mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-14 06:49:54 +00:00
Add llama_token_in_embd function to embed input tokens
This commit is contained in:
parent
9aecd38a8d
commit
c702e55930
@ -960,6 +960,19 @@ extern "C" {
|
||||
bool remove_special,
|
||||
bool unparse_special);
|
||||
|
||||
|
||||
// @details Get the input embeddings for a sequence of tokens
|
||||
// @param tokens The tokens to embed
|
||||
// @param n_tokens The number of tokens
|
||||
// @param embeddings The embeddings pointer must be large enough to hold the resulting embeddings.
|
||||
// @param n_embd The number of embeddings per token
|
||||
// @return Returns a negative number on failure
|
||||
LLAMA_API int32_t llama_token_inp_embd(
|
||||
struct llama_context * ctx,
|
||||
llama_token * tokens,
|
||||
int32_t n_tokens,
|
||||
float * embeddings);
|
||||
|
||||
//
|
||||
// Chat templates
|
||||
//
|
||||
|
@ -21334,6 +21334,63 @@ int32_t llama_detokenize(
|
||||
return llama_detokenize_impl(model->vocab, tokens, n_tokens, text, text_len_max, remove_special, unparse_special);
|
||||
}
|
||||
|
||||
int32_t llama_token_inp_embd(struct llama_context * ctx, llama_token * tokens, int32_t n_tokens, float * embeddings) {
|
||||
int32_t n_embd = llama_n_embd(&ctx->model);
|
||||
const struct llama_hparams & hparams = ctx->model.hparams;
|
||||
llama_ubatch batch = {};
|
||||
batch.token = tokens;
|
||||
batch.n_tokens = n_tokens;
|
||||
llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
|
||||
ggml_backend_cpu_set_n_threads(ctx->backend_cpu, ctx->cparams.n_threads);
|
||||
if (ctx->threadpool) {
|
||||
ggml_backend_cpu_set_threadpool(ctx->backend_cpu, ctx->threadpool);
|
||||
}
|
||||
|
||||
ggml_init_params params = ggml_init_params{
|
||||
GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead(),
|
||||
nullptr,
|
||||
true
|
||||
};
|
||||
|
||||
ggml_context * ctx0 = ggml_init(params);
|
||||
if (!ctx0) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
ggml_tensor * output = llm_build_inp_embd(
|
||||
ctx0,
|
||||
*ctx,
|
||||
hparams,
|
||||
batch,
|
||||
ctx->model.tok_embd,
|
||||
cb
|
||||
);
|
||||
|
||||
ggml_backend_buffer_type_t buffer_type = ggml_backend_get_default_buffer_type(ctx->backend_cpu);
|
||||
ggml_gallocr_t graph_allocator = ggml_gallocr_new(buffer_type);
|
||||
ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||
|
||||
ggml_set_output(output);
|
||||
ggml_build_forward_expand(gf, output);
|
||||
|
||||
if (!ggml_gallocr_reserve(graph_allocator, gf) || !ggml_gallocr_alloc_graph(graph_allocator, gf)) {
|
||||
ggml_gallocr_free(graph_allocator);
|
||||
ggml_free(ctx0);
|
||||
return -1;
|
||||
}
|
||||
|
||||
ggml_backend_tensor_set(ctx->inp_tokens, tokens, 0, n_tokens * sizeof(int32_t));
|
||||
|
||||
ggml_backend_graph_compute(ctx->backend_cpu, gf);
|
||||
|
||||
ggml_backend_tensor_get(output, embeddings, 0, n_tokens * n_embd * sizeof(float));
|
||||
|
||||
ggml_gallocr_free(graph_allocator);
|
||||
ggml_free(ctx0);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
//
|
||||
// chat templates
|
||||
//
|
||||
|
Loading…
Reference in New Issue
Block a user