batch},
{"ret", ret},
});
continue; // continue loop of n_batch continue; // continue loop of n_batch
} }
@ -2360,7 +2392,7 @@ static void server_print_usage(const char * argv0, const gpt_params & params, co
printf(" -n, --n-predict maximum tokens to predict (default: %d)\n", params.n_predict); printf(" -n, --n-predict maximum tokens to predict (default: %d)\n", params.n_predict);
printf(" --override-kv KEY=TYPE:VALUE\n"); printf(" --override-kv KEY=TYPE:VALUE\n");
printf(" advanced option to override model metadata by key. may be specified multiple times.\n"); printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n"); printf(" types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
printf(" -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`\n"); printf(" -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`\n");
printf(" -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`\n"); printf(" -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`\n");
printf(" --chat-template JINJA_TEMPLATE\n"); printf(" --chat-template JINJA_TEMPLATE\n");
@ -2791,43 +2823,11 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams,
invalid_param = true; invalid_param = true;
break; break;
} }
char * sep = strchr(argv[i], '='); if (!parse_kv_override(argv[i], params.kv_overrides)) {
if (sep == nullptr || sep - argv[i] >= 128) {
fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
invalid_param = true;
break;
}
struct llama_model_kv_override kvo;
std::strncpy(kvo.key, argv[i], sep - argv[i]);
kvo.key[sep - argv[i]] = 0;
sep++;
if (strncmp(sep, "int:", 4) == 0) {
sep += 4;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
kvo.int_value = std::atol(sep);
} else if (strncmp(sep, "float:", 6) == 0) {
sep += 6;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
kvo.float_value = std::atof(sep);
} else if (strncmp(sep, "bool:", 5) == 0) {
sep += 5;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
if (std::strcmp(sep, "true") == 0) {
kvo.bool_value = true;
} else if (std::strcmp(sep, "false") == 0) {
kvo.bool_value = false;
} else {
fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
invalid_param = true;
break;
}
} else {
fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]); fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
invalid_param = true; invalid_param = true;
break; break;
} }
params.kv_overrides.push_back(kvo);
} else { } else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
server_print_usage(argv[0], default_params, default_sparams); server_print_usage(argv[0], default_params, default_sparams);

View File

@ -29,7 +29,7 @@ To mitigate it, you can increase values in `n_predict`, `kv_size`.
cd ../../.. cd ../../..
mkdir build mkdir build
cd build cd build
cmake ../ cmake -DLLAMA_CURL=ON ../
cmake --build . --target server cmake --build . --target server
``` ```

View File

@ -0,0 +1,57 @@
@llama.cpp
@results
Feature: Results
Background: Server startup
Given a server listening on localhost:8080
And a model file tinyllamas/split/stories15M-00001-of-00003.gguf from HF repo ggml-org/models
And a model file test-model-00001-of-00003.gguf
And 128 as batch size
And 256 KV cache size
And 128 max tokens to predict
Scenario Outline: Multi users completion
Given <n_slots> slots
And continuous batching
Then the server is starting
Then the server is healthy
Given 42 as seed
And a prompt:
"""
Write a very long story about AI.
"""
Given 42 as seed
And a prompt:
"""
Write a very long story about AI.
"""
Given 42 as seed
And a prompt:
"""
Write a very long story about AI.
"""
Given 42 as seed
And a prompt:
"""
Write a very long story about AI.
"""
Given 42 as seed
And a prompt:
"""
Write a very long story about AI.
"""
Given concurrent completion requests
Then the server is busy
Then the server is idle
And all slots are idle
Then all predictions are equal
Examples:
| n_slots |
| 1 |
| 2 |

View File

@ -61,6 +61,7 @@ def step_server_config(context, server_fqdn, server_port):
context.server_metrics = False context.server_metrics = False
context.server_process = None context.server_process = None
context.seed = None context.seed = None
context.draft = None
context.server_seed = None context.server_seed = None
context.user_api_key = None context.user_api_key = None
context.response_format = None context.response_format = None
@ -107,6 +108,11 @@ def step_n_gpu_layer(context, ngl):
context.n_gpu_layer = ngl context.n_gpu_layer = ngl
@step('{draft:d} as draft')
def step_draft(context, draft):
context.draft = draft
@step('{n_ctx:d} KV cache size') @step('{n_ctx:d} KV cache size')
def step_n_ctx(context, n_ctx): def step_n_ctx(context, n_ctx):
context.n_ctx = n_ctx context.n_ctx = n_ctx
@ -254,6 +260,15 @@ def step_n_tokens_predicted(context, predicted_n):
assert_n_tokens_predicted(context.completion, predicted_n) assert_n_tokens_predicted(context.completion, predicted_n)
@step('all predictions are equal')
@async_run_until_complete
async def step_predictions_equal(context):
n_completions = await gather_tasks_results(context)
assert n_completions >= 2, "need at least 2 completions"
assert_all_predictions_equal(context.tasks_result)
context.tasks_result = []
@step('the completion is truncated') @step('the completion is truncated')
def step_assert_completion_truncated(context): def step_assert_completion_truncated(context):
step_assert_completion_truncated(context, '') step_assert_completion_truncated(context, '')
@ -1020,6 +1035,23 @@ def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re
assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:' assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:'
f' {n_predicted} <> {expected_predicted_n}') f' {n_predicted} <> {expected_predicted_n}')
def assert_all_predictions_equal(completion_responses):
content_0 = completion_responses[0]['content']
if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
print(f"content 0: {content_0}")
i = 1
for response in completion_responses[1:]:
content = response['content']
if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
print(f"content {i}: {content}")
assert content == content_0, "contents not equal"
i += 1
async def gather_tasks_results(context): async def gather_tasks_results(context):
n_tasks = len(context.concurrent_tasks) n_tasks = len(context.concurrent_tasks)
@ -1148,6 +1180,8 @@ def start_server_background(context):
server_args.extend(['--ubatch-size', context.n_ubatch]) server_args.extend(['--ubatch-size', context.n_ubatch])
if context.n_gpu_layer: if context.n_gpu_layer:
server_args.extend(['--n-gpu-layers', context.n_gpu_layer]) server_args.extend(['--n-gpu-layers', context.n_gpu_layer])
if context.draft is not None:
server_args.extend(['--draft', context.draft])
if context.server_continuous_batching: if context.server_continuous_batching:
server_args.append('--cont-batching') server_args.append('--cont-batching')
if context.server_embeddings: if context.server_embeddings:

View File

@ -9,4 +9,3 @@ then
else else
behave "$@" behave "$@"
fi fi

View File

@ -381,10 +381,6 @@ static json oaicompat_completion_params_parse(
} else { } else {
llama_params["stop"] = json_value(body, "stop", json::array()); llama_params["stop"] = json_value(body, "stop", json::array());
} }
// Some chat templates don't use EOS token to stop generation
// We must add their end sequences to list of stop words
llama_params["stop"].push_back("<|im_end|>"); // chatml
llama_params["stop"].push_back("<end_of_turn>"); // gemma
// Handle "response_format" field // Handle "response_format" field
if (body.contains("response_format")) { if (body.contains("response_format")) {

View File

@ -133,8 +133,8 @@ int main(int argc, char ** argv) {
// sample the most likely token // sample the most likely token
const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p); const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
// is it an end of stream? // is it an end of generation?
if (new_token_id == llama_token_eos(model) || n_cur == n_len) { if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
LOG_TEE("\n"); LOG_TEE("\n");
break; break;

View File

@ -360,7 +360,7 @@ int main(int argc, char ** argv) {
} }
} }
if (token_id == llama_token_eos(model_tgt)) { if (llama_token_is_eog(model_tgt, token_id)) {
has_eos = true; has_eos = true;
} }
++n_predict; ++n_predict;

View File

@ -20,4 +20,4 @@ cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
#cmake --build . --config Release --target llama-bench #cmake --build . --config Release --target llama-bench
#build all binary #build all binary
cmake --build . --config Release -v cmake --build . --config Release -j -v

View File

@ -12,6 +12,7 @@ if [ $# -gt 0 ]; then
GGML_SYCL_SINGLE_GPU=1 GGML_SYCL_SINGLE_GPU=1
else else
GGML_SYCL_DEVICE=0 GGML_SYCL_DEVICE=0
GGML_SYCL_SINGLE_GPU=0
fi fi
#export GGML_SYCL_DEBUG=1 #export GGML_SYCL_DEBUG=1

View File

@ -73,6 +73,7 @@ struct my_llama_model {
static const char * LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model"; static const char * LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model";
static const char * LLM_KV_TRAINING_TYPE = "training.type"; static const char * LLM_KV_TRAINING_TYPE = "training.type";
static const char * LLM_KV_GENERAL_NAME = "general.name";
static const char * LLM_KV_GENERAL_ARCHITECTURE = "general.architecture"; static const char * LLM_KV_GENERAL_ARCHITECTURE = "general.architecture";
static const char * LLM_KV_GENERAL_FILE_TYPE = "general.file_type"; static const char * LLM_KV_GENERAL_FILE_TYPE = "general.file_type";
@ -529,6 +530,7 @@ static void load_llama_model_gguf(struct gguf_context * fctx, struct ggml_contex
static void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model) { static void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model) {
const char * arch = "llama"; const char * arch = "llama";
enum llama_ftype ftype = LLAMA_FTYPE_ALL_F32; enum llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
std::vector<char> keybuf; std::vector<char> keybuf;
@ -540,6 +542,7 @@ static void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vo
// set arch // set arch
gguf_set_val_str(fctx, LLM_KV_GENERAL_ARCHITECTURE, arch); gguf_set_val_str(fctx, LLM_KV_GENERAL_ARCHITECTURE, arch);
gguf_set_val_str(fctx, LLM_KV_GENERAL_NAME, arch);
gguf_set_val_u32(fctx, LLM_KV_GENERAL_FILE_TYPE, ftype); gguf_set_val_u32(fctx, LLM_KV_GENERAL_FILE_TYPE, ftype);
// set hparams // set hparams

View File

@ -1,7 +1,7 @@
#!/bin/bash #!/bin/bash
# #
# ./examples/ts-type-to-grammar.sh "{a:string,b:string,c?:string}" # ./examples/ts-type-to-grammar.sh "{a:string,b:string,c?:string}"
# python examples/json-schema-to-grammar.py https://json.schemastore.org/tsconfig.json # python examples/json_schema_to_grammar.py https://json.schemastore.org/tsconfig.json
# #
set -euo pipefail set -euo pipefail
@ -25,4 +25,4 @@ npx ts-json-schema-generator --unstable --no-top-ref --path "$DTS_FILE" --type M
# https://github.com/YousefED/typescript-json-schema # https://github.com/YousefED/typescript-json-schema
# npx typescript-json-schema --defaultProps --required "$DTS_FILE" MyType | tee "$SCHEMA_FILE" >&2 # npx typescript-json-schema --defaultProps --required "$DTS_FILE" MyType | tee "$SCHEMA_FILE" >&2
./examples/json-schema-to-grammar.py "$SCHEMA_FILE" ./examples/json_schema_to_grammar.py "$SCHEMA_FILE"

View File

@ -20,11 +20,11 @@
}, },
"nixpkgs": { "nixpkgs": {
"locked": { "locked": {
"lastModified": 1712163089, "lastModified": 1714076141,
"narHash": "sha256-Um+8kTIrC19vD4/lUCN9/cU9kcOsD1O1m+axJqQPyMM=", "narHash": "sha256-Drmja/f5MRHZCskS6mvzFqxEaZMeciScCTFxWVLqWEY=",
"owner": "NixOS", "owner": "NixOS",
"repo": "nixpkgs", "repo": "nixpkgs",
"rev": "fd281bd6b7d3e32ddfa399853946f782553163b5", "rev": "7bb2ccd8cdc44c91edba16c48d2c8f331fb3d856",
"type": "github" "type": "github"
}, },
"original": { "original": {

View File

@ -371,16 +371,16 @@ struct ggml_gallocr {
}; };
ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs) { ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs) {
ggml_gallocr_t galloc = (ggml_gallocr_t)calloc(sizeof(struct ggml_gallocr), 1); ggml_gallocr_t galloc = (ggml_gallocr_t)calloc(1, sizeof(struct ggml_gallocr));
GGML_ASSERT(galloc != NULL); GGML_ASSERT(galloc != NULL);
galloc->bufts = calloc(sizeof(ggml_backend_buffer_type_t) * n_bufs, 1); galloc->bufts = calloc(n_bufs, sizeof(ggml_backend_buffer_type_t));
GGML_ASSERT(galloc->bufts != NULL); GGML_ASSERT(galloc->bufts != NULL);
galloc->buffers = calloc(sizeof(ggml_backend_buffer_t) * n_bufs, 1); galloc->buffers = calloc(n_bufs, sizeof(ggml_backend_buffer_t) * n_bufs);
GGML_ASSERT(galloc->buffers != NULL); GGML_ASSERT(galloc->buffers != NULL);
galloc->buf_tallocs = calloc(sizeof(struct ggml_dyn_tallocr *) * n_bufs, 1); galloc->buf_tallocs = calloc(n_bufs, sizeof(struct ggml_dyn_tallocr *));
GGML_ASSERT(galloc->buf_tallocs != NULL); GGML_ASSERT(galloc->buf_tallocs != NULL);
for (int i = 0; i < n_bufs; i++) { for (int i = 0; i < n_bufs; i++) {
@ -646,8 +646,8 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
free(galloc->hash_set.keys); free(galloc->hash_set.keys);
free(galloc->hash_values); free(galloc->hash_values);
galloc->hash_set.size = hash_size; galloc->hash_set.size = hash_size;
galloc->hash_set.keys = calloc(sizeof(struct ggml_tensor *), hash_size); galloc->hash_set.keys = calloc(hash_size, sizeof(struct ggml_tensor *));
galloc->hash_values = calloc(sizeof(struct hash_node), hash_size); galloc->hash_values = calloc(hash_size, sizeof(struct hash_node));
GGML_ASSERT(galloc->hash_set.keys != NULL); GGML_ASSERT(galloc->hash_set.keys != NULL);
GGML_ASSERT(galloc->hash_values != NULL); GGML_ASSERT(galloc->hash_values != NULL);
} else { } else {
@ -667,7 +667,7 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
// set the node_allocs from the hash table // set the node_allocs from the hash table
if (galloc->n_nodes < graph->n_nodes) { if (galloc->n_nodes < graph->n_nodes) {
free(galloc->node_allocs); free(galloc->node_allocs);
galloc->node_allocs = calloc(sizeof(struct node_alloc), graph->n_nodes); galloc->node_allocs = calloc(graph->n_nodes, sizeof(struct node_alloc));
GGML_ASSERT(galloc->node_allocs != NULL); GGML_ASSERT(galloc->node_allocs != NULL);
} }
galloc->n_nodes = graph->n_nodes; galloc->n_nodes = graph->n_nodes;
@ -697,7 +697,7 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
} }
if (galloc->n_leafs < graph->n_leafs) { if (galloc->n_leafs < graph->n_leafs) {
free(galloc->leaf_allocs); free(galloc->leaf_allocs);
galloc->leaf_allocs = calloc(sizeof(galloc->leaf_allocs[0]), graph->n_leafs); galloc->leaf_allocs = calloc(graph->n_leafs, sizeof(galloc->leaf_allocs[0]));
GGML_ASSERT(galloc->leaf_allocs != NULL); GGML_ASSERT(galloc->leaf_allocs != NULL);
} }
galloc->n_leafs = graph->n_leafs; galloc->n_leafs = graph->n_leafs;

View File

@ -822,7 +822,11 @@ GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t
GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
switch (op->op) { switch (op->op) {
case GGML_OP_CPY: case GGML_OP_CPY:
return op->type != GGML_TYPE_IQ2_XXS && op->type != GGML_TYPE_IQ2_XS && op->type != GGML_TYPE_IQ1_S; // missing type_traits.from_float return
op->type != GGML_TYPE_IQ2_XXS &&
op->type != GGML_TYPE_IQ2_XS &&
op->type != GGML_TYPE_IQ1_S &&
op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
case GGML_OP_MUL_MAT: case GGML_OP_MUL_MAT:
return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type; return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
default: default:
@ -1721,23 +1725,23 @@ ggml_backend_sched_t ggml_backend_sched_new(
GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS); GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU
struct ggml_backend_sched * sched = calloc(sizeof(struct ggml_backend_sched), 1); struct ggml_backend_sched * sched = calloc(1, sizeof(struct ggml_backend_sched));
// initialize hash table // initialize hash table
sched->hash_set = ggml_hash_set_new(graph_size); sched->hash_set = ggml_hash_set_new(graph_size);
sched->tensor_backend_id = calloc(sizeof(sched->tensor_backend_id[0]), sched->hash_set.size); sched->tensor_backend_id = calloc(sched->hash_set.size, sizeof(sched->tensor_backend_id[0]));
sched->tensor_copies = calloc(sizeof(sched->tensor_copies[0]), sched->hash_set.size); sched->tensor_copies = calloc(sched->hash_set.size, sizeof(sched->tensor_copies[0]));
const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2; const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2;
sched->node_backend_ids = calloc(sizeof(sched->node_backend_ids[0]), nodes_size); sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
sched->leaf_backend_ids = calloc(sizeof(sched->leaf_backend_ids[0]), nodes_size); sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
sched->n_backends = n_backends; sched->n_backends = n_backends;
sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1; sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
const int initial_splits_capacity = 16; const int initial_splits_capacity = 16;
sched->splits = calloc(sizeof(sched->splits[0]), initial_splits_capacity); sched->splits = calloc(initial_splits_capacity, sizeof(sched->splits[0]));
sched->splits_capacity = initial_splits_capacity; sched->splits_capacity = initial_splits_capacity;
for (int b = 0; b < n_backends; b++) { for (int b = 0; b < n_backends; b++) {
@ -1780,12 +1784,14 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
void ggml_backend_sched_reset(ggml_backend_sched_t sched) { void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
// reset state for the next run // reset state for the next run
if (!sched->is_reset) {
size_t hash_size = sched->hash_set.size; size_t hash_size = sched->hash_set.size;
memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT
memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size); memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size);
memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size); memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size);
sched->is_reset = true; sched->is_reset = true;
}
sched->is_alloc = false; sched->is_alloc = false;
} }
@ -1968,10 +1974,10 @@ static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_te
struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) { struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
struct ggml_hash_set hash_set = { struct ggml_hash_set hash_set = {
/* .size = */ graph->visited_hash_table.size, /* .size = */ graph->visited_hash_table.size,
/* .keys = */ calloc(sizeof(hash_set.keys[0]), graph->visited_hash_table.size) // NOLINT /* .keys = */ calloc(graph->visited_hash_table.size, sizeof(hash_set.keys[0])) // NOLINT
}; };
struct ggml_tensor ** node_copies = calloc(sizeof(node_copies[0]), hash_set.size); // NOLINT struct ggml_tensor ** node_copies = calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
bool * node_init = calloc(sizeof(node_init[0]), hash_set.size); bool * node_init = calloc(hash_set.size, sizeof(node_init[0]));
struct ggml_init_params params = { struct ggml_init_params params = {
/* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false), /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),

View File

@ -1231,7 +1231,7 @@ static void ggml_cuda_op_mul_mat_cublas(
if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) { if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
// convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32 // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool()); ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool(id));
if (src0->type != GGML_TYPE_F16) { if (src0->type != GGML_TYPE_F16) {
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type); const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type);
GGML_ASSERT(to_fp16_cuda != nullptr); GGML_ASSERT(to_fp16_cuda != nullptr);
@ -1241,7 +1241,7 @@ static void ggml_cuda_op_mul_mat_cublas(
} }
const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16.get(); const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16.get();
ggml_cuda_pool_alloc<half> src1_as_f16(ctx.pool()); ggml_cuda_pool_alloc<half> src1_as_f16(ctx.pool(id));
if (src1->type != GGML_TYPE_F16) { if (src1->type != GGML_TYPE_F16) {
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type); const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
GGML_ASSERT(to_fp16_cuda != nullptr); GGML_ASSERT(to_fp16_cuda != nullptr);
@ -1250,7 +1250,7 @@ static void ggml_cuda_op_mul_mat_cublas(
to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream); to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream);
} }
const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get(); const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get();
ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(), row_diff*src1_ncols); ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(id), row_diff*src1_ncols);
const half alpha_f16 = 1.0f; const half alpha_f16 = 1.0f;
const half beta_f16 = 0.0f; const half beta_f16 = 0.0f;
@ -1946,7 +1946,7 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
} else if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) { } else if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
// KQV single-batch // KQV single-batch
ggml_cuda_mul_mat_vec_nc(ctx, src0, src1, dst); ggml_cuda_mul_mat_vec_nc(ctx, src0, src1, dst);
} else if (!split && fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) { } else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || fp16_performance_good) && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
// KQ + KQV multi-batch // KQ + KQV multi-batch
ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst); ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst);
} else if (use_dequantize_mul_mat_vec) { } else if (use_dequantize_mul_mat_vec) {
@ -1960,20 +1960,73 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
} }
} }
struct mmid_row_mapping {
int32_t i1;
int32_t i2;
};
static __global__ void k_copy_src1_to_contiguous(const char * __restrict__ src1_original, char * __restrict__ src1_contiguous,
int * __restrict__ cur_src1_row, mmid_row_mapping * __restrict__ row_mapping,
const char * __restrict ids, int64_t i02, size_t ids_nb1, size_t ids_nb0,
int64_t ne11, int64_t ne10,
size_t nb11, size_t nb12) {
int32_t iid1 = blockIdx.x;
int32_t id = blockIdx.y;
const int32_t row_id_i = *(const int32_t *) (ids + iid1*ids_nb1 + id*ids_nb0);
if (row_id_i != i02) {
return;
}
const int64_t i11 = id % ne11;
const int64_t i12 = iid1;
__shared__ int src1_row;
if (threadIdx.x == 0) {
src1_row = atomicAdd(cur_src1_row, 1);
row_mapping[src1_row] = {id, iid1};
}
__syncthreads();
const float * src1_row_original = (const float *)(src1_original + i11*nb11 + i12*nb12);
float * src1_row_contiguous = (float *)(src1_contiguous + src1_row*nb11);
for (int i = threadIdx.x; i < ne10; i += blockDim.x) {
src1_row_contiguous[i] = src1_row_original[i];
}
}
static __global__ void k_copy_dst_from_contiguous(char * __restrict__ dst_original, const char * __restrict__ dst_contiguous,
const mmid_row_mapping * __restrict__ row_mapping,
int64_t ne0,
size_t nb1, size_t nb2) {
int32_t i = blockIdx.x;
const int32_t i1 = row_mapping[i].i1;
const int32_t i2 = row_mapping[i].i2;
const float * dst_row_contiguous = (const float *)(dst_contiguous + i*nb1);
float * dst_row_original = (float *)(dst_original + i1*nb1 + i2*nb2);
for (int j = threadIdx.x; j < ne0; j += blockDim.x) {
dst_row_original[j] = dst_row_contiguous[j];
}
}
static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1]; const ggml_tensor * src1 = dst->src[1];
const ggml_tensor * ids = dst->src[2]; const ggml_tensor * ids = dst->src[2];
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT(!ggml_backend_buffer_is_cuda_split(src0->buffer) && "mul_mat_id does not support split buffers"); GGML_ASSERT(!ggml_backend_buffer_is_cuda_split(src0->buffer) && "mul_mat_id does not support split buffers");
cudaStream_t stream = ctx.stream(); cudaStream_t stream = ctx.stream();
const size_t nb11 = src1->nb[1]; const int64_t n_as = ne02;
const size_t nb1 = dst->nb[1]; const int64_t n_ids = ids->ne[0];
const int32_t id = ((int32_t *) dst->op_params)[0];
const int32_t n_as = src0->ne[2];
std::vector<char> ids_host(ggml_nbytes(ids)); std::vector<char> ids_host(ggml_nbytes(ids));
const char * ids_dev = (const char *) ids->data; const char * ids_dev = (const char *) ids->data;
@ -1990,20 +2043,40 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
src0_row.ne[2] = 1; src0_row.ne[2] = 1;
src0_row.ne[3] = 1; src0_row.ne[3] = 1;
src0_row.nb[3] = src0->nb[2]; src0_row.nb[3] = nb02;
if (src1->ne[1] == 1) { src1_row.ne[1] = 1;
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) { src1_row.ne[2] = 1;
const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]); src1_row.ne[3] = 1;
src1_row.nb[2] = nb11;
src1_row.nb[3] = nb11;
GGML_ASSERT(row_id >= 0 && row_id < n_as); dst_row.ne[1] = 1;
dst_row.ne[2] = 1;
dst_row.ne[3] = 1;
dst_row.nb[2] = nb1;
dst_row.nb[3] = nb1;
src0_row.data = src0_original + row_id*src0->nb[2]; if (ne12 == 1) {
src1_row.data = src1_original + i01*src1->nb[1]; for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
dst_row.data = dst_original + i01*dst->nb[1]; for (int64_t id = 0; id < n_ids; id++) {
const int32_t i02 = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
GGML_ASSERT(i02 >= 0 && i02 < n_as);
const int64_t i11 = id % ne11;
const int64_t i12 = iid1;
const int64_t i1 = id;
const int64_t i2 = i12;
src0_row.data = src0_original + i02*nb02;
src1_row.data = src1_original + i11*nb11 + i12*nb12;
dst_row.data = dst_original + i1*nb1 + i2*nb2;
ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row); ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
} }
}
} else { } else {
ggml_cuda_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1)); ggml_cuda_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1));
ggml_cuda_pool_alloc<char> dst_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst)); ggml_cuda_pool_alloc<char> dst_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst));
@ -2011,54 +2084,69 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
src1_row.data = src1_contiguous.get(); src1_row.data = src1_contiguous.get();
dst_row.data = dst_contiguous.get(); dst_row.data = dst_contiguous.get();
for (int32_t row_id = 0; row_id < n_as; ++row_id) { for (int64_t i02 = 0; i02 < n_as; i02++) {
int64_t num_src1_rows = 0; int64_t num_src1_rows = 0;
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
if (row_id_i != row_id) { for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
for (int64_t id = 0; id < n_ids; id++) {
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
GGML_ASSERT(row_id_i >= 0 && row_id_i < n_as);
if (row_id_i != i02) {
continue; continue;
} }
GGML_ASSERT(row_id >= 0 && row_id < n_as);
CUDA_CHECK(cudaMemcpyAsync(src1_contiguous.get() + num_src1_rows*nb11, src1_original + i01*nb11,
nb11, cudaMemcpyDeviceToDevice, stream));
num_src1_rows++; num_src1_rows++;
} }
}
if (num_src1_rows == 0) { if (num_src1_rows == 0) {
continue; continue;
} }
src0_row.data = src0_original + row_id*src0->nb[2]; ggml_cuda_pool_alloc<int> dev_cur_src1_row(ctx.pool(), 1);
ggml_cuda_pool_alloc<mmid_row_mapping> dev_row_mapping(ctx.pool(), num_src1_rows);
CUDA_CHECK(cudaMemsetAsync(dev_cur_src1_row.get(), 0, sizeof(int), stream));
{
dim3 block_dims(std::min((unsigned int)ne10, 768u));
dim3 grid_dims(ids->ne[1], n_ids);
k_copy_src1_to_contiguous<<<grid_dims, block_dims, 0, stream>>>(
src1_original, src1_contiguous.get(),
dev_cur_src1_row.get(), dev_row_mapping.get(),
ids_dev, i02, ids->nb[1], ids->nb[0],
ne11, ne10,
nb11, nb12);
CUDA_CHECK(cudaGetLastError());
}
src0_row.data = src0_original + i02*nb02;
GGML_ASSERT(nb11 == sizeof(float)*ne10);
GGML_ASSERT(nb1 == sizeof(float)*ne0);
src1_row.ne[1] = num_src1_rows; src1_row.ne[1] = num_src1_rows;
dst_row.ne[1] = num_src1_rows;
src1_row.nb[1] = nb11; src1_row.nb[1] = nb11;
src1_row.nb[2] = num_src1_rows*nb11; src1_row.nb[2] = num_src1_rows*nb11;
src1_row.nb[3] = num_src1_rows*nb11; src1_row.nb[3] = num_src1_rows*nb11;
dst_row.ne[1] = num_src1_rows;
dst_row.nb[1] = nb1; dst_row.nb[1] = nb1;
dst_row.nb[2] = num_src1_rows*nb1; dst_row.nb[2] = num_src1_rows*nb1;
dst_row.nb[3] = num_src1_rows*nb1; dst_row.nb[3] = num_src1_rows*nb1;
ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row); ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
num_src1_rows = 0; {
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) { dim3 block_dims(std::min((unsigned int)ne0, 768u));
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]); dim3 grid_dims(num_src1_rows);
k_copy_dst_from_contiguous<<<grid_dims, block_dims, 0, stream>>>(
if (row_id_i != row_id) { dst_original, dst_contiguous.get(),
continue; dev_row_mapping.get(),
} ne0,
nb1, nb2);
GGML_ASSERT(row_id >= 0 && row_id < n_as); CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaMemcpyAsync(dst_original + i01*nb1, dst_contiguous.get() + num_src1_rows*nb1,
nb1, cudaMemcpyDeviceToDevice, stream));
num_src1_rows++;
} }
} }
} }
@ -2487,7 +2575,8 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) { GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
const int min_batch_size = 32; const int min_batch_size = 32;
return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS; return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
(op->ne[2] >= min_batch_size && op->op == GGML_OP_MUL_MAT_ID);
GGML_UNUSED(backend); GGML_UNUSED(backend);
} }

View File

@ -22,6 +22,7 @@ static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst
int ne0, int ne1, int ne2, int ne3, int ne0, int ne1, int ne2, int ne3,
int ne10, int ne11, int ne12, int ne13, int ne10, int ne11, int ne12, int ne13,
/*int s0, */ int s1, int s2, int s3, /*int s0, */ int s1, int s2, int s3,
/*int s00,*/ int s01, int s02, int s03,
/*int s10,*/ int s11, int s12, int s13) { /*int s10,*/ int s11, int s12, int s13) {
const int i0s = blockDim.x*blockIdx.x + threadIdx.x; const int i0s = blockDim.x*blockIdx.x + threadIdx.x;
const int i1 = (blockDim.y*blockIdx.y + threadIdx.y); const int i1 = (blockDim.y*blockIdx.y + threadIdx.y);
@ -36,9 +37,9 @@ static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst
const int i12 = i2 % ne12; const int i12 = i2 % ne12;
const int i13 = i3 % ne13; const int i13 = i3 % ne13;
const size_t i_src0 = i3*s3 + i2*s2 + i1*s1; const size_t i_src0 = i3*s03 + i2*s02 + i1*s01;
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11; const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
const size_t i_dst = i_src0; const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
const src0_t * src0_row = src0 + i_src0; const src0_t * src0_row = src0 + i_src0;
const src1_t * src1_row = src1 + i_src1; const src1_t * src1_row = src1 + i_src1;
@ -55,6 +56,7 @@ static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * s
int ne0, int ne1, int ne2, int ne3, int ne0, int ne1, int ne2, int ne3,
int ne10, int ne11, int ne12, int ne13, int ne10, int ne11, int ne12, int ne13,
/*int s0, */ int s1, int s2, int s3, /*int s0, */ int s1, int s2, int s3,
/*int s00,*/ int s01, int s02, int s03,
/*int s10,*/ int s11, int s12, int s13) { /*int s10,*/ int s11, int s12, int s13) {
const int i = blockDim.x*blockIdx.x + threadIdx.x; const int i = blockDim.x*blockIdx.x + threadIdx.x;
@ -72,9 +74,9 @@ static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * s
const int i12 = i2 % ne12; const int i12 = i2 % ne12;
const int i13 = i3 % ne13; const int i13 = i3 % ne13;
const size_t i_src0 = i3*s3 + i2*s2 + i1*s1; const size_t i_src0 = i3*s03 + i2*s02 + i1*s01;
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11; const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
const size_t i_dst = i_src0; const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
const src0_t * src0_row = src0 + i_src0; const src0_t * src0_row = src0 + i_src0;
const src1_t * src1_row = src1 + i_src1; const src1_t * src1_row = src1 + i_src1;
@ -101,10 +103,14 @@ struct bin_bcast_cuda {
int nr[4] = { nr0, nr1, nr2, nr3 }; int nr[4] = { nr0, nr1, nr2, nr3 };
// collapse dimensions until first broadcast dimension // collapse dimensions until first broadcast dimension
int64_t cne0[] = {ne0, ne1, ne2, ne3}; int64_t cne[] = {ne0, ne1, ne2, ne3};
int64_t cne0[] = {ne00, ne01, ne02, ne03};
int64_t cne1[] = {ne10, ne11, ne12, ne13}; int64_t cne1[] = {ne10, ne11, ne12, ne13};
size_t cnb0[] = {nb0, nb1, nb2, nb3};
size_t cnb[] = {nb0, nb1, nb2, nb3};
size_t cnb0[] = {nb00, nb01, nb02, nb03};
size_t cnb1[] = {nb10, nb11, nb12, nb13}; size_t cnb1[] = {nb10, nb11, nb12, nb13};
auto collapse = [](int64_t cne[]) { auto collapse = [](int64_t cne[]) {
cne[0] *= cne[1]; cne[0] *= cne[1];
cne[1] = cne[2]; cne[1] = cne[2];
@ -118,32 +124,47 @@ struct bin_bcast_cuda {
cnb[3] *= cne[3]; cnb[3] *= cne[3];
}; };
if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
for (int i = 0; i < 4; i++) { for (int i = 0; i < 4; i++) {
if (nr[i] != 1) { if (nr[i] != 1) {
break; break;
} }
if (i > 0) { if (i > 0) {
collapse_nb(cnb, cne);
collapse_nb(cnb0, cne0); collapse_nb(cnb0, cne0);
collapse_nb(cnb1, cne1); collapse_nb(cnb1, cne1);
collapse(cne);
collapse(cne0); collapse(cne0);
collapse(cne1); collapse(cne1);
} }
} }
}
{ {
int64_t ne0 = cne0[0]; int64_t ne0 = cne[0];
int64_t ne1 = cne0[1]; int64_t ne1 = cne[1];
int64_t ne2 = cne0[2]; int64_t ne2 = cne[2];
int64_t ne3 = cne0[3]; int64_t ne3 = cne[3];
//int64_t ne00 = cne0[0]; GGML_UNUSED(ne00);
//int64_t ne01 = cne0[1]; GGML_UNUSED(ne01);
//int64_t ne02 = cne0[2]; GGML_UNUSED(ne02);
//int64_t ne03 = cne0[3]; GGML_UNUSED(ne03);
int64_t ne10 = cne1[0]; int64_t ne10 = cne1[0];
int64_t ne11 = cne1[1]; int64_t ne11 = cne1[1];
int64_t ne12 = cne1[2]; int64_t ne12 = cne1[2];
int64_t ne13 = cne1[3]; int64_t ne13 = cne1[3];
size_t nb0 = cnb0[0]; size_t nb0 = cnb[0];
size_t nb1 = cnb0[1]; size_t nb1 = cnb[1];
size_t nb2 = cnb0[2]; size_t nb2 = cnb[2];
size_t nb3 = cnb0[3]; size_t nb3 = cnb[3];
size_t nb00 = cnb0[0];
size_t nb01 = cnb0[1];
size_t nb02 = cnb0[2];
size_t nb03 = cnb0[3];
size_t nb10 = cnb1[0]; size_t nb10 = cnb1[0];
size_t nb11 = cnb1[1]; size_t nb11 = cnb1[1];
@ -160,7 +181,28 @@ struct bin_bcast_cuda {
size_t s12 = nb12 / sizeof(src1_t); size_t s12 = nb12 / sizeof(src1_t);
size_t s13 = nb13 / sizeof(src1_t); size_t s13 = nb13 / sizeof(src1_t);
size_t s00 = nb00 / sizeof(src0_t);
size_t s01 = nb01 / sizeof(src0_t);
size_t s02 = nb02 / sizeof(src0_t);
size_t s03 = nb03 / sizeof(src0_t);
GGML_ASSERT(nb0 % sizeof(dst_t) == 0);
GGML_ASSERT(nb1 % sizeof(dst_t) == 0);
GGML_ASSERT(nb2 % sizeof(dst_t) == 0);
GGML_ASSERT(nb3 % sizeof(dst_t) == 0);
GGML_ASSERT(nb00 % sizeof(src0_t) == 0);
GGML_ASSERT(nb01 % sizeof(src0_t) == 0);
GGML_ASSERT(nb02 % sizeof(src0_t) == 0);
GGML_ASSERT(nb03 % sizeof(src0_t) == 0);
GGML_ASSERT(nb10 % sizeof(src1_t) == 0);
GGML_ASSERT(nb11 % sizeof(src1_t) == 0);
GGML_ASSERT(nb12 % sizeof(src1_t) == 0);
GGML_ASSERT(nb13 % sizeof(src1_t) == 0);
GGML_ASSERT(s0 == 1); GGML_ASSERT(s0 == 1);
GGML_ASSERT(s00 == 1);
GGML_ASSERT(s10 == 1); GGML_ASSERT(s10 == 1);
const int block_size = 128; const int block_size = 128;
@ -179,13 +221,14 @@ struct bin_bcast_cuda {
); );
if (block_nums.z > 65535) { if (block_nums.z > 65535) {
// this is the maximum number of blocks in z direction, fallback to 1D grid kernel // this is the maximum number of blocks in z dimension, fallback to 1D grid kernel
int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size; int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
k_bin_bcast_unravel<bin_op><<<block_num, block_size, 0, stream>>>( k_bin_bcast_unravel<bin_op><<<block_num, block_size, 0, stream>>>(
src0_dd, src1_dd, dst_dd, src0_dd, src1_dd, dst_dd,
ne0, ne1, ne2, ne3, ne0, ne1, ne2, ne3,
ne10, ne11, ne12, ne13, ne10, ne11, ne12, ne13,
/* s0, */ s1, s2, s3, /* s0, */ s1, s2, s3,
/* s00, */ s01, s02, s03,
/* s10, */ s11, s12, s13); /* s10, */ s11, s12, s13);
} else { } else {
k_bin_bcast<bin_op><<<block_nums, block_dims, 0, stream>>>( k_bin_bcast<bin_op><<<block_nums, block_dims, 0, stream>>>(
@ -193,6 +236,7 @@ struct bin_bcast_cuda {
ne0, ne1, ne2, ne3, ne0, ne1, ne2, ne3,
ne10, ne11, ne12, ne13, ne10, ne11, ne12, ne13,
/* s0, */ s1, s2, s3, /* s0, */ s1, s2, s3,
/* s00, */ s01, s02, s03,
/* s10, */ s11, s12, s13); /* s10, */ s11, s12, s13);
} }
} }

View File

@ -5,16 +5,16 @@
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t> template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k) { static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k) {
const int64_t i = 2*(blockDim.x*blockIdx.x + threadIdx.x); const int64_t i = (int64_t)2*(blockDim.x*blockIdx.x + threadIdx.x);
if (i >= k) { if (i >= k) {
return; return;
} }
const int64_t ib = i/qk; // block index const int64_t ib = i/qk; // block index
const int iqs = (i%qk)/qr; // quant index const int64_t iqs = (i%qk)/qr; // quant index
const int iybs = i - i%qk; // y block start index const int64_t iybs = i - i%qk; // y block start index
const int y_offset = qr == 1 ? 1 : qk/2; const int64_t y_offset = qr == 1 ? 1 : qk/2;
// dequantize // dequantize
dfloat2 v; dfloat2 v;
@ -29,7 +29,7 @@ static __global__ void dequantize_block_q8_0_f16(const void * __restrict__ vx, h
#if __CUDA_ARCH__ >= CC_PASCAL #if __CUDA_ARCH__ >= CC_PASCAL
constexpr int nint = CUDA_Q8_0_NE_ALIGN/sizeof(int) + WARP_SIZE; constexpr int nint = CUDA_Q8_0_NE_ALIGN/sizeof(int) + WARP_SIZE;
const int i0 = CUDA_Q8_0_NE_ALIGN*blockIdx.x; const int64_t i0 = CUDA_Q8_0_NE_ALIGN*blockIdx.x;
const int * x0 = ((int *) vx) + blockIdx.x * nint; const int * x0 = ((int *) vx) + blockIdx.x * nint;
half2 * y2 = (half2 *) (y + i0); half2 * y2 = (half2 *) (y + i0);
@ -45,6 +45,8 @@ static __global__ void dequantize_block_q8_0_f16(const void * __restrict__ vx, h
vals[ix] = x0[ix]; vals[ix] = x0[ix];
} }
__syncthreads();
#pragma unroll #pragma unroll
for (int iy = 0; iy < CUDA_Q8_0_NE_ALIGN; iy += 2*WARP_SIZE) { for (int iy = 0; iy < CUDA_Q8_0_NE_ALIGN; iy += 2*WARP_SIZE) {
if (need_check && i0 + iy + 2*threadIdx.x >= k) { if (need_check && i0 + iy + 2*threadIdx.x >= k) {
@ -71,9 +73,9 @@ static __global__ void dequantize_block_q4_0(const void * __restrict__ vx, dst_t
const int64_t i = blockIdx.x; const int64_t i = blockIdx.x;
// assume 32 threads // assume 32 threads
const int tid = threadIdx.x; const int64_t tid = threadIdx.x;
const int il = tid/8; const int64_t il = tid/8;
const int ir = tid%8; const int64_t ir = tid%8;
const int64_t ib = 8*i + ir; const int64_t ib = 8*i + ir;
if (ib >= nb32) { if (ib >= nb32) {
return; return;
@ -99,9 +101,9 @@ static __global__ void dequantize_block_q4_1(const void * __restrict__ vx, dst_t
const int64_t i = blockIdx.x; const int64_t i = blockIdx.x;
// assume 32 threads // assume 32 threads
const int tid = threadIdx.x; const int64_t tid = threadIdx.x;
const int il = tid/8; const int64_t il = tid/8;
const int ir = tid%8; const int64_t ir = tid%8;
const int64_t ib = 8*i + ir; const int64_t ib = 8*i + ir;
if (ib >= nb32) { if (ib >= nb32) {
return; return;
@ -125,14 +127,14 @@ static __global__ void dequantize_block_q4_1(const void * __restrict__ vx, dst_t
template<typename dst_t> template<typename dst_t>
static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy) { static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
const int i = blockIdx.x; const int64_t i = blockIdx.x;
const block_q2_K * x = (const block_q2_K *) vx; const block_q2_K * x = (const block_q2_K *) vx;
const int tid = threadIdx.x; const int64_t tid = threadIdx.x;
#if QK_K == 256 #if QK_K == 256
const int n = tid/32; const int64_t n = tid/32;
const int l = tid - 32*n; const int64_t l = tid - 32*n;
const int is = 8*n + l/16; const int64_t is = 8*n + l/16;
const uint8_t q = x[i].qs[32*n + l]; const uint8_t q = x[i].qs[32*n + l];
dst_t * y = yy + i*QK_K + 128*n; dst_t * y = yy + i*QK_K + 128*n;
@ -144,8 +146,8 @@ static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t
y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4); y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4); y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
#else #else
const int is = tid/16; // 0 or 1 const int64_t is = tid/16; // 0 or 1
const int il = tid%16; // 0...15 const int64_t il = tid%16; // 0...15
const uint8_t q = x[i].qs[il] >> (2*is); const uint8_t q = x[i].qs[il] >> (2*is);
dst_t * y = yy + i*QK_K + 16*is + il; dst_t * y = yy + i*QK_K + 16*is + il;
float dall = __low2half(x[i].dm); float dall = __low2half(x[i].dm);
@ -159,19 +161,19 @@ static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t
template<typename dst_t> template<typename dst_t>
static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy) { static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
const int i = blockIdx.x; const int64_t i = blockIdx.x;
const block_q3_K * x = (const block_q3_K *) vx; const block_q3_K * x = (const block_q3_K *) vx;
#if QK_K == 256 #if QK_K == 256
const int r = threadIdx.x/4; const int64_t r = threadIdx.x/4;
const int tid = r/2; const int64_t tid = r/2;
const int is0 = r%2; const int64_t is0 = r%2;
const int l0 = 16*is0 + 4*(threadIdx.x%4); const int64_t l0 = 16*is0 + 4*(threadIdx.x%4);
const int n = tid / 4; const int64_t n = tid / 4;
const int j = tid - 4*n; const int64_t j = tid - 4*n;
uint8_t m = 1 << (4*n + j); uint8_t m = 1 << (4*n + j);
int is = 8*n + 2*j + is0; int64_t is = 8*n + 2*j + is0;
int shift = 2*j; int shift = 2*j;
int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) : int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
@ -187,11 +189,11 @@ static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t
for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4)); for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
#else #else
const int tid = threadIdx.x; const int64_t tid = threadIdx.x;
const int is = tid/16; // 0 or 1 const int64_t is = tid/16; // 0 or 1
const int il = tid%16; // 0...15 const int64_t il = tid%16; // 0...15
const int im = il/8; // 0...1 const int64_t im = il/8; // 0...1
const int in = il%8; // 0...7 const int64_t in = il%8; // 0...7
dst_t * y = yy + i*QK_K + 16*is + il; dst_t * y = yy + i*QK_K + 16*is + il;
@ -225,15 +227,15 @@ template<typename dst_t>
static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy) { static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
const block_q4_K * x = (const block_q4_K *) vx; const block_q4_K * x = (const block_q4_K *) vx;
const int i = blockIdx.x; const int64_t i = blockIdx.x;
#if QK_K == 256 #if QK_K == 256
// assume 32 threads // assume 32 threads
const int tid = threadIdx.x; const int64_t tid = threadIdx.x;
const int il = tid/8; const int64_t il = tid/8;
const int ir = tid%8; const int64_t ir = tid%8;
const int is = 2*il; const int64_t is = 2*il;
const int n = 4; const int64_t n = 4;
dst_t * y = yy + i*QK_K + 64*il + n*ir; dst_t * y = yy + i*QK_K + 64*il + n*ir;
@ -252,7 +254,7 @@ static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t
y[l +32] = d2 * (q[l] >> 4) - m2; y[l +32] = d2 * (q[l] >> 4) - m2;
} }
#else #else
const int tid = threadIdx.x; const int64_t tid = threadIdx.x;
const uint8_t * q = x[i].qs; const uint8_t * q = x[i].qs;
dst_t * y = yy + i*QK_K; dst_t * y = yy + i*QK_K;
const float d = (float)x[i].dm[0]; const float d = (float)x[i].dm[0];
@ -266,14 +268,14 @@ template<typename dst_t>
static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy) { static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
const block_q5_K * x = (const block_q5_K *) vx; const block_q5_K * x = (const block_q5_K *) vx;
const int i = blockIdx.x; const int64_t i = blockIdx.x;
#if QK_K == 256 #if QK_K == 256
// assume 64 threads - this is very slightly better than the one below // assume 64 threads - this is very slightly better than the one below
const int tid = threadIdx.x; const int64_t tid = threadIdx.x;
const int il = tid/16; // il is in 0...3 const int64_t il = tid/16; // il is in 0...3
const int ir = tid%16; // ir is in 0...15 const int64_t ir = tid%16; // ir is in 0...15
const int is = 2*il; // is is in 0...6 const int64_t is = 2*il; // is is in 0...6
dst_t * y = yy + i*QK_K + 64*il + 2*ir; dst_t * y = yy + i*QK_K + 64*il + 2*ir;
@ -296,11 +298,11 @@ static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t
y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2; y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2; y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
#else #else
const int tid = threadIdx.x; const int64_t tid = threadIdx.x;
const uint8_t q = x[i].qs[tid]; const uint8_t q = x[i].qs[tid];
const int im = tid/8; // 0...3 const int64_t im = tid/8; // 0...3
const int in = tid%8; // 0...7 const int64_t in = tid%8; // 0...7
const int is = tid/16; // 0 or 1 const int64_t is = tid/16; // 0 or 1
const uint8_t h = x[i].qh[in] >> im; const uint8_t h = x[i].qh[in] >> im;
const float d = x[i].d; const float d = x[i].d;
dst_t * y = yy + i*QK_K + tid; dst_t * y = yy + i*QK_K + tid;
@ -357,13 +359,13 @@ static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t
template<typename dst_t> template<typename dst_t>
static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) { static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
const int i = blockIdx.x; const int64_t i = blockIdx.x;
const block_iq2_xxs * x = (const block_iq2_xxs *) vx; const block_iq2_xxs * x = (const block_iq2_xxs *) vx;
const int tid = threadIdx.x; const int64_t tid = threadIdx.x;
#if QK_K == 256 #if QK_K == 256
const int il = tid/8; // 0...3 const int64_t il = tid/8; // 0...3
const int ib = tid%8; // 0...7 const int64_t ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il; dst_t * y = yy + i*QK_K + 32*ib + 8*il;
const uint16_t * q2 = x[i].qs + 4*ib; const uint16_t * q2 = x[i].qs + 4*ib;
const uint8_t * aux8 = (const uint8_t *)q2; const uint8_t * aux8 = (const uint8_t *)q2;
@ -381,13 +383,13 @@ static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, ds
template<typename dst_t> template<typename dst_t>
static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) { static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
const int i = blockIdx.x; const int64_t i = blockIdx.x;
const block_iq2_xs * x = (const block_iq2_xs *) vx; const block_iq2_xs * x = (const block_iq2_xs *) vx;
const int tid = threadIdx.x; const int64_t tid = threadIdx.x;
#if QK_K == 256 #if QK_K == 256
const int il = tid/8; // 0...3 const int64_t il = tid/8; // 0...3
const int ib = tid%8; // 0...7 const int64_t ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il; dst_t * y = yy + i*QK_K + 32*ib + 8*il;
const uint16_t * q2 = x[i].qs + 4*ib; const uint16_t * q2 = x[i].qs + 4*ib;
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[il] & 511)); const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[il] & 511));
@ -403,13 +405,13 @@ static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst
template<typename dst_t> template<typename dst_t>
static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_t * __restrict__ yy) { static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
const int i = blockIdx.x; const int64_t i = blockIdx.x;
const block_iq2_s * x = (const block_iq2_s *) vx; const block_iq2_s * x = (const block_iq2_s *) vx;
const int tid = threadIdx.x; const int64_t tid = threadIdx.x;
#if QK_K == 256 #if QK_K == 256
const int il = tid/8; // 0...3 const int64_t il = tid/8; // 0...3
const int ib = tid%8; // 0...7 const int64_t ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il; dst_t * y = yy + i*QK_K + 32*ib + 8*il;
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (x[i].qs[4*ib+il] | ((x[i].qh[ib] << (8-2*il)) & 0x300))); const uint8_t * grid = (const uint8_t *)(iq2s_grid + (x[i].qs[4*ib+il] | ((x[i].qh[ib] << (8-2*il)) & 0x300)));
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f; const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
@ -424,13 +426,13 @@ static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_
template<typename dst_t> template<typename dst_t>
static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) { static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
const int i = blockIdx.x; const int64_t i = blockIdx.x;
const block_iq3_xxs * x = (const block_iq3_xxs *) vx; const block_iq3_xxs * x = (const block_iq3_xxs *) vx;
const int tid = threadIdx.x; const int64_t tid = threadIdx.x;
#if QK_K == 256 #if QK_K == 256
const int il = tid/8; // 0...3 const int64_t il = tid/8; // 0...3
const int ib = tid%8; // 0...7 const int64_t ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il; dst_t * y = yy + i*QK_K + 32*ib + 8*il;
const uint8_t * q3 = x[i].qs + 8*ib; const uint8_t * q3 = x[i].qs + 8*ib;
const uint16_t * gas = (const uint16_t *)(x[i].qs + QK_K/4) + 2*ib; const uint16_t * gas = (const uint16_t *)(x[i].qs + QK_K/4) + 2*ib;
@ -452,13 +454,13 @@ static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, ds
template<typename dst_t> template<typename dst_t>
static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_t * __restrict__ yy) { static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
const int i = blockIdx.x; const int64_t i = blockIdx.x;
const block_iq3_s * x = (const block_iq3_s *) vx; const block_iq3_s * x = (const block_iq3_s *) vx;
const int tid = threadIdx.x; const int64_t tid = threadIdx.x;
#if QK_K == 256 #if QK_K == 256
const int il = tid/8; // 0...3 const int64_t il = tid/8; // 0...3
const int ib = tid%8; // 0...7 const int64_t ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il; dst_t * y = yy + i*QK_K + 32*ib + 8*il;
const uint8_t * qs = x[i].qs + 8*ib; const uint8_t * qs = x[i].qs + 8*ib;
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256))); const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256)));
@ -478,13 +480,13 @@ static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_
template<typename dst_t> template<typename dst_t>
static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_t * __restrict__ yy) { static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
const int i = blockIdx.x; const int64_t i = blockIdx.x;
const block_iq1_s * x = (const block_iq1_s *) vx; const block_iq1_s * x = (const block_iq1_s *) vx;
const int tid = threadIdx.x; const int64_t tid = threadIdx.x;
#if QK_K == 256 #if QK_K == 256
const int il = tid/8; // 0...3 const int64_t il = tid/8; // 0...3
const int ib = tid%8; // 0...7 const int64_t ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il; dst_t * y = yy + i*QK_K + 32*ib + 8*il;
const float delta = x[i].qh[ib] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA; const float delta = x[i].qh[ib] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA;
const float d = (float)x[i].d * (2*((x[i].qh[ib] >> 12) & 7) + 1); const float d = (float)x[i].d * (2*((x[i].qh[ib] >> 12) & 7) + 1);
@ -504,18 +506,18 @@ static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_
template<typename dst_t> template<typename dst_t>
static __global__ void dequantize_block_iq1_m(const void * __restrict__ vx, dst_t * __restrict__ yy) { static __global__ void dequantize_block_iq1_m(const void * __restrict__ vx, dst_t * __restrict__ yy) {
const int i = blockIdx.x; const int64_t i = blockIdx.x;
const block_iq1_m * x = (const block_iq1_m *) vx; const block_iq1_m * x = (const block_iq1_m *) vx;
const int tid = threadIdx.x; const int64_t tid = threadIdx.x;
#if QK_K == 256 #if QK_K == 256
const int il = tid/8; // 0...3 const int64_t il = tid/8; // 0...3
const int ib = tid%8; // 0...7 const int64_t ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il; dst_t * y = yy + i*QK_K + 32*ib + 8*il;
const uint16_t * sc = (const uint16_t *)x[i].scales; const uint16_t * sc = (const uint16_t *)x[i].scales;
iq1m_scale_t scale; iq1m_scale_t scale;
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
const int ib16 = 2*ib + il/2; // sc[ib16/4] >> 3*(ib16%4) -> sc[ib/2] >> 3*((2*ib+il/2)%4); const int64_t ib16 = 2*ib + il/2; // sc[ib16/4] >> 3*(ib16%4) -> sc[ib/2] >> 3*((2*ib+il/2)%4);
const float d = (float)scale.f16 * (2*((sc[ib16/4] >> 3*(ib16%4)) & 0x7) + 1); const float d = (float)scale.f16 * (2*((sc[ib16/4] >> 3*(ib16%4)) & 0x7) + 1);
const float delta = x[i].qh[2*ib+il/2] & (0x08 << 4*(il%2)) ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA; const float delta = x[i].qh[2*ib+il/2] & (0x08 << 4*(il%2)) ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA;
uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32; uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
@ -535,12 +537,12 @@ static __global__ void dequantize_block_iq1_m(const void * __restrict__ vx, dst_
template<typename dst_t> template<typename dst_t>
static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst_t * __restrict__ yy) { static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst_t * __restrict__ yy) {
const int i = blockIdx.x; const int64_t i = blockIdx.x;
const block_iq4_nl * x = (const block_iq4_nl *) vx + i*(QK_K/QK4_NL); const block_iq4_nl * x = (const block_iq4_nl *) vx + i*(QK_K/QK4_NL);
const int tid = threadIdx.x; const int64_t tid = threadIdx.x;
const int il = tid/8; // 0...3 const int64_t il = tid/8; // 0...3
const int ib = tid%8; // 0...7 const int64_t ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 4*il; dst_t * y = yy + i*QK_K + 32*ib + 4*il;
const uint8_t * q4 = x[ib].qs + 4*il; const uint8_t * q4 = x[ib].qs + 4*il;
const float d = (float)x[ib].d; const float d = (float)x[ib].d;
@ -554,12 +556,12 @@ static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst
#if QK_K != 64 #if QK_K != 64
template<typename dst_t> template<typename dst_t>
static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) { static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
const int i = blockIdx.x; const int64_t i = blockIdx.x;
const block_iq4_xs * x = (const block_iq4_xs *)vx; const block_iq4_xs * x = (const block_iq4_xs *)vx;
const int tid = threadIdx.x; const int64_t tid = threadIdx.x;
const int il = tid/8; // 0...3 const int64_t il = tid/8; // 0...3
const int ib = tid%8; // 0...7 const int64_t ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 4*il; dst_t * y = yy + i*QK_K + 32*ib + 4*il;
const uint8_t * q4 = x[i].qs + 16*ib + 4*il; const uint8_t * q4 = x[i].qs + 16*ib + 4*il;
const float d = (float)x[i].d * ((((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4)) - 32); const float d = (float)x[i].d * ((((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4)) - 32);

View File

@ -28,7 +28,7 @@ static __global__ void soft_max_f32(const float * x, const float * mask, const f
extern __shared__ float data_soft_max_f32[]; extern __shared__ float data_soft_max_f32[];
float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication
// shared memory buffer to cache values between iterations: // shared memory buffer to cache values between iterations:
float * vals = vals_smem ? buf_iw + WARP_SIZE : dst + rowx*ncols; float * vals = vals_smem ? buf_iw + WARP_SIZE : dst + (int64_t)rowx*ncols;
float max_val = -INFINITY; float max_val = -INFINITY;
@ -40,8 +40,8 @@ static __global__ void soft_max_f32(const float * x, const float * mask, const f
break; break;
} }
const int ix = rowx*ncols + col; const int64_t ix = (int64_t)rowx*ncols + col;
const int iy = rowy*ncols + col; const int64_t iy = (int64_t)rowy*ncols + col;
const float val = x[ix]*scale + (mask ? mask[iy] : 0.0f) + (pos ? slope*pos[col] : 0.0f); const float val = x[ix]*scale + (mask ? mask[iy] : 0.0f) + (pos ? slope*pos[col] : 0.0f);
@ -109,7 +109,7 @@ static __global__ void soft_max_f32(const float * x, const float * mask, const f
return; return;
} }
const int idst = rowx*ncols + col; const int64_t idst = (int64_t)rowx*ncols + col;
dst[idst] = vals[col] * inv_sum; dst[idst] = vals[col] * inv_sum;
} }
} }

View File

@ -11,6 +11,12 @@
#include <string.h> // memcpy #include <string.h> // memcpy
#include <math.h> // fabsf #include <math.h> // fabsf
#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
#endif #endif
@ -45,7 +51,7 @@ extern "C" {
// 16-bit float // 16-bit float
// on Arm, we use __fp16 // on Arm, we use __fp16
// on x86, we use uint16_t // on x86, we use uint16_t
#if defined(__ARM_NEON) && !defined(_MSC_VER) #if defined(__ARM_NEON)
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example: // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
// //
@ -53,8 +59,262 @@ extern "C" {
// //
#include <arm_neon.h> #include <arm_neon.h>
#ifdef _MSC_VER
typedef uint16_t ggml_fp16_internal_t;
#define ggml_vld1q_u32(w,x,y,z) { ((w) + ((uint64_t)(x) << 32)), ((y) + ((uint64_t)(z) << 32)) }
#else
typedef __fp16 ggml_fp16_internal_t; typedef __fp16 ggml_fp16_internal_t;
#define ggml_vld1q_u32(w,x,y,z) { (w), (x), (y), (z) }
#endif // _MSC_VER
#if !defined(__aarch64__)
// 32-bit ARM compatibility
// vaddvq_s16
// vpaddq_s16
// vpaddq_s32
// vaddvq_s32
// vaddvq_f32
// vmaxvq_f32
// vcvtnq_s32_f32
// vzip1_u8
// vzip2_u8
inline static int32_t vaddvq_s16(int16x8_t v) {
return
(int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
(int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
(int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
(int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
}
inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
return vcombine_s16(a0, b0);
}
inline static int32x4_t vpaddq_s32(int32x4_t a, int32x4_t b) {
int32x2_t a0 = vpadd_s32(vget_low_s32(a), vget_high_s32(a));
int32x2_t b0 = vpadd_s32(vget_low_s32(b), vget_high_s32(b));
return vcombine_s32(a0, b0);
}
inline static int32_t vaddvq_s32(int32x4_t v) {
return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
}
inline static float vaddvq_f32(float32x4_t v) {
return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
}
inline static float vmaxvq_f32(float32x4_t v) {
return
MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
}
inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
int32x4_t res;
res[0] = roundf(vgetq_lane_f32(v, 0));
res[1] = roundf(vgetq_lane_f32(v, 1));
res[2] = roundf(vgetq_lane_f32(v, 2));
res[3] = roundf(vgetq_lane_f32(v, 3));
return res;
}
inline static uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
uint8x8_t res;
res[0] = a[0]; res[1] = b[0];
res[2] = a[1]; res[3] = b[1];
res[4] = a[2]; res[5] = b[2];
res[6] = a[3]; res[7] = b[3];
return res;
}
inline static uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
uint8x8_t res;
res[0] = a[4]; res[1] = b[4];
res[2] = a[5]; res[3] = b[5];
res[4] = a[6]; res[5] = b[6];
res[6] = a[7]; res[7] = b[7];
return res;
}
// vld1q_s16_x2
// vld1q_u8_x2
// vld1q_u8_x4
// vld1q_s8_x2
// vld1q_s8_x4
// TODO: double-check these work correctly
typedef struct ggml_int16x8x2_t {
int16x8_t val[2];
} ggml_int16x8x2_t;
inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) {
ggml_int16x8x2_t res;
res.val[0] = vld1q_s16(ptr + 0);
res.val[1] = vld1q_s16(ptr + 8);
return res;
}
typedef struct ggml_uint8x16x2_t {
uint8x16_t val[2];
} ggml_uint8x16x2_t;
inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) {
ggml_uint8x16x2_t res;
res.val[0] = vld1q_u8(ptr + 0);
res.val[1] = vld1q_u8(ptr + 16);
return res;
}
typedef struct ggml_uint8x16x4_t {
uint8x16_t val[4];
} ggml_uint8x16x4_t;
inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) {
ggml_uint8x16x4_t res;
res.val[0] = vld1q_u8(ptr + 0);
res.val[1] = vld1q_u8(ptr + 16);
res.val[2] = vld1q_u8(ptr + 32);
res.val[3] = vld1q_u8(ptr + 48);
return res;
}
typedef struct ggml_int8x16x2_t {
int8x16_t val[2];
} ggml_int8x16x2_t;
inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) {
ggml_int8x16x2_t res;
res.val[0] = vld1q_s8(ptr + 0);
res.val[1] = vld1q_s8(ptr + 16);
return res;
}
typedef struct ggml_int8x16x4_t {
int8x16_t val[4];
} ggml_int8x16x4_t;
inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
ggml_int8x16x4_t res;
res.val[0] = vld1q_s8(ptr + 0);
res.val[1] = vld1q_s8(ptr + 16);
res.val[2] = vld1q_s8(ptr + 32);
res.val[3] = vld1q_s8(ptr + 48);
return res;
}
// NOTE: not tested
inline static int8x16_t ggml_vqtbl1q_s8(int8x16_t a, uint8x16_t b) {
int8x16_t res;
res[ 0] = a[b[ 0]];
res[ 1] = a[b[ 1]];
res[ 2] = a[b[ 2]];
res[ 3] = a[b[ 3]];
res[ 4] = a[b[ 4]];
res[ 5] = a[b[ 5]];
res[ 6] = a[b[ 6]];
res[ 7] = a[b[ 7]];
res[ 8] = a[b[ 8]];
res[ 9] = a[b[ 9]];
res[10] = a[b[10]];
res[11] = a[b[11]];
res[12] = a[b[12]];
res[13] = a[b[13]];
res[14] = a[b[14]];
res[15] = a[b[15]];
return res;
}
// NOTE: not tested
inline static uint8x16_t ggml_vqtbl1q_u8(uint8x16_t a, uint8x16_t b) {
uint8x16_t res;
res[ 0] = a[b[ 0]];
res[ 1] = a[b[ 1]];
res[ 2] = a[b[ 2]];
res[ 3] = a[b[ 3]];
res[ 4] = a[b[ 4]];
res[ 5] = a[b[ 5]];
res[ 6] = a[b[ 6]];
res[ 7] = a[b[ 7]];
res[ 8] = a[b[ 8]];
res[ 9] = a[b[ 9]];
res[10] = a[b[10]];
res[11] = a[b[11]];
res[12] = a[b[12]];
res[13] = a[b[13]];
res[14] = a[b[14]];
res[15] = a[b[15]];
return res;
}
#else
#define ggml_int16x8x2_t int16x8x2_t
#define ggml_uint8x16x2_t uint8x16x2_t
#define ggml_uint8x16x4_t uint8x16x4_t
#define ggml_int8x16x2_t int8x16x2_t
#define ggml_int8x16x4_t int8x16x4_t
#define ggml_vld1q_s16_x2 vld1q_s16_x2
#define ggml_vld1q_u8_x2 vld1q_u8_x2
#define ggml_vld1q_u8_x4 vld1q_u8_x4
#define ggml_vld1q_s8_x2 vld1q_s8_x2
#define ggml_vld1q_s8_x4 vld1q_s8_x4
#define ggml_vqtbl1q_s8 vqtbl1q_s8
#define ggml_vqtbl1q_u8 vqtbl1q_u8
#endif // !defined(__aarch64__)
#if !defined(__ARM_FEATURE_DOTPROD)
inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) {
const int16x8_t p0 = vmull_s8(vget_low_s8 (a), vget_low_s8 (b));
const int16x8_t p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b));
return vaddq_s32(acc, vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1)));
}
#else
#define ggml_vdotq_s32(a, b, c) vdotq_s32(a, b, c)
#endif // !defined(__ARM_FEATURE_DOTPROD)
#endif // defined(__ARM_NEON)
#if defined(__ARM_NEON) && !defined(__MSC_VER)
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x) #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x) #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
@ -75,8 +335,6 @@ static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
#else #else
typedef uint16_t ggml_fp16_internal_t;
#ifdef __wasm_simd128__ #ifdef __wasm_simd128__
#include <wasm_simd128.h> #include <wasm_simd128.h>
#else #else
@ -88,7 +346,7 @@ typedef uint16_t ggml_fp16_internal_t;
#if defined(_MSC_VER) || defined(__MINGW32__) #if defined(_MSC_VER) || defined(__MINGW32__)
#include <intrin.h> #include <intrin.h>
#else #else
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) || defined(__SSE__)
#if !defined(__riscv) #if !defined(__riscv)
#include <immintrin.h> #include <immintrin.h>
#endif #endif
@ -221,7 +479,7 @@ static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
#endif // __F16C__ #endif // __F16C__
#endif // __ARM_NEON #endif // defined(__ARM_NEON) && (!defined(__MSC_VER)
// precomputed f32 table for f16 (256 KB) // precomputed f32 table for f16 (256 KB)
// defined in ggml.c, initialized in ggml_init() // defined in ggml.c, initialized in ggml_init()

View File

@ -37,11 +37,15 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_DIV_ROW, GGML_METAL_KERNEL_TYPE_DIV_ROW,
GGML_METAL_KERNEL_TYPE_SCALE, GGML_METAL_KERNEL_TYPE_SCALE,
GGML_METAL_KERNEL_TYPE_SCALE_4, GGML_METAL_KERNEL_TYPE_SCALE_4,
GGML_METAL_KERNEL_TYPE_CLAMP,
GGML_METAL_KERNEL_TYPE_TANH, GGML_METAL_KERNEL_TYPE_TANH,
GGML_METAL_KERNEL_TYPE_RELU, GGML_METAL_KERNEL_TYPE_RELU,
GGML_METAL_KERNEL_TYPE_GELU, GGML_METAL_KERNEL_TYPE_GELU,
GGML_METAL_KERNEL_TYPE_GELU_4,
GGML_METAL_KERNEL_TYPE_GELU_QUICK, GGML_METAL_KERNEL_TYPE_GELU_QUICK,
GGML_METAL_KERNEL_TYPE_GELU_QUICK_4,
GGML_METAL_KERNEL_TYPE_SILU, GGML_METAL_KERNEL_TYPE_SILU,
GGML_METAL_KERNEL_TYPE_SILU_4,
GGML_METAL_KERNEL_TYPE_SOFT_MAX, GGML_METAL_KERNEL_TYPE_SOFT_MAX,
GGML_METAL_KERNEL_TYPE_SOFT_MAX_4, GGML_METAL_KERNEL_TYPE_SOFT_MAX_4,
GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF, GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF,
@ -468,11 +472,15 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV_ROW, div_row, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV_ROW, div_row, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE, scale, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE, scale, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE_4, scale_4, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE_4, scale_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CLAMP, clamp, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TANH, tanh, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TANH, tanh, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RELU, relu, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RELU, relu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU, gelu, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU, gelu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_4, gelu_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK, gelu_quick, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK, gelu_quick, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK_4, gelu_quick_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU, silu, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU, silu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU_4, silu_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX, soft_max, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX, soft_max, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_4, soft_max_4, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_4, soft_max_4, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF, diag_mask_inf, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF, diag_mask_inf, true);
@ -713,6 +721,7 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
case GGML_OP_MUL: case GGML_OP_MUL:
case GGML_OP_DIV: case GGML_OP_DIV:
case GGML_OP_SCALE: case GGML_OP_SCALE:
case GGML_OP_CLAMP:
case GGML_OP_SQR: case GGML_OP_SQR:
case GGML_OP_SUM_ROWS: case GGML_OP_SUM_ROWS:
return true; return true;
@ -1152,10 +1161,32 @@ static enum ggml_status ggml_metal_graph_compute(
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&scale length:sizeof(scale) atIndex:2]; [encoder setBytes:&scale length:sizeof(scale) atIndex:2];
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_CLAMP:
{
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CLAMP].pipeline;
float min;
float max;
memcpy(&min, ((int32_t *) dst->op_params) + 0, sizeof(float));
memcpy(&max, ((int32_t *) dst->op_params) + 1, sizeof(float));
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&min length:sizeof(min) atIndex:2];
[encoder setBytes:&max length:sizeof(max) atIndex:3];
const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break; } break;
case GGML_OP_UNARY: case GGML_OP_UNARY:
switch (ggml_get_unary_op(gf->nodes[i])) { switch (ggml_get_unary_op(gf->nodes[i])) {
// we are not taking into account the strides, so for now require contiguous tensors
GGML_ASSERT(ggml_is_contiguous(src0));
case GGML_UNARY_OP_TANH: case GGML_UNARY_OP_TANH:
{ {
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TANH].pipeline; id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TANH].pipeline;
@ -1182,42 +1213,60 @@ static enum ggml_status ggml_metal_graph_compute(
} break; } break;
case GGML_UNARY_OP_GELU: case GGML_UNARY_OP_GELU:
{ {
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU].pipeline; int64_t n = ggml_nelements(dst);
id<MTLComputePipelineState> pipeline = nil;
if (n % 4 == 0) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_4].pipeline;
n /= 4;
} else {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU].pipeline;
}
[encoder setComputePipelineState:pipeline]; [encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
GGML_ASSERT(n % 4 == 0);
[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break; } break;
case GGML_UNARY_OP_GELU_QUICK: case GGML_UNARY_OP_GELU_QUICK:
{ {
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK].pipeline; int64_t n = ggml_nelements(dst);
id<MTLComputePipelineState> pipeline = nil;
if (n % 4 == 0) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK_4].pipeline;
n /= 4;
} else {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK].pipeline;
}
[encoder setComputePipelineState:pipeline]; [encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
GGML_ASSERT(n % 4 == 0);
[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break; } break;
case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_SILU:
{ {
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU].pipeline; int64_t n = ggml_nelements(dst);
id<MTLComputePipelineState> pipeline = nil;
if (n % 4 == 0) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU_4].pipeline;
n /= 4;
} else {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU].pipeline;
}
[encoder setComputePipelineState:pipeline]; [encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
GGML_ASSERT(n % 4 == 0);
[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break; } break;
default: default:
{ {
@ -1683,15 +1732,10 @@ static enum ggml_status ggml_metal_graph_compute(
} break; } break;
case GGML_OP_MUL_MAT_ID: case GGML_OP_MUL_MAT_ID:
{ {
//GGML_ASSERT(ne00 == ne10);
//GGML_ASSERT(ne03 == ne13);
const int n_as = src0->ne[2]; const int n_as = src0->ne[2];
// max size of the src1ids array in the kernel shared buffer
GGML_ASSERT(ne11 <= 4096);
// src2 = ids // src2 = ids
const int64_t ne20 = src2->ne[0]; GGML_UNUSED(ne20); const int64_t ne20 = src2->ne[0];
const int64_t ne21 = src2->ne[1]; const int64_t ne21 = src2->ne[1];
const int64_t ne22 = src2->ne[2]; GGML_UNUSED(ne22); const int64_t ne22 = src2->ne[2]; GGML_UNUSED(ne22);
const int64_t ne23 = src2->ne[3]; GGML_UNUSED(ne23); const int64_t ne23 = src2->ne[3]; GGML_UNUSED(ne23);
@ -1712,15 +1756,13 @@ static enum ggml_status ggml_metal_graph_compute(
// find the break-even point where the matrix-matrix kernel becomes more efficient compared // find the break-even point where the matrix-matrix kernel becomes more efficient compared
// to the matrix-vector kernel // to the matrix-vector kernel
int ne11_mm_min = n_as; // ne20 = n_used_experts
// ne21 = n_rows
const int dst_rows = ne20*ne21;
const int dst_rows_min = n_as;
const int idx = ((int32_t *) dst->op_params)[0]; // max size of the rowids array in the kernel shared buffer
GGML_ASSERT(dst_rows <= 2048);
// batch size
GGML_ASSERT(ne21 == ne11); // ?
GGML_ASSERT(ne12 == 1 && ne13 == 1); // no broadcasting
const uint r2 = 1;
const uint r3 = 1;
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs // for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel // AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
@ -1730,7 +1772,7 @@ static enum ggml_status ggml_metal_graph_compute(
// !!! // !!!
if ([ctx->device supportsFamily:MTLGPUFamilyApple7] && if ([ctx->device supportsFamily:MTLGPUFamilyApple7] &&
ne00 % 32 == 0 && ne00 >= 64 && ne00 % 32 == 0 && ne00 >= 64 &&
ne11 > ne11_mm_min) { dst_rows > dst_rows_min) {
// some Metal matrix data types require aligned pointers // some Metal matrix data types require aligned pointers
// ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (Table 2.5) // ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (Table 2.5)
@ -1772,26 +1814,26 @@ static enum ggml_status ggml_metal_graph_compute(
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:3]; [encoder setBuffer:id_src2 offset:offs_src2 atIndex:3];
[encoder setBytes:&nb21 length:sizeof(nb21) atIndex:4]; [encoder setBytes:&ne20 length:sizeof(ne20) atIndex:4];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:5]; [encoder setBytes:&ne21 length:sizeof(ne21) atIndex:5];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:6]; [encoder setBytes:&nb21 length:sizeof(nb21) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8]; [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:8];
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:9]; [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:9];
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:10]; [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:10];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:11]; [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:11];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:12]; [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:12];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:13]; [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:13];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:14]; [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:15]; [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:16]; [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16];
[encoder setBytes:&r2 length:sizeof(r2) atIndex:17]; [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:17];
[encoder setBytes:&r3 length:sizeof(r3) atIndex:18]; [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:18];
[encoder setBytes:&idx length:sizeof(idx) atIndex:19]; [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:19];
[encoder setThreadgroupMemoryLength:GGML_PAD(8192 + 2*ne11, 16) atIndex:0]; [encoder setThreadgroupMemoryLength:GGML_PAD(8192 + dst_rows*4/*sizeof(ushort2)*/, 16) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake((ne11 + 31)/32, (ne01 + 63)/64, n_as*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 31)/32, (ne01 + 63)/64, n_as) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
} else { } else {
int nth0 = 32; int nth0 = 32;
int nth1 = 1; int nth1 = 1;
@ -1926,7 +1968,12 @@ static enum ggml_status ggml_metal_graph_compute(
{ {
nth0 = 4; nth0 = 4;
nth1 = 16; nth1 = 16;
#if QK_K == 64
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32].pipeline;
#else
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32].pipeline; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32].pipeline;
#endif
} break; } break;
default: default:
{ {
@ -1939,72 +1986,72 @@ static enum ggml_status ggml_metal_graph_compute(
GGML_ASSERT(ne00 >= nth0*nth1); GGML_ASSERT(ne00 >= nth0*nth1);
} }
const int64_t _ne1 = 1; // kernels needs a reference in constant memory
[encoder setComputePipelineState:pipeline]; [encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:3]; [encoder setBuffer:id_src2 offset:offs_src2 atIndex:3];
[encoder setBytes:&nb21 length:sizeof(nb21) atIndex:4]; [encoder setBytes:&ne20 length:sizeof(ne20) atIndex:4];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:5]; [encoder setBytes:&ne21 length:sizeof(ne21) atIndex:5];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:6]; [encoder setBytes:&nb21 length:sizeof(nb21) atIndex:6];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:7]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:7];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:8]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:8];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:9]; [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:9];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:10]; [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:10];
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11]; [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:11];
[encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:12]; [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:12];
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13]; [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:13];
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14]; [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:14];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15]; [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:15];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16]; [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:16];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17]; [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:17];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:18]; [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:18];
[encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:19]; [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:19];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:20]; [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:20];
[encoder setBytes:&r2 length:sizeof(r2) atIndex:21]; [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:21];
[encoder setBytes:&r3 length:sizeof(r3) atIndex:22]; [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:22];
[encoder setBytes:&idx length:sizeof(idx) atIndex:23];
const int64_t _ne1 = 1;
const int tgz = dst_rows;
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q5_0 || if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q5_0 ||
src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 || src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 || src0t == GGML_TYPE_Q2_K ||
src0t == GGML_TYPE_IQ1_S || src0t == GGML_TYPE_IQ1_M || src0t == GGML_TYPE_IQ2_S) { src0t == GGML_TYPE_IQ1_S || src0t == GGML_TYPE_IQ1_M || src0t == GGML_TYPE_IQ2_S) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} }
else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) { else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) {
const int mem_size = src0t == GGML_TYPE_IQ2_XXS ? 256*8+128 : 512*8+128; const int mem_size = src0t == GGML_TYPE_IQ2_XXS ? 256*8+128 : 512*8+128;
[encoder setThreadgroupMemoryLength:mem_size atIndex:0]; [encoder setThreadgroupMemoryLength:mem_size atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} }
else if (src0t == GGML_TYPE_IQ3_XXS || src0t == GGML_TYPE_IQ3_S) { else if (src0t == GGML_TYPE_IQ3_XXS || src0t == GGML_TYPE_IQ3_S) {
const int mem_size = src0t == GGML_TYPE_IQ3_XXS ? 256*4+128 : 512*4; const int mem_size = src0t == GGML_TYPE_IQ3_XXS ? 256*4+128 : 512*4;
[encoder setThreadgroupMemoryLength:mem_size atIndex:0]; [encoder setThreadgroupMemoryLength:mem_size atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} }
else if (src0t == GGML_TYPE_IQ4_NL || src0t == GGML_TYPE_IQ4_XS) { else if (src0t == GGML_TYPE_IQ4_NL || src0t == GGML_TYPE_IQ4_XS) {
const int mem_size = 32*sizeof(float); const int mem_size = 32*sizeof(float);
[encoder setThreadgroupMemoryLength:mem_size atIndex:0]; [encoder setThreadgroupMemoryLength:mem_size atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} }
else if (src0t == GGML_TYPE_Q4_K) { else if (src0t == GGML_TYPE_Q4_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} }
else if (src0t == GGML_TYPE_Q3_K) { else if (src0t == GGML_TYPE_Q3_K) {
#ifdef GGML_QKK_64 #ifdef GGML_QKK_64
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
#else #else
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
#endif #endif
} }
else if (src0t == GGML_TYPE_Q5_K) { else if (src0t == GGML_TYPE_Q5_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} }
else if (src0t == GGML_TYPE_Q6_K) { else if (src0t == GGML_TYPE_Q6_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} else { } else {
const int64_t ny = (_ne1 + nrows - 1)/nrows; const int64_t ny = (_ne1 + nrows - 1)/nrows; // = _ne1
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} }
} }
} break; } break;

File diff suppressed because it is too large Load Diff

View File

@ -14,47 +14,6 @@
#include <stdlib.h> // for qsort #include <stdlib.h> // for qsort
#include <stdio.h> // for GGML_ASSERT #include <stdio.h> // for GGML_ASSERT
#ifdef __ARM_NEON
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
//
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
//
#include <arm_neon.h>
#else
#ifdef __wasm_simd128__
#include <wasm_simd128.h>
#else
#if defined(__POWER9_VECTOR__) || defined(__powerpc64__)
#include <altivec.h>
#undef bool
#define bool _Bool
#else
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <intrin.h>
#else
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
#if !defined(__riscv)
#include <immintrin.h>
#endif
#endif
#endif
#endif
#endif
#endif
#ifdef __riscv_v_intrinsic
#include <riscv_vector.h>
#endif
#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define UNUSED GGML_UNUSED #define UNUSED GGML_UNUSED
// some compilers don't provide _mm256_set_m128i, e.g. gcc 7 // some compilers don't provide _mm256_set_m128i, e.g. gcc 7
@ -132,7 +91,7 @@ static inline __m256 sum_i16_pairs_float(const __m256i x) {
} }
static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) { static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
#if defined(__AVXVNNI__) || defined(__AVX512VNNI__) #if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
const __m256i zero = _mm256_setzero_si256(); const __m256i zero = _mm256_setzero_si256();
const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy); const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
return _mm256_cvtepi32_ps(summed_pairs); return _mm256_cvtepi32_ps(summed_pairs);
@ -276,258 +235,6 @@ static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128
#endif // __AVX__ || __AVX2__ || __AVX512F__ #endif // __AVX__ || __AVX2__ || __AVX512F__
#endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
#if defined(__ARM_NEON)
#ifdef _MSC_VER
#define ggml_vld1q_u32(w,x,y,z) { ((w) + ((uint64_t)(x) << 32)), ((y) + ((uint64_t)(z) << 32)) }
#else
#define ggml_vld1q_u32(w,x,y,z) { (w), (x), (y), (z) }
#endif
#if !defined(__aarch64__)
// 64-bit compatibility
// vaddvq_s16
// vpaddq_s16
// vpaddq_s32
// vaddvq_s32
// vaddvq_f32
// vmaxvq_f32
// vcvtnq_s32_f32
// vzip1_u8
// vzip2_u8
inline static int32_t vaddvq_s16(int16x8_t v) {
return
(int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
(int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
(int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
(int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
}
inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
return vcombine_s16(a0, b0);
}
inline static int32x4_t vpaddq_s32(int32x4_t a, int32x4_t b) {
int32x2_t a0 = vpadd_s32(vget_low_s32(a), vget_high_s32(a));
int32x2_t b0 = vpadd_s32(vget_low_s32(b), vget_high_s32(b));
return vcombine_s32(a0, b0);
}
inline static int32_t vaddvq_s32(int32x4_t v) {
return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
}
inline static float vaddvq_f32(float32x4_t v) {
return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
}
inline static float vmaxvq_f32(float32x4_t v) {
return
MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
}
inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
int32x4_t res;
res[0] = roundf(vgetq_lane_f32(v, 0));
res[1] = roundf(vgetq_lane_f32(v, 1));
res[2] = roundf(vgetq_lane_f32(v, 2));
res[3] = roundf(vgetq_lane_f32(v, 3));
return res;
}
inline static uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
uint8x8_t res;
res[0] = a[0]; res[1] = b[0];
res[2] = a[1]; res[3] = b[1];
res[4] = a[2]; res[5] = b[2];
res[6] = a[3]; res[7] = b[3];
return res;
}
inline static uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
uint8x8_t res;
res[0] = a[4]; res[1] = b[4];
res[2] = a[5]; res[3] = b[5];
res[4] = a[6]; res[5] = b[6];
res[6] = a[7]; res[7] = b[7];
return res;
}
// vld1q_s16_x2
// vld1q_u8_x2
// vld1q_u8_x4
// vld1q_s8_x2
// vld1q_s8_x4
// TODO: double-check these work correctly
typedef struct ggml_int16x8x2_t {
int16x8_t val[2];
} ggml_int16x8x2_t;
inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) {
ggml_int16x8x2_t res;
res.val[0] = vld1q_s16(ptr + 0);
res.val[1] = vld1q_s16(ptr + 8);
return res;
}
typedef struct ggml_uint8x16x2_t {
uint8x16_t val[2];
} ggml_uint8x16x2_t;
inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) {
ggml_uint8x16x2_t res;
res.val[0] = vld1q_u8(ptr + 0);
res.val[1] = vld1q_u8(ptr + 16);
return res;
}
typedef struct ggml_uint8x16x4_t {
uint8x16_t val[4];
} ggml_uint8x16x4_t;
inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) {
ggml_uint8x16x4_t res;
res.val[0] = vld1q_u8(ptr + 0);
res.val[1] = vld1q_u8(ptr + 16);
res.val[2] = vld1q_u8(ptr + 32);
res.val[3] = vld1q_u8(ptr + 48);
return res;
}
typedef struct ggml_int8x16x2_t {
int8x16_t val[2];
} ggml_int8x16x2_t;
inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) {
ggml_int8x16x2_t res;
res.val[0] = vld1q_s8(ptr + 0);
res.val[1] = vld1q_s8(ptr + 16);
return res;
}
typedef struct ggml_int8x16x4_t {
int8x16_t val[4];
} ggml_int8x16x4_t;
inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
ggml_int8x16x4_t res;
res.val[0] = vld1q_s8(ptr + 0);
res.val[1] = vld1q_s8(ptr + 16);
res.val[2] = vld1q_s8(ptr + 32);
res.val[3] = vld1q_s8(ptr + 48);
return res;
}
// NOTE: not tested
inline static int8x16_t ggml_vqtbl1q_s8(int8x16_t a, uint8x16_t b) {
int8x16_t res;
res[ 0] = a[b[ 0]];
res[ 1] = a[b[ 1]];
res[ 2] = a[b[ 2]];
res[ 3] = a[b[ 3]];
res[ 4] = a[b[ 4]];
res[ 5] = a[b[ 5]];
res[ 6] = a[b[ 6]];
res[ 7] = a[b[ 7]];
res[ 8] = a[b[ 8]];
res[ 9] = a[b[ 9]];
res[10] = a[b[10]];
res[11] = a[b[11]];
res[12] = a[b[12]];
res[13] = a[b[13]];
res[14] = a[b[14]];
res[15] = a[b[15]];
return res;
}
// NOTE: not tested
inline static uint8x16_t ggml_vqtbl1q_u8(uint8x16_t a, uint8x16_t b) {
uint8x16_t res;
res[ 0] = a[b[ 0]];
res[ 1] = a[b[ 1]];
res[ 2] = a[b[ 2]];
res[ 3] = a[b[ 3]];
res[ 4] = a[b[ 4]];
res[ 5] = a[b[ 5]];
res[ 6] = a[b[ 6]];
res[ 7] = a[b[ 7]];
res[ 8] = a[b[ 8]];
res[ 9] = a[b[ 9]];
res[10] = a[b[10]];
res[11] = a[b[11]];
res[12] = a[b[12]];
res[13] = a[b[13]];
res[14] = a[b[14]];
res[15] = a[b[15]];
return res;
}
#else
#define ggml_int16x8x2_t int16x8x2_t
#define ggml_uint8x16x2_t uint8x16x2_t
#define ggml_uint8x16x4_t uint8x16x4_t
#define ggml_int8x16x2_t int8x16x2_t
#define ggml_int8x16x4_t int8x16x4_t
#define ggml_vld1q_s16_x2 vld1q_s16_x2
#define ggml_vld1q_u8_x2 vld1q_u8_x2
#define ggml_vld1q_u8_x4 vld1q_u8_x4
#define ggml_vld1q_s8_x2 vld1q_s8_x2
#define ggml_vld1q_s8_x4 vld1q_s8_x4
#define ggml_vqtbl1q_s8 vqtbl1q_s8
#define ggml_vqtbl1q_u8 vqtbl1q_u8
#endif
#if !defined(__ARM_FEATURE_DOTPROD)
inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) {
const int16x8_t p0 = vmull_s8(vget_low_s8 (a), vget_low_s8 (b));
const int16x8_t p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b));
return vaddq_s32(acc, vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1)));
}
#else
#define ggml_vdotq_s32(a, b, c) vdotq_s32(a, b, c)
#endif
#endif
#if defined(__ARM_NEON) || defined(__wasm_simd128__) #if defined(__ARM_NEON) || defined(__wasm_simd128__)
#define B1(c,s,n) 0x ## n ## c , 0x ## n ## s #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
#define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s) #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
@ -12676,3 +12383,287 @@ void quantize_row_iq2_s(const float * restrict x, void * restrict vy, int64_t k)
block_iq2_s * restrict y = vy; block_iq2_s * restrict y = vy;
quantize_row_iq2_s_reference(x, y, k); quantize_row_iq2_s_reference(x, y, k);
} }
static bool validate_float(float f, size_t i) {
if (isinf(f)) {
fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i);
return false;
}
if (isnan(f)) {
fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i);
return false;
}
return true;
}
static bool isinf_fp16(ggml_fp16_t f) {
return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) == 0;
}
static bool isnan_fp16(ggml_fp16_t f) {
return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) != 0;
}
static bool validate_fp16(ggml_fp16_t f, size_t i) {
if (isinf_fp16(f)) {
fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i);
return false;
}
if (isnan_fp16(f)) {
fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i);
return false;
}
return true;
}
#define VALIDATE_ROW_DATA_D_F16_IMPL(type, data, nb) \
const type * q = (const type *) (data); \
for (size_t i = 0; i < (nb); ++i) { \
if (!validate_fp16(q[i].d, i)) { \
return false; \
} \
}
#define VALIDATE_ROW_DATA_DM_F16_IMPL(type, data, nb, d, m) \
const type * q = (const type *) (data); \
for (size_t i = 0; i < (nb); ++i) { \
if (!validate_fp16(q[i].d, i) || !validate_fp16(q[i].m, i)) { \
return false; \
} \
}
bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes) {
if (type < 0 || type >= GGML_TYPE_COUNT) {
fprintf(stderr, "%s: invalid type %d\n", __func__, type);
return false;
}
if (nbytes % ggml_type_size(type) != 0) {
fprintf(stderr, "%s: invalid size %zu for type %d\n", __func__, nbytes, type);
return false;
}
const size_t nb = nbytes/ggml_type_size(type);
switch (type) {
case GGML_TYPE_F16:
{
const ggml_fp16_t * f = (const ggml_fp16_t *) data;
size_t i = 0;
#if defined(__AVX2__)
for (; i + 15 < nb; i += 16) {
__m256i v = _mm256_loadu_si256((const __m256i *)(f + i));
__m256i vexp = _mm256_and_si256(v, _mm256_set1_epi16(0x7c00));
__m256i cmp = _mm256_cmpeq_epi16(vexp, _mm256_set1_epi16(0x7c00));
int mask = _mm256_movemask_epi8(cmp);
if (mask) {
for (size_t j = 0; j < 16; ++j) {
if (!validate_fp16(f[i + j], i + j)) {
return false;
}
}
GGML_UNREACHABLE();
}
}
#elif defined(__ARM_NEON)
for (; i + 7 < nb; i += 8) {
uint16x8_t v = vld1q_u16(f + i);
uint16x8_t vexp = vandq_u16(v, vdupq_n_u16(0x7c00));
uint16x8_t cmp = vceqq_u16(vexp, vdupq_n_u16(0x7c00));
uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(vshrn_n_u16(cmp, 4)), 0);
if (mask) {
for (size_t j = 0; j < 8; ++j) {
if (!validate_fp16(f[i + j], i + j)) {
return false;
}
}
GGML_UNREACHABLE();
}
}
#endif
for (; i < nb; ++i) {
if (!validate_fp16(f[i], i)) {
return false;
}
}
} break;
case GGML_TYPE_F32:
{
const float * f = (const float *) data;
size_t i = 0;
#if defined(__AVX2__)
for (; i + 7 < nb; i += 8) {
__m256i v = _mm256_loadu_si256((const __m256i *)(f + i));
__m256i vexp = _mm256_and_si256(v, _mm256_set1_epi32(0x7f800000));
__m256i cmp = _mm256_cmpeq_epi32(vexp, _mm256_set1_epi32(0x7f800000));
int mask = _mm256_movemask_epi8(cmp);
if (mask) {
for (size_t j = 0; j < 8; ++j) {
if (!validate_float(f[i + j], i + j)) {
return false;
}
}
GGML_UNREACHABLE();
}
}
#elif defined(__ARM_NEON)
for (; i + 3 < nb; i += 4) {
uint32x4_t v = vld1q_u32((const uint32_t *)f + i);
uint32x4_t vexp = vandq_u32(v, vdupq_n_u32(0x7f800000));
uint32x4_t cmp = vceqq_u32(vexp, vdupq_n_u32(0x7f800000));
uint64_t mask = vget_lane_u64(vreinterpret_u64_u16(vshrn_n_u32(cmp, 8)), 0);
if (mask) {
for (size_t j = 0; j < 4; ++j) {
if (!validate_float(f[i + j], i + j)) {
return false;
}
}
GGML_UNREACHABLE();
}
}
#endif
for (; i < nb; ++i) {
if (!validate_float(f[i], i)) {
return false;
}
}
} break;
case GGML_TYPE_F64:
{
const double * f = (const double *) data;
for (size_t i = 0; i < nb; ++i) {
if (!validate_float(f[i], i)) {
return false;
}
}
} break;
case GGML_TYPE_Q4_0:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_q4_0, data, nb);
} break;
case GGML_TYPE_Q4_1:
{
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_1, data, nb, d, m);
} break;
case GGML_TYPE_Q5_0:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_q5_0, data, nb);
} break;
case GGML_TYPE_Q5_1:
{
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_1, data, nb, d, m);
} break;
case GGML_TYPE_Q8_0:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_q8_0, data, nb);
} break;
case GGML_TYPE_Q2_K:
{
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q2_K, data, nb, d, dmin);
} break;
case GGML_TYPE_Q3_K:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_q3_K, data, nb);
} break;
case GGML_TYPE_Q4_K:
{
#ifdef GGML_QKK_64
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_K, data, nb, d[0], d[1]);
#else
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_K, data, nb, d, dmin);
#endif
} break;
case GGML_TYPE_Q5_K:
{
#ifdef GGML_QKK_64
VALIDATE_ROW_DATA_D_F16_IMPL(block_q5_K, data, nb);
#else
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_K, data, nb, d, dmin);
#endif
} break;
case GGML_TYPE_Q6_K:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_q6_K, data, nb);
} break;
case GGML_TYPE_Q8_K:
{
const block_q8_K * q = (const block_q8_K *) data;
for (size_t i = 0; i < nb; ++i) {
if (!validate_float(q[i].d, i)) {
return false;
}
}
} break;
case GGML_TYPE_IQ1_S:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq1_s, data, nb);
} break;
case GGML_TYPE_IQ1_M:
{
const block_iq1_m * q = (const block_iq1_m *) data;
for (size_t i = 0; i < nb; ++i) {
#if QK_K == 64
if (!validate_fp16(q[i].d, i)) {
return false;
}
#else
iq1m_scale_t scale;
const uint16_t * sc = (const uint16_t *)q[i].scales;
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
if (!validate_fp16(scale.f16, i)) {
return false;
}
#endif
}
} break;
case GGML_TYPE_IQ2_XXS:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xxs, data, nb);
} break;
case GGML_TYPE_IQ2_XS:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xs, data, nb);
} break;
case GGML_TYPE_IQ2_S:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_s, data, nb);
} break;
case GGML_TYPE_IQ3_XXS:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_xxs, data, nb);
} break;
case GGML_TYPE_IQ3_S:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_s, data, nb);
} break;
case GGML_TYPE_IQ4_XS:
#if QK_K != 64
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_xs, data, nb);
} break;
#endif
// with QK_K == 64, iq4_xs is iq4_nl
case GGML_TYPE_IQ4_NL:
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_nl, data, nb);
} break;
case GGML_TYPE_I8:
case GGML_TYPE_I16:
case GGML_TYPE_I32:
case GGML_TYPE_I64:
// nothing to validate
break;
default:
{
fprintf(stderr, "%s: invalid type %d\n", __func__, type);
return false;
}
}
return true;
}

Some files were not shown because too many files have changed in this diff Show More