diff --git a/examples/simple/CMakeLists.txt b/examples/simple/CMakeLists.txt index 070cfbe7a..b63afbb8b 100644 --- a/examples/simple/CMakeLists.txt +++ b/examples/simple/CMakeLists.txt @@ -1,5 +1,5 @@ set(TARGET llama-simple) add_executable(${TARGET} simple.cpp) install(TARGETS ${TARGET} RUNTIME) -target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) +target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT}) target_compile_features(${TARGET} PRIVATE cxx_std_11) diff --git a/examples/simple/simple.cpp b/examples/simple/simple.cpp index c2b7267c8..be91b2891 100644 --- a/examples/simple/simple.cpp +++ b/examples/simple/simple.cpp @@ -1,50 +1,112 @@ -#include "arg.h" -#include "common.h" -#include "log.h" #include "llama.h" - +#include +#include +#include #include static void print_usage(int, char ** argv) { - LOG("\nexample usage:\n"); - LOG("\n %s -m model.gguf -p \"Hello my name is\" -n 32\n", argv[0]); - LOG("\n"); + printf("\nexample usage:\n"); + printf("\n %s -m model.gguf [-n n_predict] [-ngl n_gpu_layers] [prompt]\n", argv[0]); + printf("\n"); } int main(int argc, char ** argv) { - gpt_params params; + // path to the model gguf file + std::string model_path; + // prompt to generate text from + std::string prompt = "Hello my name is"; + // number of layers to offload to the GPU + int ngl = 99; + // number of tokens to predict + int n_predict = 32; - params.prompt = "Hello my name is"; - params.n_predict = 32; + // parse command line arguments - if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) { - return 1; + { + int i = 1; + for (; i < argc; i++) { + if (strcmp(argv[i], "-m") == 0) { + if (i + 1 < argc) { + model_path = argv[++i]; + } else { + print_usage(argc, argv); + return 1; + } + } else if (strcmp(argv[i], "-n") == 0) { + if (i + 1 < argc) { + try { + n_predict = std::stoi(argv[++i]); + } catch (...) { + print_usage(argc, argv); + return 1; + } + } else { + print_usage(argc, argv); + return 1; + } + } else if (strcmp(argv[i], "-ngl") == 0) { + if (i + 1 < argc) { + try { + ngl = std::stoi(argv[++i]); + } catch (...) { + print_usage(argc, argv); + return 1; + } + } else { + print_usage(argc, argv); + return 1; + } + } else { + // prompt starts here + break; + } + } + if (model_path.empty()) { + print_usage(argc, argv); + return 1; + } + if (i < argc) { + prompt = argv[i++]; + for (; i < argc; i++) { + prompt += " "; + prompt += argv[i]; + } + } } - gpt_init(); - - // total length of the sequence including the prompt - const int n_predict = params.n_predict; - - // init LLM - - llama_backend_init(); - llama_numa_init(params.numa); - // initialize the model - llama_model_params model_params = llama_model_params_from_gpt_params(params); + llama_model_params model_params = llama_model_default_params(); + model_params.n_gpu_layers = ngl; - llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); + llama_model * model = llama_load_model_from_file(model_path.c_str(), model_params); if (model == NULL) { fprintf(stderr , "%s: error: unable to load model\n" , __func__); return 1; } + // tokenize the prompt + + // find the number of tokens in the prompt + const int n_prompt = -llama_tokenize(model, prompt.c_str(), prompt.size(), NULL, 0, true, true); + + // allocate space for the tokens and tokenize the prompt + std::vector prompt_tokens(n_prompt); + if (llama_tokenize(model, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) { + fprintf(stderr, "%s: error: failed to tokenize the prompt\n", __func__); + return 1; + } + // initialize the context - llama_context_params ctx_params = llama_context_params_from_gpt_params(params); + llama_context_params ctx_params = llama_context_default_params(); + // n_ctx is the context size + ctx_params.n_ctx = n_prompt + n_predict - 1; + // n_batch is the maximum number of tokens that can be processed in a single call to llama_decode + ctx_params.n_batch = n_prompt; + // enable performance counters + ctx_params.no_perf = false; llama_context * ctx = llama_new_context_with_model(model, ctx_params); @@ -53,117 +115,87 @@ int main(int argc, char ** argv) { return 1; } + // initialize the sampler + auto sparams = llama_sampler_chain_default_params(); - sparams.no_perf = false; - llama_sampler * smpl = llama_sampler_chain_init(sparams); llama_sampler_chain_add(smpl, llama_sampler_init_greedy()); - // tokenize the prompt - - std::vector tokens_list; - tokens_list = ::llama_tokenize(ctx, params.prompt, true); - - const int n_ctx = llama_n_ctx(ctx); - const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size()); - - LOG("\n"); - LOG_INF("%s: n_predict = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, n_kv_req); - - // make sure the KV cache is big enough to hold all the prompt and generated tokens - if (n_kv_req > n_ctx) { - LOG_ERR("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__); - LOG_ERR("%s: either reduce n_predict or increase n_ctx\n", __func__); - return 1; - } - // print the prompt token-by-token - LOG("\n"); - - for (auto id : tokens_list) { - LOG("%s", llama_token_to_piece(ctx, id).c_str()); + for (auto id : prompt_tokens) { + char buf[128]; + int n = llama_token_to_piece(model, id, buf, sizeof(buf), 0, true); + if (n < 0) { + fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__); + return 1; + } + std::string s(buf, n); + printf("%s", s.c_str()); } - // create a llama_batch with size 512 - // we use this object to submit token data for decoding + // prepare a batch for the prompt - llama_batch batch = llama_batch_init(512, 0, 1); - - // evaluate the initial prompt - for (size_t i = 0; i < tokens_list.size(); i++) { - llama_batch_add(batch, tokens_list[i], i, { 0 }, false); - } - - // llama_decode will output logits only for the last token of the prompt - batch.logits[batch.n_tokens - 1] = true; - - if (llama_decode(ctx, batch) != 0) { - LOG("%s: llama_decode() failed\n", __func__); - return 1; - } + llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size(), 0, 0); // main loop - int n_cur = batch.n_tokens; - int n_decode = 0; - const auto t_main_start = ggml_time_us(); + int n_decode = 0; + llama_token new_token_id; + + for (int n_pos = 0; n_pos + batch.n_tokens < n_prompt + n_predict; ) { + // evaluate the current batch with the transformer model + if (llama_decode(ctx, batch)) { + fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1); + return 1; + } + + n_pos += batch.n_tokens; - while (n_cur <= n_predict) { // sample the next token { - const llama_token new_token_id = llama_sampler_sample(smpl, ctx, -1); + new_token_id = llama_sampler_sample(smpl, ctx, -1); // is it an end of generation? - if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) { - LOG("\n"); - + if (llama_token_is_eog(model, new_token_id)) { break; } - LOG("%s", llama_token_to_piece(ctx, new_token_id).c_str()); + char buf[128]; + int n = llama_token_to_piece(model, new_token_id, buf, sizeof(buf), 0, true); + if (n < 0) { + fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__); + return 1; + } + std::string s(buf, n); + printf("%s", s.c_str()); fflush(stdout); - // prepare the next batch - llama_batch_clear(batch); - - // push this new token for next evaluation - llama_batch_add(batch, new_token_id, n_cur, { 0 }, true); + // prepare the next batch with the sampled token + batch = llama_batch_get_one(&new_token_id, 1, n_pos, 0); n_decode += 1; } - - n_cur += 1; - - // evaluate the current batch with the transformer model - if (llama_decode(ctx, batch)) { - LOG_ERR("%s : failed to eval, return code %d\n", __func__, 1); - return 1; - } } - LOG("\n"); + printf("\n"); const auto t_main_end = ggml_time_us(); - LOG_INF("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n", + fprintf(stderr, "%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n", __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f)); - LOG("\n"); + fprintf(stderr, "\n"); llama_perf_sampler_print(smpl); llama_perf_context_print(ctx); + fprintf(stderr, "\n"); - LOG("\n"); - - llama_batch_free(batch); llama_sampler_free(smpl); llama_free(ctx); llama_free_model(model); - llama_backend_free(); - return 0; }