mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-13 12:10:18 +00:00
Merge branch 'master' of https://github.com/ggerganov/llama.cpp into ceb/fix-cuda-warning-flags
This commit is contained in:
commit
c8554b80be
@ -639,6 +639,11 @@ else()
|
||||
message(STATUS "Unknown architecture")
|
||||
endif()
|
||||
|
||||
if (MINGW)
|
||||
# Target Windows 8 for PrefetchVirtualMemory
|
||||
add_compile_definitions(_WIN32_WINNT=0x602)
|
||||
endif()
|
||||
|
||||
#
|
||||
# POSIX conformance
|
||||
#
|
||||
|
18
Makefile
18
Makefile
@ -268,12 +268,15 @@ ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686 amd64))
|
||||
#MK_CXXFLAGS += -mssse3
|
||||
endif
|
||||
|
||||
ifneq '' '$(findstring mingw,$(shell $(CC) -dumpmachine))'
|
||||
# The stack is only 16-byte aligned on Windows, so don't let gcc emit aligned moves.
|
||||
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54412
|
||||
# https://github.com/ggerganov/llama.cpp/issues/2922
|
||||
ifneq '' '$(findstring mingw,$(shell $(CC) -dumpmachine))'
|
||||
MK_CFLAGS += -Xassembler -muse-unaligned-vector-move
|
||||
MK_CXXFLAGS += -Xassembler -muse-unaligned-vector-move
|
||||
|
||||
# Target Windows 8 for PrefetchVirtualMemory
|
||||
MK_CPPFLAGS += -D_WIN32_WINNT=0x602
|
||||
endif
|
||||
|
||||
ifneq ($(filter aarch64%,$(UNAME_M)),)
|
||||
@ -358,6 +361,11 @@ ifdef LLAMA_CUBLAS
|
||||
MK_LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib
|
||||
OBJS += ggml-cuda.o
|
||||
MK_NVCCFLAGS = --forward-unknown-to-host-compiler -use_fast_math
|
||||
|
||||
ifdef LLAMA_DEBUG
|
||||
MK_NVCCFLAGS += -lineinfo
|
||||
endif
|
||||
|
||||
ifdef LLAMA_CUDA_NVCC
|
||||
NVCC = $(LLAMA_CUDA_NVCC)
|
||||
else
|
||||
@ -696,16 +704,16 @@ tests/test-quantize-perf: tests/test-quantize-perf.cpp ggml.o $(OBJS)
|
||||
tests/test-sampling: tests/test-sampling.cpp ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-tokenizer-1-bpe: tests/test-tokenizer-1-bpe.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
tests/test-tokenizer-1-bpe: tests/test-tokenizer-1-bpe.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-rope: tests/test-rope.cpp ggml.o $(OBJS)
|
||||
|
@ -10,6 +10,7 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
|
||||
|
||||
### Hot topics
|
||||
|
||||
- Added Mixtral support: https://github.com/ggerganov/llama.cpp/pull/4406
|
||||
- **llama.h API change for handling KV cache offloading and data type: https://github.com/ggerganov/llama.cpp/pull/4309**
|
||||
- Using `llama.cpp` with AWS instances: https://github.com/ggerganov/llama.cpp/discussions/4225
|
||||
- Looking for contributions to improve and maintain the `server` example: https://github.com/ggerganov/llama.cpp/issues/4216
|
||||
|
@ -656,6 +656,10 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
} else if (arg == "-h" || arg == "--help") {
|
||||
return false;
|
||||
|
||||
} else if (arg == "--version") {
|
||||
fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
|
||||
fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
|
||||
exit(0);
|
||||
} else if (arg == "--random-prompt") {
|
||||
params.random_prompt = true;
|
||||
} else if (arg == "--in-prefix-bos") {
|
||||
@ -794,6 +798,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf("\n");
|
||||
printf("options:\n");
|
||||
printf(" -h, --help show this help message and exit\n");
|
||||
printf(" --version show version and build info\n");
|
||||
printf(" -i, --interactive run in interactive mode\n");
|
||||
printf(" --interactive-first run in interactive mode and wait for input right away\n");
|
||||
printf(" -ins, --instruct run in instruction mode (use with Alpaca models)\n");
|
||||
|
@ -61,13 +61,13 @@
|
||||
// #define LOG_TARGET stderr
|
||||
// #include "log.h"
|
||||
//
|
||||
// The log target can also be redirected to a diffrent function
|
||||
// The log target can also be redirected to a different function
|
||||
// like so:
|
||||
//
|
||||
// #define LOG_TARGET log_handler_diffrent()
|
||||
// #define LOG_TARGET log_handler_different()
|
||||
// #include "log.h"
|
||||
//
|
||||
// FILE* log_handler_diffrent()
|
||||
// FILE* log_handler_different()
|
||||
// {
|
||||
// return stderr;
|
||||
// }
|
||||
@ -421,7 +421,7 @@ inline FILE *log_handler2_impl(bool change = false, LogTriState append = LogTriS
|
||||
|
||||
// Disables logs entirely at runtime.
|
||||
// Makes LOG() and LOG_TEE() produce no output,
|
||||
// untill enabled back.
|
||||
// until enabled back.
|
||||
#define log_disable() log_disable_impl()
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
|
@ -77,8 +77,18 @@ class Model:
|
||||
self.gguf_writer.add_embedding_length(n_embd)
|
||||
if (n_ff := self.hparams.get("intermediate_size")) is not None:
|
||||
self.gguf_writer.add_feed_forward_length(n_ff)
|
||||
if (n_head := self.hparams.get("num_attention_head")) is not None:
|
||||
if (n_head := self.hparams.get("num_attention_heads")) is not None:
|
||||
self.gguf_writer.add_head_count(n_head)
|
||||
if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
|
||||
self.gguf_writer.add_head_count_kv(n_head_kv)
|
||||
|
||||
if (n_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
|
||||
self.gguf_writer.add_layer_norm_rms_eps(n_rms_eps)
|
||||
if (n_experts := self.hparams.get("num_local_experts")) is not None:
|
||||
self.gguf_writer.add_expert_count(n_experts)
|
||||
if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
|
||||
self.gguf_writer.add_expert_used_count(n_experts_used)
|
||||
|
||||
self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
|
||||
|
||||
def write_tensors(self):
|
||||
@ -170,6 +180,8 @@ class Model:
|
||||
return StableLMModel
|
||||
if model_architecture == "QWenLMHeadModel":
|
||||
return QwenModel
|
||||
if model_architecture == "MixtralForCausalLM":
|
||||
return MixtralModel
|
||||
return Model
|
||||
|
||||
def _is_model_safetensors(self) -> bool:
|
||||
@ -207,6 +219,8 @@ class Model:
|
||||
return gguf.MODEL_ARCH.STABLELM
|
||||
if arch == "QWenLMHeadModel":
|
||||
return gguf.MODEL_ARCH.QWEN
|
||||
if arch == "MixtralForCausalLM":
|
||||
return gguf.MODEL_ARCH.LLAMA
|
||||
|
||||
raise NotImplementedError(f'Architecture "{arch}" not supported!')
|
||||
|
||||
@ -837,6 +851,11 @@ class StableLMModel(Model):
|
||||
self.gguf_writer.add_layer_norm_eps(1e-5)
|
||||
|
||||
|
||||
class MixtralModel(Model):
|
||||
def set_vocab(self):
|
||||
self._set_vocab_sentencepiece()
|
||||
|
||||
|
||||
class QwenModel(Model):
|
||||
@staticmethod
|
||||
def token_bytes_to_string(b):
|
||||
|
52
convert.py
52
convert.py
@ -42,6 +42,7 @@ NDArray: TypeAlias = 'np.ndarray[Any, Any]'
|
||||
ARCH = gguf.MODEL_ARCH.LLAMA
|
||||
|
||||
DEFAULT_CONCURRENCY = 8
|
||||
|
||||
#
|
||||
# data types
|
||||
#
|
||||
@ -158,7 +159,9 @@ class Params:
|
||||
n_ff: int
|
||||
n_head: int
|
||||
n_head_kv: int
|
||||
f_norm_eps: float
|
||||
n_experts: int | None = None
|
||||
n_experts_used: int | None = None
|
||||
f_norm_eps: float | None = None
|
||||
|
||||
rope_scaling_type: gguf.RopeScalingType | None = None
|
||||
f_rope_freq_base: float | None = None
|
||||
@ -233,6 +236,13 @@ class Params:
|
||||
raise Exception("failed to guess 'n_ctx'. This model is unknown or unsupported.\n"
|
||||
"Suggestion: provide 'config.json' of the model in the same directory containing model files.")
|
||||
|
||||
n_experts = None
|
||||
n_experts_used = None
|
||||
|
||||
if "num_local_experts" in config:
|
||||
n_experts = config["num_local_experts"]
|
||||
n_experts_used = config["num_experts_per_tok"]
|
||||
|
||||
return Params(
|
||||
n_vocab = config["vocab_size"],
|
||||
n_embd = config["hidden_size"],
|
||||
@ -241,6 +251,8 @@ class Params:
|
||||
n_ff = config["intermediate_size"],
|
||||
n_head = (n_head := config["num_attention_heads"]),
|
||||
n_head_kv = config.get("num_key_value_heads", n_head),
|
||||
n_experts = n_experts,
|
||||
n_experts_used = n_experts_used,
|
||||
f_norm_eps = config["rms_norm_eps"],
|
||||
f_rope_freq_base = config.get("rope_theta"),
|
||||
rope_scaling_type = rope_scaling_type,
|
||||
@ -255,8 +267,15 @@ class Params:
|
||||
def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params:
|
||||
config = json.load(open(config_path))
|
||||
|
||||
n_experts = None
|
||||
n_experts_used = None
|
||||
f_rope_freq_base = None
|
||||
|
||||
# hack to determine LLaMA v1 vs v2 vs CodeLlama
|
||||
if config.get("rope_theta") == 1000000:
|
||||
if config.get("moe"):
|
||||
# Mixtral
|
||||
n_ctx = 32768
|
||||
elif config.get("rope_theta") == 1000000:
|
||||
# CodeLlama
|
||||
n_ctx = 16384
|
||||
elif config["norm_eps"] == 1e-05:
|
||||
@ -266,16 +285,27 @@ class Params:
|
||||
# LLaMA v1
|
||||
n_ctx = 2048
|
||||
|
||||
if "layers.0.feed_forward.w1.weight" in model:
|
||||
n_ff = model["layers.0.feed_forward.w1.weight"].shape[0]
|
||||
|
||||
if config.get("moe"):
|
||||
n_ff = model["layers.0.feed_forward.experts.0.w1.weight"].shape[0]
|
||||
n_experts = config["moe"]["num_experts"]
|
||||
n_experts_used = config["moe"]["num_experts_per_tok"]
|
||||
f_rope_freq_base = 1e6
|
||||
|
||||
return Params(
|
||||
n_vocab = model["tok_embeddings.weight"].shape[0],
|
||||
n_embd = config["dim"],
|
||||
n_layer = config["n_layers"],
|
||||
n_ctx = n_ctx,
|
||||
n_ff = model["layers.0.feed_forward.w1.weight"].shape[0],
|
||||
n_ff = n_ff,
|
||||
n_head = (n_head := config["n_heads"]),
|
||||
n_head_kv = config.get("n_kv_heads", n_head),
|
||||
n_experts = n_experts,
|
||||
n_experts_used = n_experts_used,
|
||||
f_norm_eps = config["norm_eps"],
|
||||
f_rope_freq_base = config.get("rope_theta"),
|
||||
f_rope_freq_base = config.get("rope_theta", f_rope_freq_base),
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
@ -585,7 +615,7 @@ def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus:
|
||||
|
||||
if any("model.embed_tokens.weight" in mp.model for mp in models_plus):
|
||||
# Transformers models put different tensors in different files, but
|
||||
# don't split indivdual tensors between files.
|
||||
# don't split individual tensors between files.
|
||||
model: LazyModel = {}
|
||||
for mp in models_plus:
|
||||
model.update(mp.model)
|
||||
@ -678,7 +708,7 @@ class LazyUnpickler(pickle.Unpickler):
|
||||
return func(*args)
|
||||
|
||||
CLASSES: dict[tuple[str, str], Any] = {
|
||||
# getattr used here as a workaround for mypy not being smart enough to detrmine
|
||||
# getattr used here as a workaround for mypy not being smart enough to determine
|
||||
# the staticmethods have a __func__ attribute.
|
||||
('torch._tensor', '_rebuild_from_type_v2'): getattr(rebuild_from_type_v2, '__func__'),
|
||||
('torch._utils', '_rebuild_tensor_v2'): getattr(lazy_rebuild_tensor_v2, '__func__'),
|
||||
@ -832,7 +862,17 @@ class OutputFile:
|
||||
self.gguf.add_rope_dimension_count(params.n_embd // params.n_head)
|
||||
self.gguf.add_head_count (params.n_head)
|
||||
self.gguf.add_head_count_kv (params.n_head_kv)
|
||||
|
||||
if params.n_experts:
|
||||
self.gguf.add_expert_count(params.n_experts)
|
||||
|
||||
if params.n_experts_used:
|
||||
self.gguf.add_expert_used_count(params.n_experts_used)
|
||||
|
||||
if params.f_norm_eps:
|
||||
self.gguf.add_layer_norm_rms_eps(params.f_norm_eps)
|
||||
else:
|
||||
raise ValueError('f_norm_eps is None')
|
||||
|
||||
if params.f_rope_freq_base is not None:
|
||||
self.gguf.add_rope_freq_base(params.f_rope_freq_base)
|
||||
|
@ -739,7 +739,7 @@ bool clip_image_preprocess(const clip_ctx * ctx, const clip_image_u8 * img, clip
|
||||
temp->ny = longer_side;
|
||||
temp->size = 3 * longer_side * longer_side;
|
||||
temp->data = new uint8_t[temp->size]();
|
||||
uint8_t bc[3] = {122, 116, 104}; // bakground color in RGB from LLaVA
|
||||
uint8_t bc[3] = {122, 116, 104}; // background color in RGB from LLaVA
|
||||
|
||||
// fill with background color
|
||||
for (size_t i = 0; i < temp->size; i++) {
|
||||
|
@ -51,7 +51,7 @@ def bytes_to_unicode():
|
||||
The reversible bpe codes work on unicode strings.
|
||||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
||||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
||||
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
||||
This is a significant percentage of your normal, say, 32K bpe vocab.
|
||||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||||
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||||
"""
|
||||
|
@ -1,6 +1,6 @@
|
||||
# llama.cpp/examples/lookahead
|
||||
|
||||
Demonstartion of lookahead decoding technique:
|
||||
Demonstration of lookahead decoding technique:
|
||||
|
||||
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
|
||||
|
||||
|
@ -11227,7 +11227,7 @@ class binary_reader
|
||||
}
|
||||
if (is_ndarray) // ndarray dimensional vector can only contain integers, and can not embed another array
|
||||
{
|
||||
return sax->parse_error(chars_read, get_token_string(), parse_error::create(113, chars_read, exception_message(input_format, "ndarray dimentional vector is not allowed", "size"), nullptr));
|
||||
return sax->parse_error(chars_read, get_token_string(), parse_error::create(113, chars_read, exception_message(input_format, "ndarray dimensional vector is not allowed", "size"), nullptr));
|
||||
}
|
||||
std::vector<size_t> dim;
|
||||
if (JSON_HEDLEY_UNLIKELY(!get_ubjson_ndarray_size(dim)))
|
||||
|
@ -114,7 +114,7 @@ export async function* llama(prompt, params = {}, config = {}) {
|
||||
return content;
|
||||
}
|
||||
|
||||
// Call llama, return an event target that you can subcribe to
|
||||
// Call llama, return an event target that you can subscribe to
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
|
@ -223,7 +223,7 @@
|
||||
repeat_last_n: 256, // 0 = disable penalty, -1 = context size
|
||||
repeat_penalty: 1.18, // 1.0 = disabled
|
||||
top_k: 40, // <= 0 to use vocab size
|
||||
top_p: 0.5, // 1.0 = disabled
|
||||
top_p: 0.95, // 1.0 = disabled
|
||||
min_p: 0.05, // 0 = disabled
|
||||
tfs_z: 1.0, // 1.0 = disabled
|
||||
typical_p: 1.0, // 1.0 = disabled
|
||||
@ -238,7 +238,7 @@
|
||||
cache_prompt: true
|
||||
})
|
||||
|
||||
/* START: Support for storing prompt templates and parameters in borwser LocalStorage */
|
||||
/* START: Support for storing prompt templates and parameters in browsers LocalStorage */
|
||||
|
||||
const local_storage_storageKey = "llamacpp_server_local_storage";
|
||||
|
||||
@ -282,7 +282,7 @@
|
||||
let importedTemplates = local_storage_getDataAsObject('user_templates')
|
||||
|
||||
if (importedTemplates) {
|
||||
// saved templates were successfuly imported.
|
||||
// saved templates were successfully imported.
|
||||
|
||||
console.log('Processing saved templates and updating default template')
|
||||
params.value = { ...params.value, image_data: [] };
|
||||
@ -303,7 +303,7 @@
|
||||
}
|
||||
|
||||
function userTemplateResetToDefault() {
|
||||
console.log('Reseting themplate to default')
|
||||
console.log('Resetting template to default')
|
||||
selectedUserTemplate.value.name = 'default';
|
||||
selectedUserTemplate.value.data = savedUserTemplates.value['default'];
|
||||
}
|
||||
@ -762,7 +762,7 @@
|
||||
|
||||
<fieldset class="two">
|
||||
${IntField({ label: "Predictions", max: 2048, min: -1, name: "n_predict", value: params.value.n_predict })}
|
||||
${FloatField({ label: "Temperature", max: 1.5, min: 0.0, name: "temperature", step: 0.01, value: params.value.temperature })}
|
||||
${FloatField({ label: "Temperature", max: 2.0, min: 0.0, name: "temperature", step: 0.01, value: params.value.temperature })}
|
||||
${FloatField({ label: "Penalize repeat sequence", max: 2.0, min: 0.0, name: "repeat_penalty", step: 0.01, value: params.value.repeat_penalty })}
|
||||
${IntField({ label: "Consider N tokens for penalize", max: 2048, min: 0, name: "repeat_last_n", value: params.value.repeat_last_n })}
|
||||
${IntField({ label: "Top-K sampling", max: 100, min: -1, name: "top_k", value: params.value.top_k })}
|
||||
|
@ -2382,6 +2382,7 @@ json oaicompat_completion_params_parse(
|
||||
llama_params["__oaicompat"] = true;
|
||||
|
||||
// Map OpenAI parameters to llama.cpp parameters
|
||||
llama_params["model"] = json_value(body, "model", std::string("uknown"));
|
||||
llama_params["prompt"] = format_chatml(body["messages"]); // OpenAI 'messages' to llama.cpp 'prompt'
|
||||
llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
|
||||
llama_params["temperature"] = json_value(body, "temperature", 0.8);
|
||||
|
@ -1,6 +1,6 @@
|
||||
# llama.cpp/examples/speculative
|
||||
|
||||
Demonstartion of speculative decoding and tree-based speculative decoding techniques
|
||||
Demonstration of speculative decoding and tree-based speculative decoding techniques
|
||||
|
||||
More info:
|
||||
|
||||
|
@ -428,7 +428,7 @@ int main(int argc, char ** argv) {
|
||||
++n_past_tgt;
|
||||
}
|
||||
|
||||
// the first token is always proposed by the traget model before the speculation loop so we erase it here
|
||||
// the first token is always proposed by the target model before the speculation loop so we erase it here
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
if (!drafts[s].active) {
|
||||
continue;
|
||||
|
@ -43,7 +43,7 @@ GGML_API size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph
|
||||
// ggml-backend v2 API
|
||||
//
|
||||
|
||||
// Seperate tensor and graph allocator objects
|
||||
// Separate tensor and graph allocator objects
|
||||
// This is necessary for multi-backend allocation because the graph allocator needs to use multiple tensor allocators
|
||||
// The original API is kept as a wrapper around the new API
|
||||
|
||||
|
297
ggml-cuda.cu
297
ggml-cuda.cu
@ -1,13 +1,15 @@
|
||||
#include <algorithm>
|
||||
#include <assert.h>
|
||||
#include <atomic>
|
||||
#include <cinttypes>
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <cinttypes>
|
||||
#include <float.h>
|
||||
#include <limits>
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <atomic>
|
||||
#include <assert.h>
|
||||
#include <vector>
|
||||
|
||||
|
||||
#if defined(GGML_USE_HIPBLAS)
|
||||
#include <hip/hip_runtime.h>
|
||||
@ -1684,31 +1686,65 @@ static __global__ void quantize_q8_1(const float * __restrict__ x, void * __rest
|
||||
}
|
||||
|
||||
template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
||||
static __global__ void k_get_rows(const void * x, const int32_t * y, dst_t * dst, const int ncols) {
|
||||
const int col = (blockIdx.x*blockDim.x + threadIdx.x)*2;
|
||||
const int row = blockDim.y*blockIdx.y + threadIdx.y;
|
||||
static __global__ void k_get_rows(
|
||||
const void * src0, const int32_t * src1, dst_t * dst,
|
||||
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
|
||||
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
|
||||
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
|
||||
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
|
||||
size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
|
||||
|
||||
if (col >= ncols) {
|
||||
const int i00 = (blockIdx.x*blockDim.x + threadIdx.x)*2;
|
||||
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
|
||||
const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
|
||||
const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
|
||||
|
||||
if (i00 >= ne00) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int r = y[row];
|
||||
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
|
||||
|
||||
// copy x[r*ncols + col] to dst[row*ncols + col]
|
||||
const int xi = r*ncols + col;
|
||||
const int di = row*ncols + col;
|
||||
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
||||
const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
|
||||
|
||||
const int ib = xi/qk; // block index
|
||||
const int iqs = (xi%qk)/qr; // quant index
|
||||
const int iybs = di - di%qk; // y block start index
|
||||
const int ib = i00/qk; // block index
|
||||
const int iqs = (i00%qk)/qr; // quant index
|
||||
const int iybs = i00 - i00%qk; // dst block start index
|
||||
const int y_offset = qr == 1 ? 1 : qk/2;
|
||||
|
||||
// dequantize
|
||||
dfloat2 v;
|
||||
dequantize_kernel(x, ib, iqs, v);
|
||||
dequantize_kernel(src0_row, ib, iqs, v);
|
||||
|
||||
dst[iybs + iqs + 0] = v.x;
|
||||
dst[iybs + iqs + y_offset] = v.y;
|
||||
dst_row[iybs + iqs + 0] = v.x;
|
||||
dst_row[iybs + iqs + y_offset] = v.y;
|
||||
}
|
||||
|
||||
template<typename src0_t, typename dst_t>
|
||||
static __global__ void k_get_rows_float(
|
||||
const src0_t * src0, const int32_t * src1, dst_t * dst,
|
||||
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
|
||||
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
|
||||
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
|
||||
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
|
||||
size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
|
||||
|
||||
const int i00 = blockIdx.x*blockDim.x + threadIdx.x;
|
||||
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
|
||||
const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
|
||||
const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
|
||||
|
||||
if (i00 >= ne00) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
|
||||
|
||||
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
||||
const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
|
||||
|
||||
dst_row[i00] = src0_row[i00];
|
||||
}
|
||||
|
||||
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
||||
@ -5053,11 +5089,69 @@ static __global__ void im2col_f32_f16(
|
||||
}
|
||||
|
||||
template<int qk, int qr, dequantize_kernel_t dq>
|
||||
static void get_rows_cuda(const void * x, const int32_t * y, float * dst, const int nrows, const int ncols, cudaStream_t stream) {
|
||||
static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
|
||||
const int block_num_x = (ncols + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
|
||||
const dim3 block_nums(block_num_x, nrows, 1);
|
||||
k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(x, y, dst, ncols);
|
||||
const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
|
||||
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
|
||||
|
||||
// strides in elements
|
||||
//const size_t s0 = nb0 / ggml_element_size(dst);
|
||||
const size_t s1 = nb1 / ggml_element_size(dst);
|
||||
const size_t s2 = nb2 / ggml_element_size(dst);
|
||||
const size_t s3 = nb3 / ggml_element_size(dst);
|
||||
|
||||
const size_t s10 = nb10 / ggml_element_size(src1);
|
||||
const size_t s11 = nb11 / ggml_element_size(src1);
|
||||
const size_t s12 = nb12 / ggml_element_size(src1);
|
||||
//const size_t s13 = nb13 / ggml_element_size(src1);
|
||||
|
||||
GGML_ASSERT(ne00 % 2 == 0);
|
||||
|
||||
k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
|
||||
src0_dd, src1_dd, dst_dd,
|
||||
ne00, /*ne01, ne02, ne03,*/
|
||||
/*ne10, ne11,*/ ne12, /*ne13,*/
|
||||
/* s0,*/ s1, s2, s3,
|
||||
/* nb00,*/ nb01, nb02, nb03,
|
||||
s10, s11, s12/*, s13*/);
|
||||
|
||||
(void) dst;
|
||||
}
|
||||
|
||||
template<typename src0_t>
|
||||
static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
|
||||
const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
|
||||
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
|
||||
|
||||
// strides in elements
|
||||
//const size_t s0 = nb0 / ggml_element_size(dst);
|
||||
const size_t s1 = nb1 / ggml_element_size(dst);
|
||||
const size_t s2 = nb2 / ggml_element_size(dst);
|
||||
const size_t s3 = nb3 / ggml_element_size(dst);
|
||||
|
||||
const size_t s10 = nb10 / ggml_element_size(src1);
|
||||
const size_t s11 = nb11 / ggml_element_size(src1);
|
||||
const size_t s12 = nb12 / ggml_element_size(src1);
|
||||
//const size_t s13 = nb13 / ggml_element_size(src1);
|
||||
|
||||
k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
|
||||
src0_dd, src1_dd, dst_dd,
|
||||
ne00, /*ne01, ne02, ne03,*/
|
||||
/*ne10, ne11,*/ ne12, /*ne13,*/
|
||||
/* s0,*/ s1, s2, s3,
|
||||
/* nb00,*/ nb01, nb02, nb03,
|
||||
s10, s11, s12/*, s13*/);
|
||||
|
||||
(void) dst;
|
||||
}
|
||||
|
||||
template<float (*bin_op)(const float, const float)>
|
||||
@ -5069,7 +5163,6 @@ struct bin_bcast_cuda {
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
|
||||
int nr0 = ne10/ne0;
|
||||
int nr1 = ne11/ne1;
|
||||
int nr2 = ne12/ne2;
|
||||
@ -5117,26 +5210,28 @@ struct bin_bcast_cuda {
|
||||
int64_t ne12 = cne1[2];
|
||||
int64_t ne13 = cne1[3];
|
||||
|
||||
//size_t nb0 = cnb0[0];
|
||||
size_t nb0 = cnb0[0];
|
||||
size_t nb1 = cnb0[1];
|
||||
size_t nb2 = cnb0[2];
|
||||
size_t nb3 = cnb0[3];
|
||||
|
||||
//size_t nb10 = cnb1[0];
|
||||
size_t nb10 = cnb1[0];
|
||||
size_t nb11 = cnb1[1];
|
||||
size_t nb12 = cnb1[2];
|
||||
size_t nb13 = cnb1[3];
|
||||
|
||||
//size_t s0 = nb0 / sizeof(src1_t);
|
||||
size_t s0 = nb0 / sizeof(src1_t);
|
||||
size_t s1 = nb1 / sizeof(src1_t);
|
||||
size_t s2 = nb2 / sizeof(src1_t);
|
||||
size_t s3 = nb3 / sizeof(src1_t);
|
||||
|
||||
//size_t s10 = nb10 / sizeof(src1_t);
|
||||
size_t s10 = nb10 / sizeof(src1_t);
|
||||
size_t s11 = nb11 / sizeof(src1_t);
|
||||
size_t s12 = nb12 / sizeof(src1_t);
|
||||
size_t s13 = nb13 / sizeof(src1_t);
|
||||
|
||||
GGML_ASSERT(s0 == 1);
|
||||
GGML_ASSERT(s10 == 1);
|
||||
|
||||
const int block_size = 128;
|
||||
|
||||
@ -6447,36 +6542,34 @@ static void ggml_cuda_op_get_rows(
|
||||
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(src1));
|
||||
GGML_ASSERT(ggml_is_contiguous(dst));
|
||||
|
||||
const int ncols = src0->ne[0];
|
||||
const int nrows = ggml_nelements(src1);
|
||||
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
|
||||
GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
|
||||
GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
|
||||
|
||||
const int32_t * src1_i32 = (const int32_t *) src1_d;
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F16:
|
||||
get_rows_cuda<1, 1, convert_f16>(src0_d, src1_i32, dst_d, nrows, ncols, stream);
|
||||
get_rows_cuda_float(src0, src1, dst, (const half *)src0_d, src1_i32, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_F32:
|
||||
get_rows_cuda<1, 1, convert_f32>(src0_d, src1_i32, dst_d, nrows, ncols, stream);
|
||||
get_rows_cuda_float(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_0:
|
||||
get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0_d, src1_i32, dst_d, nrows, ncols, stream);
|
||||
get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0_d, src1_i32, dst_d, nrows, ncols, stream);
|
||||
get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0_d, src1_i32, dst_d, nrows, ncols, stream);
|
||||
get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0_d, src1_i32, dst_d, nrows, ncols, stream);
|
||||
get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0_d, src1_i32, dst_d, nrows, ncols, stream);
|
||||
get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
break;
|
||||
default:
|
||||
// TODO: k-quants
|
||||
@ -8234,36 +8327,69 @@ static void ggml_cuda_mul_mat_id_cublas(ggml_tensor * dst) {
|
||||
}
|
||||
#endif
|
||||
|
||||
static void ggml_cuda_mul_mat_id(const ggml_tensor * _src0, const ggml_tensor * _src1, ggml_tensor * dst) {
|
||||
static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
#if 0
|
||||
//#ifdef CUDA_USE_TENSOR_CORES
|
||||
// const bool use_tensor_cores = true;
|
||||
//#else
|
||||
// const bool use_tensor_cores = false;
|
||||
//#endif
|
||||
|
||||
ggml_cuda_mul_mat_id_cublas(dst);
|
||||
|
||||
// TODO: mmq/mmv support
|
||||
#else
|
||||
const struct ggml_tensor * ids = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
const int id = dst->op_params[0];
|
||||
|
||||
int32_t * ids_dev = (int32_t *)((ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device];
|
||||
|
||||
int32_t a_id;
|
||||
CUDA_CHECK(cudaMemcpyAsync(&a_id, ids_dev + id, sizeof(int32_t), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0]));
|
||||
CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0]));
|
||||
|
||||
GGML_ASSERT(a_id >= 0 && a_id < ids->ne[0]);
|
||||
const struct ggml_tensor * src0 = dst->src[a_id + 2];
|
||||
|
||||
ggml_cuda_mul_mat(src0, src1, dst);
|
||||
#endif
|
||||
|
||||
(void) _src0;
|
||||
(void) _src1;
|
||||
GGML_ASSERT(dst->backend == GGML_BACKEND_GPU);
|
||||
|
||||
const struct ggml_tensor * ids = src0;
|
||||
const int32_t id = ((int32_t *) dst->op_params)[0];
|
||||
const int32_t n_as = ((int32_t *) dst->op_params)[1];
|
||||
|
||||
std::vector<char> ids_host(ggml_nbytes(ids));
|
||||
|
||||
if (ids->backend == GGML_BACKEND_GPU) {
|
||||
const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device];
|
||||
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0]));
|
||||
CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0]));
|
||||
} else {
|
||||
memcpy(ids_host.data(), ids->data, ggml_nbytes(ids));
|
||||
}
|
||||
|
||||
const ggml_tensor_extra_gpu * src1_extra = (const ggml_tensor_extra_gpu *) src1->extra;
|
||||
const ggml_tensor_extra_gpu * dst_extra = (const ggml_tensor_extra_gpu *) dst->extra;
|
||||
|
||||
ggml_tensor_extra_gpu src1_row_extra;
|
||||
ggml_tensor_extra_gpu dst_row_extra;
|
||||
|
||||
ggml_tensor src1_row = *src1;
|
||||
ggml_tensor dst_row = *dst;
|
||||
|
||||
src1_row.ne[1] = 1;
|
||||
dst_row.ne[1] = 1;
|
||||
|
||||
src1_row.nb[2] = src1_row.nb[1];
|
||||
dst_row.nb[2] = dst_row.nb[1];
|
||||
|
||||
src1_row.nb[3] = src1_row.nb[1];
|
||||
dst_row.nb[3] = dst_row.nb[1];
|
||||
|
||||
src1_row.extra = &src1_row_extra;
|
||||
dst_row.extra = &dst_row_extra;
|
||||
|
||||
|
||||
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
||||
//int32_t row_id;
|
||||
//CUDA_CHECK(cudaMemcpyAsync(&row_id, ids_dev + i01*ids->nb[1] + id*ids->nb[0], sizeof(int32_t), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0]));
|
||||
//CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0]));
|
||||
|
||||
const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
|
||||
|
||||
GGML_ASSERT(row_id >= 0 && row_id < n_as);
|
||||
|
||||
const struct ggml_tensor * src0_row = dst->src[row_id + 2];
|
||||
|
||||
src1_row_extra.data_device[g_main_device] = (char *) src1_extra->data_device[g_main_device] + i01*src1->nb[1];
|
||||
src1_row.data = (char *) src1->data + i01*src1->nb[1];
|
||||
|
||||
dst_row_extra.data_device[g_main_device] = (char *) dst_extra->data_device[g_main_device] + i01*dst->nb[1];
|
||||
dst_row.data = (char *) dst->data + i01*dst->nb[1];
|
||||
|
||||
ggml_cuda_mul_mat(src0_row, &src1_row, &dst_row);
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
@ -9181,6 +9307,45 @@ static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_ten
|
||||
}
|
||||
return true;
|
||||
} break;
|
||||
case GGML_OP_GET_ROWS:
|
||||
{
|
||||
switch (op->src[0]->type) {
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_Q4_0:
|
||||
case GGML_TYPE_Q4_1:
|
||||
case GGML_TYPE_Q5_0:
|
||||
case GGML_TYPE_Q5_1:
|
||||
case GGML_TYPE_Q8_0:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_CPY:
|
||||
{
|
||||
ggml_type src0_type = op->src[0]->type;
|
||||
ggml_type src1_type = op->src[1]->type;
|
||||
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
|
||||
return true;
|
||||
}
|
||||
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
|
||||
return true;
|
||||
}
|
||||
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) {
|
||||
return true;
|
||||
}
|
||||
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) {
|
||||
return true;
|
||||
}
|
||||
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) {
|
||||
return true;
|
||||
}
|
||||
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
} break;
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
@ -9188,7 +9353,6 @@ static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_ten
|
||||
case GGML_OP_TRANSPOSE:
|
||||
case GGML_OP_NORM:
|
||||
case GGML_OP_REPEAT:
|
||||
case GGML_OP_GET_ROWS:
|
||||
case GGML_OP_DUP:
|
||||
case GGML_OP_ADD:
|
||||
case GGML_OP_MUL:
|
||||
@ -9197,7 +9361,6 @@ static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_ten
|
||||
case GGML_OP_SCALE:
|
||||
case GGML_OP_SQR:
|
||||
case GGML_OP_CLAMP:
|
||||
case GGML_OP_CPY:
|
||||
case GGML_OP_CONT:
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
case GGML_OP_SOFT_MAX:
|
||||
@ -9264,7 +9427,9 @@ static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * use
|
||||
UNUSED(params);
|
||||
}
|
||||
|
||||
extern "C" int ggml_backend_cuda_reg_devices() {
|
||||
extern "C" int ggml_backend_cuda_reg_devices();
|
||||
|
||||
int ggml_backend_cuda_reg_devices() {
|
||||
int device_count = ggml_cuda_get_device_count();
|
||||
//int device_count = 1; // DEBUG: some tools require delaying CUDA initialization
|
||||
for (int i = 0; i < device_count; i++) {
|
||||
|
324
ggml-metal.m
324
ggml-metal.m
@ -102,6 +102,21 @@ struct ggml_metal_context {
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_q4_K_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_q5_K_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_q6_K_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_id_f32_f32);
|
||||
//GGML_METAL_DECL_KERNEL(mul_mv_id_f16_f16);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_id_f16_f32);
|
||||
//GGML_METAL_DECL_KERNEL(mul_mv_id_f16_f32_1row);
|
||||
//GGML_METAL_DECL_KERNEL(mul_mv_id_f16_f32_l4);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_id_q4_0_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_id_q4_1_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_id_q5_0_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_id_q5_1_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_id_q8_0_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_id_q2_K_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_id_q3_K_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_id_q4_K_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_id_q5_K_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_id_q6_K_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mm_f32_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mm_f16_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mm_q4_0_f32);
|
||||
@ -140,6 +155,7 @@ struct ggml_metal_context {
|
||||
//GGML_METAL_DECL_KERNEL(cpy_f32_q5_0);
|
||||
//GGML_METAL_DECL_KERNEL(cpy_f32_q5_1);
|
||||
GGML_METAL_DECL_KERNEL(cpy_f16_f16);
|
||||
GGML_METAL_DECL_KERNEL(cpy_f16_f32);
|
||||
GGML_METAL_DECL_KERNEL(concat);
|
||||
GGML_METAL_DECL_KERNEL(sqr);
|
||||
GGML_METAL_DECL_KERNEL(sum_rows);
|
||||
@ -177,6 +193,8 @@ static void ggml_metal_log(enum ggml_log_level level, const char * format, ...){
|
||||
ggml_metal_log_callback(level, buffer, ggml_metal_log_user_data);
|
||||
} else {
|
||||
char* buffer2 = malloc(len+1);
|
||||
va_end(args);
|
||||
va_start(args, format);
|
||||
vsnprintf(buffer2, len+1, format, args);
|
||||
buffer2[len] = 0;
|
||||
ggml_metal_log_callback(level, buffer2, ggml_metal_log_user_data);
|
||||
@ -352,6 +370,21 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_q4_K_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_q5_K_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_q6_K_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_id_f32_f32);
|
||||
//GGML_METAL_ADD_KERNEL(mul_mv_id_f16_f16);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_id_f16_f32);
|
||||
//GGML_METAL_ADD_KERNEL(mul_mv_id_f16_f32_1row);
|
||||
//GGML_METAL_ADD_KERNEL(mul_mv_id_f16_f32_l4);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_id_q4_0_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_id_q4_1_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_id_q5_0_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_id_q5_1_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_id_q8_0_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_id_q2_K_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_id_q3_K_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_id_q4_K_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_id_q5_K_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_id_q6_K_f32);
|
||||
if ([ctx->device supportsFamily:MTLGPUFamilyApple7]) {
|
||||
GGML_METAL_ADD_KERNEL(mul_mm_f32_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mm_f16_f32);
|
||||
@ -392,6 +425,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
//GGML_METAL_ADD_KERNEL(cpy_f32_q5_0);
|
||||
//GGML_METAL_ADD_KERNEL(cpy_f32_q5_1);
|
||||
GGML_METAL_ADD_KERNEL(cpy_f16_f16);
|
||||
GGML_METAL_ADD_KERNEL(cpy_f16_f32);
|
||||
GGML_METAL_ADD_KERNEL(concat);
|
||||
GGML_METAL_ADD_KERNEL(sqr);
|
||||
GGML_METAL_ADD_KERNEL(sum_rows);
|
||||
@ -452,6 +486,21 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_q4_K_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_q5_K_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_q6_K_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_id_f32_f32);
|
||||
//GGML_METAL_DEL_KERNEL(mul_mv_id_f16_f16);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_id_f16_f32);
|
||||
//GGML_METAL_DEL_KERNEL(mul_mv_id_f16_f32_1row);
|
||||
//GGML_METAL_DEL_KERNEL(mul_mv_id_f16_f32_l4);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_id_q4_0_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_id_q4_1_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_id_q5_0_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_id_q5_1_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_id_q8_0_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_id_q2_K_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_id_q3_K_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_id_q4_K_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_id_q5_K_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_id_q6_K_f32);
|
||||
if ([ctx->device supportsFamily:MTLGPUFamilyApple7]) {
|
||||
GGML_METAL_DEL_KERNEL(mul_mm_f32_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mm_f16_f32);
|
||||
@ -492,6 +541,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
|
||||
//GGML_METAL_DEL_KERNEL(cpy_f32_q5_0);
|
||||
//GGML_METAL_DEL_KERNEL(cpy_f32_q5_1);
|
||||
GGML_METAL_DEL_KERNEL(cpy_f16_f16);
|
||||
GGML_METAL_DEL_KERNEL(cpy_f16_f32);
|
||||
GGML_METAL_DEL_KERNEL(concat);
|
||||
GGML_METAL_DEL_KERNEL(sqr);
|
||||
GGML_METAL_DEL_KERNEL(sum_rows);
|
||||
@ -803,8 +853,9 @@ static bool ggml_metal_supports_op(const struct ggml_tensor * op) {
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
case GGML_OP_GET_ROWS:
|
||||
case GGML_OP_CONCAT:
|
||||
case GGML_OP_ADD:
|
||||
case GGML_OP_MUL:
|
||||
@ -819,14 +870,38 @@ static bool ggml_metal_supports_op(const struct ggml_tensor * op) {
|
||||
case GGML_OP_ROPE:
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_ARGSORT:
|
||||
case GGML_OP_DUP:
|
||||
case GGML_OP_CPY:
|
||||
case GGML_OP_CONT:
|
||||
case GGML_OP_MUL_MAT:
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
return true;
|
||||
case GGML_OP_CPY:
|
||||
case GGML_OP_DUP:
|
||||
case GGML_OP_CONT:
|
||||
{
|
||||
switch (op->src[0]->type) {
|
||||
case GGML_TYPE_F32:
|
||||
switch (op->type) {
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_Q8_0:
|
||||
case GGML_TYPE_Q4_0:
|
||||
case GGML_TYPE_Q4_1:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
case GGML_TYPE_F16:
|
||||
switch (op->type) {
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_F32:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
default:
|
||||
return false;
|
||||
};
|
||||
}
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
case GGML_OP_GET_ROWS:
|
||||
{
|
||||
return op->ne[0] % 4 == 0;
|
||||
}
|
||||
@ -1001,34 +1076,37 @@ void ggml_metal_graph_compute(
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
{
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(src1));
|
||||
|
||||
bool bcast_row = false;
|
||||
|
||||
int64_t nb = ne00;
|
||||
|
||||
if (ggml_nelements(src1) == ne10 && ne00 % 4 == 0) {
|
||||
id<MTLComputePipelineState> pipeline = nil;
|
||||
|
||||
if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
// src1 is a row
|
||||
GGML_ASSERT(ne11 == 1);
|
||||
|
||||
nb = ne00 / 4;
|
||||
switch (dst->op) {
|
||||
case GGML_OP_ADD: [encoder setComputePipelineState:ctx->pipeline_add_row]; break;
|
||||
case GGML_OP_MUL: [encoder setComputePipelineState:ctx->pipeline_mul_row]; break;
|
||||
case GGML_OP_DIV: [encoder setComputePipelineState:ctx->pipeline_div_row]; break;
|
||||
case GGML_OP_ADD: pipeline = ctx->pipeline_add_row; break;
|
||||
case GGML_OP_MUL: pipeline = ctx->pipeline_mul_row; break;
|
||||
case GGML_OP_DIV: pipeline = ctx->pipeline_div_row; break;
|
||||
default: GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
bcast_row = true;
|
||||
} else {
|
||||
switch (dst->op) {
|
||||
case GGML_OP_ADD: [encoder setComputePipelineState:ctx->pipeline_add]; break;
|
||||
case GGML_OP_MUL: [encoder setComputePipelineState:ctx->pipeline_mul]; break;
|
||||
case GGML_OP_DIV: [encoder setComputePipelineState:ctx->pipeline_div]; break;
|
||||
case GGML_OP_ADD: pipeline = ctx->pipeline_add; break;
|
||||
case GGML_OP_MUL: pipeline = ctx->pipeline_mul; break;
|
||||
case GGML_OP_DIV: pipeline = ctx->pipeline_div; break;
|
||||
default: GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||
@ -1063,7 +1141,7 @@ void ggml_metal_graph_compute(
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} else {
|
||||
const int nth = MIN(1024, ne0);
|
||||
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0);
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
}
|
||||
@ -1193,7 +1271,11 @@ void ggml_metal_graph_compute(
|
||||
const float scale = ((float *) dst->op_params)[0];
|
||||
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
if (id_src1) {
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
} else {
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
||||
}
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
|
||||
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
|
||||
@ -1444,7 +1526,7 @@ void ggml_metal_graph_compute(
|
||||
else if (src0t == GGML_TYPE_Q6_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
} else {
|
||||
int64_t ny = (ne11 + nrows - 1)/nrows;
|
||||
const int64_t ny = (ne11 + nrows - 1)/nrows;
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
}
|
||||
@ -1456,7 +1538,7 @@ void ggml_metal_graph_compute(
|
||||
|
||||
GGML_ASSERT(src0t == GGML_TYPE_I32);
|
||||
|
||||
const int n_as = ne00;
|
||||
const int n_as = ((int32_t *) dst->op_params)[1];
|
||||
|
||||
// TODO: make this more general
|
||||
GGML_ASSERT(n_as <= 8);
|
||||
@ -1488,14 +1570,22 @@ void ggml_metal_graph_compute(
|
||||
|
||||
// find the break-even point where the matrix-matrix kernel becomes more efficient compared
|
||||
// to the matrix-vector kernel
|
||||
int ne11_mm_min = 0;
|
||||
int ne11_mm_min = 1;
|
||||
|
||||
const int idx = ((int32_t *) dst->op_params)[0];
|
||||
|
||||
// batch size
|
||||
GGML_ASSERT(ne01 == ne11);
|
||||
|
||||
const int64_t _ne1 = 1; // kernel_mul_mm_impl needs a reference in constant memory
|
||||
|
||||
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
|
||||
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
|
||||
if ([ctx->device supportsFamily:MTLGPUFamilyApple7] &&
|
||||
ne11 > ne11_mm_min) {
|
||||
// !!!
|
||||
// TODO: for now, always use mat-vec kernels until we figure out how to improve the
|
||||
// indirect matrix multiplication
|
||||
// !!!
|
||||
if ([ctx->device supportsFamily:MTLGPUFamilyApple7] && _ne1 > ne11_mm_min) {
|
||||
switch (src2->type) {
|
||||
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_f32_f32]; break;
|
||||
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_f16_f32]; break;
|
||||
@ -1514,19 +1604,22 @@ void ggml_metal_graph_compute(
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||
[encoder setBytes:&ne20 length:sizeof(ne20) atIndex:3];
|
||||
[encoder setBytes:&ne22 length:sizeof(ne22) atIndex:4];
|
||||
[encoder setBytes:&nb21 length:sizeof(nb21) atIndex:5];
|
||||
[encoder setBytes:&nb22 length:sizeof(nb22) atIndex:6];
|
||||
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:7];
|
||||
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:8];
|
||||
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:9];
|
||||
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:10];
|
||||
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:11];
|
||||
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:12];
|
||||
[encoder setBytes:&r2 length:sizeof(r2) atIndex:13];
|
||||
[encoder setBytes:&r3 length:sizeof(r3) atIndex:14];
|
||||
[encoder setBytes:&idx length:sizeof(idx) atIndex:15];
|
||||
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:3];
|
||||
[encoder setBytes:&ne20 length:sizeof(ne20) atIndex:4];
|
||||
[encoder setBytes:&ne22 length:sizeof(ne22) atIndex:5];
|
||||
[encoder setBytes:&nb21 length:sizeof(nb21) atIndex:6];
|
||||
[encoder setBytes:&nb22 length:sizeof(nb22) atIndex:7];
|
||||
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:8];
|
||||
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:9];
|
||||
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:10];
|
||||
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:11];
|
||||
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:12];
|
||||
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13];
|
||||
[encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:14];
|
||||
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
|
||||
[encoder setBytes:&r2 length:sizeof(r2) atIndex:16];
|
||||
[encoder setBytes:&r3 length:sizeof(r3) atIndex:17];
|
||||
[encoder setBytes:&idx length:sizeof(idx) atIndex:18];
|
||||
// TODO: how to make this an array? read Metal docs
|
||||
for (int j = 0; j < n_as; ++j) {
|
||||
struct ggml_tensor * src_cur = dst->src[2 + j];
|
||||
@ -1534,11 +1627,157 @@ void ggml_metal_graph_compute(
|
||||
size_t offs_src_cur = 0;
|
||||
id<MTLBuffer> id_src_cur = ggml_metal_get_buffer(ctx, src_cur, &offs_src_cur);
|
||||
|
||||
[encoder setBuffer:id_src_cur offset:offs_src_cur atIndex:16 + j];
|
||||
[encoder setBuffer:id_src_cur offset:offs_src_cur atIndex:19 + j];
|
||||
}
|
||||
|
||||
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake( (ne11 + 31)/32, (ne21 + 63)/64, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
|
||||
|
||||
// TODO: processing one row at a time (ne11 -> 1) is not efficient
|
||||
[encoder dispatchThreadgroups:MTLSizeMake( (_ne1 + 31)/32, (ne21 + 63)/64, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
|
||||
} else {
|
||||
int nth0 = 32;
|
||||
int nth1 = 1;
|
||||
int nrows = 1;
|
||||
//printf("vector: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
|
||||
|
||||
// use custom matrix x vector kernel
|
||||
switch (src2t) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_f32_f32];
|
||||
} break;
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
||||
nth0 = 32;
|
||||
nth1 = 1;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_f16_f32];
|
||||
} break;
|
||||
case GGML_TYPE_Q4_0:
|
||||
{
|
||||
nth0 = 8;
|
||||
nth1 = 8;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q4_0_f32];
|
||||
} break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
{
|
||||
nth0 = 8;
|
||||
nth1 = 8;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q4_1_f32];
|
||||
} break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
{
|
||||
nth0 = 8;
|
||||
nth1 = 8;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q5_0_f32];
|
||||
} break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
{
|
||||
nth0 = 8;
|
||||
nth1 = 8;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q5_1_f32];
|
||||
} break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
{
|
||||
nth0 = 8;
|
||||
nth1 = 8;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q8_0_f32];
|
||||
} break;
|
||||
case GGML_TYPE_Q2_K:
|
||||
{
|
||||
nth0 = 2;
|
||||
nth1 = 32;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q2_K_f32];
|
||||
} break;
|
||||
case GGML_TYPE_Q3_K:
|
||||
{
|
||||
nth0 = 2;
|
||||
nth1 = 32;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q3_K_f32];
|
||||
} break;
|
||||
case GGML_TYPE_Q4_K:
|
||||
{
|
||||
nth0 = 4; //1;
|
||||
nth1 = 8; //32;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q4_K_f32];
|
||||
} break;
|
||||
case GGML_TYPE_Q5_K:
|
||||
{
|
||||
nth0 = 2;
|
||||
nth1 = 32;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q5_K_f32];
|
||||
} break;
|
||||
case GGML_TYPE_Q6_K:
|
||||
{
|
||||
nth0 = 2;
|
||||
nth1 = 32;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q6_K_f32];
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t);
|
||||
GGML_ASSERT(false && "not implemented");
|
||||
}
|
||||
};
|
||||
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:3];
|
||||
[encoder setBytes:&ne20 length:sizeof(ne20) atIndex:4];
|
||||
[encoder setBytes:&ne21 length:sizeof(ne21) atIndex:5];
|
||||
[encoder setBytes:&ne22 length:sizeof(ne22) atIndex:6];
|
||||
[encoder setBytes:&nb20 length:sizeof(nb20) atIndex:7];
|
||||
[encoder setBytes:&nb21 length:sizeof(nb21) atIndex:8];
|
||||
[encoder setBytes:&nb22 length:sizeof(nb22) atIndex:9];
|
||||
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:10];
|
||||
[encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:11];
|
||||
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:12];
|
||||
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:13];
|
||||
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14];
|
||||
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15];
|
||||
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16];
|
||||
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:17];
|
||||
[encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:18];
|
||||
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:19];
|
||||
[encoder setBytes:&r2 length:sizeof(r2) atIndex:20];
|
||||
[encoder setBytes:&r3 length:sizeof(r3) atIndex:21];
|
||||
[encoder setBytes:&idx length:sizeof(idx) atIndex:22];
|
||||
// TODO: how to make this an array? read Metal docs
|
||||
for (int j = 0; j < n_as; ++j) {
|
||||
struct ggml_tensor * src_cur = dst->src[2 + j];
|
||||
|
||||
size_t offs_src_cur = 0;
|
||||
id<MTLBuffer> id_src_cur = ggml_metal_get_buffer(ctx, src_cur, &offs_src_cur);
|
||||
|
||||
[encoder setBuffer:id_src_cur offset:offs_src_cur atIndex:23 + j];
|
||||
}
|
||||
|
||||
if (src2t == GGML_TYPE_Q4_0 || src2t == GGML_TYPE_Q4_1 ||
|
||||
src2t == GGML_TYPE_Q5_0 || src2t == GGML_TYPE_Q5_1 || src2t == GGML_TYPE_Q8_0 ||
|
||||
src2t == GGML_TYPE_Q2_K) { // || src2t == GGML_TYPE_Q4_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src2t == GGML_TYPE_Q4_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src2t == GGML_TYPE_Q3_K) {
|
||||
#ifdef GGML_QKK_64
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 1)/2, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
#else
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
#endif
|
||||
}
|
||||
else if (src2t == GGML_TYPE_Q5_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src2t == GGML_TYPE_Q6_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 1)/2, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
} else {
|
||||
const int64_t ny = (_ne1 + nrows - 1)/nrows;
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne21, ny, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_GET_ROWS:
|
||||
@ -1564,11 +1803,14 @@ void ggml_metal_graph_compute(
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3];
|
||||
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:4];
|
||||
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:5];
|
||||
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:5];
|
||||
[encoder setBytes:&ne10 length:sizeof( int64_t) atIndex:6];
|
||||
[encoder setBytes:&nb10 length:sizeof( int64_t) atIndex:7];
|
||||
[encoder setBytes:&nb11 length:sizeof( int64_t) atIndex:8];
|
||||
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:9];
|
||||
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:10];
|
||||
|
||||
const int64_t n = ggml_nelements(src1);
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne10, ne11, 1) threadsPerThreadgroup:MTLSizeMake(32, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_RMS_NORM:
|
||||
{
|
||||
@ -1813,7 +2055,7 @@ void ggml_metal_graph_compute(
|
||||
{
|
||||
switch (dstt) {
|
||||
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f16_f16]; break;
|
||||
case GGML_TYPE_F32: GGML_ASSERT(false && "cpy_f16_f32 not implemented"); break;
|
||||
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_cpy_f16_f32]; break;
|
||||
default: GGML_ASSERT(false && "not implemented");
|
||||
};
|
||||
} break;
|
||||
|
1280
ggml-metal.metal
1280
ggml-metal.metal
File diff suppressed because it is too large
Load Diff
@ -3114,7 +3114,7 @@ void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restri
|
||||
|
||||
size_t vl = __riscv_vsetvl_e8m1(qk/2);
|
||||
|
||||
// These tempory registers are for masking and shift operations
|
||||
// These temporary registers are for masking and shift operations
|
||||
vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
|
||||
vuint32m2_t vt_2 = __riscv_vsll_vv_u32m2(__riscv_vmv_v_x_u32m2(1, vl), vt_1, vl);
|
||||
|
||||
@ -4757,7 +4757,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
|
||||
vl = 16;
|
||||
|
||||
// retreive lane to multiply with scale
|
||||
// retrieve lane to multiply with scale
|
||||
vint32m2_t aux0_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 0), (scale[0]), vl);
|
||||
vint32m2_t aux0_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 1), (scale[1]), vl);
|
||||
vint32m2_t aux1_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 0), (scale[2]), vl);
|
||||
|
166
ggml.c
166
ggml.c
@ -1,4 +1,4 @@
|
||||
#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
|
||||
#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
|
||||
#define _USE_MATH_DEFINES // For M_PI on MSVC
|
||||
|
||||
#include "ggml-impl.h"
|
||||
@ -33,7 +33,7 @@
|
||||
// we should just be careful :)
|
||||
#pragma warning(disable: 4244 4267)
|
||||
|
||||
// disable POSIX deprecation warnigns
|
||||
// disable POSIX deprecation warnings
|
||||
// these functions are never going away, anyway
|
||||
#pragma warning(disable: 4996)
|
||||
#endif
|
||||
@ -1760,7 +1760,7 @@ static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size
|
||||
static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
|
||||
|
||||
// WARN:
|
||||
// Mis-confguration can lead to problem that's hard to reason about:
|
||||
// Mis-configuration can lead to problem that's hard to reason about:
|
||||
// * At best it crash or talks nosense.
|
||||
// * At worst it talks slightly difference but hard to perceive.
|
||||
//
|
||||
@ -4075,17 +4075,18 @@ struct ggml_tensor * ggml_mul_mat(
|
||||
|
||||
struct ggml_tensor * ggml_mul_mat_id(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * as[],
|
||||
struct ggml_tensor * const as[],
|
||||
int n_as,
|
||||
struct ggml_tensor * ids,
|
||||
int id,
|
||||
struct ggml_tensor * b) {
|
||||
|
||||
int64_t n_as = ids->ne[0];
|
||||
|
||||
GGML_ASSERT(ids->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(ggml_is_vector(ids));
|
||||
GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
|
||||
GGML_ASSERT(ids->ne[1] == b->ne[1]);
|
||||
GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
|
||||
GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
|
||||
GGML_ASSERT(id >= 0 && id < n_as);
|
||||
GGML_ASSERT(id >= 0 && id < ids->ne[0]);
|
||||
|
||||
bool is_node = false;
|
||||
|
||||
@ -4097,13 +4098,14 @@ struct ggml_tensor * ggml_mul_mat_id(
|
||||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(as[0]->n_dims, b->n_dims), ne);
|
||||
|
||||
ggml_set_op_params_i32(result, 0, id);
|
||||
ggml_set_op_params_i32(result, 1, n_as);
|
||||
|
||||
result->op = GGML_OP_MUL_MAT_ID;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = ids;
|
||||
result->src[1] = b;
|
||||
|
||||
for (int64_t i = 0; i < n_as; i++) {
|
||||
for (int i = 0; i < n_as; i++) {
|
||||
struct ggml_tensor * a = as[i];
|
||||
GGML_ASSERT(ggml_are_same_shape(as[0], a));
|
||||
GGML_ASSERT(ggml_can_mul_mat(a, b));
|
||||
@ -4731,7 +4733,9 @@ struct ggml_tensor * ggml_get_rows(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b) {
|
||||
GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(a->ne[2] == b->ne[1]);
|
||||
GGML_ASSERT(b->ne[3] == 1);
|
||||
GGML_ASSERT(b->type == GGML_TYPE_I32);
|
||||
|
||||
bool is_node = false;
|
||||
|
||||
@ -4741,7 +4745,7 @@ struct ggml_tensor * ggml_get_rows(
|
||||
|
||||
// TODO: implement non F32 return
|
||||
//struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
|
||||
struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
|
||||
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
|
||||
|
||||
result->op = GGML_OP_GET_ROWS;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
@ -7520,7 +7524,7 @@ static void ggml_compute_forward_acc_f32(
|
||||
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
|
||||
|
||||
// view src0 and dst with these strides and data offset inbytes during acc
|
||||
// nb0 is implicitely element_size because src0 and dst are contiguous
|
||||
// nb0 is implicitly element_size because src0 and dst are contiguous
|
||||
size_t nb1 = ((int32_t *) dst->op_params)[0];
|
||||
size_t nb2 = ((int32_t *) dst->op_params)[1];
|
||||
size_t nb3 = ((int32_t *) dst->op_params)[2];
|
||||
@ -9504,8 +9508,11 @@ static bool ggml_compute_forward_mul_mat_use_blas(
|
||||
const int64_t ne0 = dst->ne[0];
|
||||
const int64_t ne1 = dst->ne[1];
|
||||
|
||||
// NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
|
||||
// all the experts for each batch element and the processing would become incredibly slow
|
||||
// TODO: find the optimal values for these
|
||||
if (ggml_is_contiguous(src0) &&
|
||||
if (dst->op != GGML_OP_MUL_MAT_ID &&
|
||||
ggml_is_contiguous(src0) &&
|
||||
ggml_is_contiguous(src1) &&
|
||||
//src0->type == GGML_TYPE_F32 &&
|
||||
src1->type == GGML_TYPE_F32 &&
|
||||
@ -9519,11 +9526,16 @@ static bool ggml_compute_forward_mul_mat_use_blas(
|
||||
}
|
||||
#endif
|
||||
|
||||
// off1 = offset in i11 and i1
|
||||
// cne1 = ne11 and ne1
|
||||
// in a normal matrix multiplication, off1 = 0 and cne1 = ne1
|
||||
// during GGML_TASK_INIT, the full src1 is converted regardless of off1 and cne1
|
||||
static void ggml_compute_forward_mul_mat(
|
||||
const struct ggml_compute_params * params,
|
||||
const struct ggml_tensor * src0,
|
||||
const struct ggml_tensor * src1,
|
||||
struct ggml_tensor * dst) {
|
||||
struct ggml_tensor * dst,
|
||||
int64_t off1, int64_t cne1) {
|
||||
int64_t t0 = ggml_perf_time_us();
|
||||
UNUSED(t0);
|
||||
|
||||
@ -9592,9 +9604,8 @@ static void ggml_compute_forward_mul_mat(
|
||||
const int64_t i02 = i12/r2;
|
||||
|
||||
const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
|
||||
const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
|
||||
|
||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||
const float * y = (float *) ((char *) src1->data + off1*nb11 + i12*nb12 + i13*nb13);
|
||||
float * d = (float *) ((char *) dst->data + off1*nb1 + i12*nb2 + i13*nb3);
|
||||
|
||||
if (type != GGML_TYPE_F32) {
|
||||
float * const wdata = params->wdata;
|
||||
@ -9611,7 +9622,7 @@ static void ggml_compute_forward_mul_mat(
|
||||
}
|
||||
|
||||
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
|
||||
ne11, ne01, ne10,
|
||||
cne1, ne01, ne10,
|
||||
1.0f, y, ne10,
|
||||
x, ne00,
|
||||
0.0f, d, ne01);
|
||||
@ -9630,6 +9641,7 @@ static void ggml_compute_forward_mul_mat(
|
||||
const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
|
||||
|
||||
assert(params->wsize >= ne11*ne12*ne13*row_size);
|
||||
assert(src1->type == GGML_TYPE_F32);
|
||||
|
||||
for (int64_t i13 = 0; i13 < ne13; ++i13) {
|
||||
for (int64_t i12 = 0; i12 < ne12; ++i12) {
|
||||
@ -9652,7 +9664,7 @@ static void ggml_compute_forward_mul_mat(
|
||||
const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
|
||||
|
||||
const int64_t nr0 = ne01; // src0 rows
|
||||
const int64_t nr1 = ne11*ne12*ne13; // src1 rows
|
||||
const int64_t nr1 = cne1*ne12*ne13; // src1 rows
|
||||
|
||||
//printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
|
||||
|
||||
@ -9694,9 +9706,9 @@ static void ggml_compute_forward_mul_mat(
|
||||
for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
|
||||
for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
|
||||
for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
|
||||
const int64_t i13 = (ir1/(ne12*ne11));
|
||||
const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
|
||||
const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
|
||||
const int64_t i13 = (ir1/(ne12*cne1));
|
||||
const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
|
||||
const int64_t i11 = (ir1 - i13*ne12*cne1 - i12*cne1) + off1;
|
||||
|
||||
// broadcast src0 into src1
|
||||
const int64_t i03 = i13/r3;
|
||||
@ -9736,20 +9748,28 @@ static void ggml_compute_forward_mul_mat(
|
||||
|
||||
static void ggml_compute_forward_mul_mat_id(
|
||||
const struct ggml_compute_params * params,
|
||||
const struct ggml_tensor * src0,
|
||||
const struct ggml_tensor * src1,
|
||||
struct ggml_tensor * dst) {
|
||||
|
||||
const struct ggml_tensor * ids = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
// during GGML_TASK_INIT the entire src1 is converted to vec_dot_type
|
||||
ggml_compute_forward_mul_mat(params, dst->src[2], src1, dst, 0, dst->ne[1]);
|
||||
return;
|
||||
}
|
||||
|
||||
const struct ggml_tensor * ids = src0;
|
||||
const int id = ggml_get_op_params_i32(dst, 0);
|
||||
const int n_as = ggml_get_op_params_i32(dst, 1);
|
||||
|
||||
const int a_id = ((int32_t *)ids->data)[id];
|
||||
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
||||
const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
|
||||
|
||||
GGML_ASSERT(a_id >= 0 && a_id < ids->ne[0]);
|
||||
GGML_ASSERT(row_id >= 0 && row_id < n_as);
|
||||
|
||||
const struct ggml_tensor * src0 = dst->src[a_id + 2];
|
||||
|
||||
ggml_compute_forward_mul_mat(params, src0, src1, dst);
|
||||
const struct ggml_tensor * src0_row = dst->src[row_id + 2];
|
||||
ggml_compute_forward_mul_mat(params, src0_row, src1, dst, i01, 1);
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_out_prod
|
||||
@ -10161,7 +10181,7 @@ static void ggml_compute_forward_set_f32(
|
||||
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
|
||||
|
||||
// view src0 and dst with these strides and data offset inbytes during set
|
||||
// nb0 is implicitely element_size because src0 and dst are contiguous
|
||||
// nb0 is implicitly element_size because src0 and dst are contiguous
|
||||
size_t nb1 = ((int32_t *) dst->op_params)[0];
|
||||
size_t nb2 = ((int32_t *) dst->op_params)[1];
|
||||
size_t nb3 = ((int32_t *) dst->op_params)[2];
|
||||
@ -10325,21 +10345,30 @@ static void ggml_compute_forward_get_rows_q(
|
||||
return;
|
||||
}
|
||||
|
||||
const int nc = src0->ne[0];
|
||||
const int nr = ggml_nelements(src1);
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const int64_t nc = ne00;
|
||||
const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
|
||||
|
||||
const enum ggml_type type = src0->type;
|
||||
ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
|
||||
|
||||
assert( dst->ne[0] == nc);
|
||||
assert( dst->ne[1] == nr);
|
||||
assert(src0->nb[0] == ggml_type_size(type));
|
||||
assert(ne0 == nc);
|
||||
assert(ne02 == ne11);
|
||||
assert(nb00 == ggml_type_size(type));
|
||||
assert(ggml_nrows(dst) == nr);
|
||||
|
||||
for (int i = 0; i < nr; ++i) {
|
||||
const int r = ((int32_t *) src1->data)[i];
|
||||
// TODO: multi-thread
|
||||
for (int64_t i12 = 0; i12 < ne12; ++i12) {
|
||||
for (int64_t i11 = 0; i11 < ne11; ++i11) {
|
||||
for (int64_t i10 = 0; i10 < ne10; ++i10) {
|
||||
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
|
||||
|
||||
dequantize_row_q(
|
||||
(const void *) ((char *) src0->data + r*src0->nb[1]),
|
||||
(float *) ((char *) dst->data + i*dst->nb[1]), nc);
|
||||
(const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
|
||||
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -10354,19 +10383,26 @@ static void ggml_compute_forward_get_rows_f16(
|
||||
return;
|
||||
}
|
||||
|
||||
const int nc = src0->ne[0];
|
||||
const int nr = ggml_nelements(src1);
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
assert( dst->ne[0] == nc);
|
||||
assert( dst->ne[1] == nr);
|
||||
assert(src0->nb[0] == sizeof(ggml_fp16_t));
|
||||
const int64_t nc = ne00;
|
||||
const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
|
||||
|
||||
for (int i = 0; i < nr; ++i) {
|
||||
const int r = ((int32_t *) src1->data)[i];
|
||||
assert(ne0 == nc);
|
||||
assert(ne02 == ne11);
|
||||
assert(nb00 == sizeof(ggml_fp16_t));
|
||||
assert(ggml_nrows(dst) == nr);
|
||||
|
||||
for (int j = 0; j < nc; ++j) {
|
||||
ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
|
||||
((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
|
||||
// TODO: multi-thread
|
||||
for (int64_t i12 = 0; i12 < ne12; ++i12) {
|
||||
for (int64_t i11 = 0; i11 < ne11; ++i11) {
|
||||
for (int64_t i10 = 0; i10 < ne10; ++i10) {
|
||||
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
|
||||
|
||||
ggml_fp16_to_fp32_row(
|
||||
(const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
|
||||
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -10382,19 +10418,27 @@ static void ggml_compute_forward_get_rows_f32(
|
||||
return;
|
||||
}
|
||||
|
||||
const int nc = src0->ne[0];
|
||||
const int nr = ggml_nelements(src1);
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
assert( dst->ne[0] == nc);
|
||||
assert( dst->ne[1] == nr);
|
||||
assert(src0->nb[0] == sizeof(float));
|
||||
const int64_t nc = ne00;
|
||||
const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
|
||||
|
||||
for (int i = 0; i < nr; ++i) {
|
||||
const int r = ((int32_t *) src1->data)[i];
|
||||
assert(ne0 == nc);
|
||||
assert(ne02 == ne11);
|
||||
assert(nb00 == sizeof(float));
|
||||
assert(ggml_nrows(dst) == nr);
|
||||
|
||||
// TODO: multi-thread
|
||||
for (int64_t i12 = 0; i12 < ne12; ++i12) {
|
||||
for (int64_t i11 = 0; i11 < ne11; ++i11) {
|
||||
for (int64_t i10 = 0; i10 < ne10; ++i10) {
|
||||
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
|
||||
|
||||
ggml_vec_cpy_f32(nc,
|
||||
(float *) ((char *) dst->data + i*dst->nb[1]),
|
||||
(float *) ((char *) src0->data + r*src0->nb[1]));
|
||||
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
|
||||
(float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -14037,11 +14081,11 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
} break;
|
||||
case GGML_OP_MUL_MAT:
|
||||
{
|
||||
ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
|
||||
ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor, 0, tensor->ne[1]);
|
||||
} break;
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
{
|
||||
ggml_compute_forward_mul_mat_id(params, tensor);
|
||||
ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor);
|
||||
} break;
|
||||
case GGML_OP_OUT_PROD:
|
||||
{
|
||||
@ -14475,7 +14519,7 @@ void ggml_build_backward_gradient_checkpointing(
|
||||
// insert new tensors recomputing src, reusing already made replacements,
|
||||
// remember replacements: remember new tensors with mapping from corresponding gf nodes
|
||||
// recurse for input tensors,
|
||||
// unless (i.e. terminating when) input tensors are replacments (like checkpoints)
|
||||
// unless (i.e. terminating when) input tensors are replacements (like checkpoints)
|
||||
node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
|
||||
}
|
||||
// insert rewritten backward node with replacements made into resulting backward graph gb
|
||||
|
8
ggml.h
8
ggml.h
@ -215,9 +215,9 @@
|
||||
#define GGML_QNT_VERSION_FACTOR 1000 // do not change this
|
||||
|
||||
#define GGML_MAX_DIMS 4
|
||||
#define GGML_MAX_PARAMS 1024
|
||||
#define GGML_MAX_PARAMS 2048
|
||||
#define GGML_MAX_CONTEXTS 64
|
||||
#define GGML_MAX_SRC 6
|
||||
#define GGML_MAX_SRC 10
|
||||
#define GGML_MAX_NAME 64
|
||||
#define GGML_MAX_OP_PARAMS 64
|
||||
#define GGML_DEFAULT_N_THREADS 4
|
||||
@ -1051,7 +1051,8 @@ extern "C" {
|
||||
// ggml_mul_mat_id(ctx, as, ids, id, b) ~= ggml_mul_mat(as[ids[id]], b)
|
||||
GGML_API struct ggml_tensor * ggml_mul_mat_id(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * as[],
|
||||
struct ggml_tensor * const as[],
|
||||
int n_as,
|
||||
struct ggml_tensor * ids,
|
||||
int id,
|
||||
struct ggml_tensor * b);
|
||||
@ -1263,6 +1264,7 @@ extern "C" {
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// supports 3D: a->ne[2] == b->ne[1]
|
||||
GGML_API struct ggml_tensor * ggml_get_rows(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
|
@ -61,7 +61,7 @@ If you want to publish the package manually for any reason, you need to have `tw
|
||||
pip install build twine
|
||||
```
|
||||
|
||||
Then, folow these steps to release a new version:
|
||||
Then, follow these steps to release a new version:
|
||||
|
||||
1. Bump the version in `pyproject.toml`.
|
||||
2. Build the package:
|
||||
|
@ -38,6 +38,8 @@ class Keys:
|
||||
FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
|
||||
USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
|
||||
TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
|
||||
EXPERT_COUNT = "{arch}.expert_count"
|
||||
EXPERT_USED_COUNT = "{arch}.expert_used_count"
|
||||
|
||||
class Attention:
|
||||
HEAD_COUNT = "{arch}.attention.head_count"
|
||||
@ -111,10 +113,14 @@ class MODEL_TENSOR(IntEnum):
|
||||
ATTN_NORM = auto()
|
||||
ATTN_NORM_2 = auto()
|
||||
ATTN_ROT_EMBD = auto()
|
||||
FFN_GATE_INP = auto()
|
||||
FFN_NORM = auto()
|
||||
FFN_GATE = auto()
|
||||
FFN_DOWN = auto()
|
||||
FFN_UP = auto()
|
||||
FFN_NORM = auto()
|
||||
FFN_GATE_EXP = auto()
|
||||
FFN_DOWN_EXP = auto()
|
||||
FFN_UP_EXP = auto()
|
||||
ATTN_Q_NORM = auto()
|
||||
ATTN_K_NORM = auto()
|
||||
|
||||
@ -154,10 +160,14 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
|
||||
MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
|
||||
MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
|
||||
MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
|
||||
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
|
||||
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
|
||||
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
|
||||
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
|
||||
MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate.{xid}",
|
||||
MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down.{xid}",
|
||||
MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up.{xid}",
|
||||
}
|
||||
|
||||
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
@ -172,10 +182,14 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
],
|
||||
MODEL_ARCH.GPTNEOX: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
|
@ -339,6 +339,12 @@ class GGUFWriter:
|
||||
def add_clamp_kqv(self, value: float) -> None:
|
||||
self.add_float32(Keys.Attention.CLAMP_KQV.format(arch=self.arch), value)
|
||||
|
||||
def add_expert_count(self, count: int) -> None:
|
||||
self.add_uint32(Keys.LLM.EXPERT_COUNT.format(arch=self.arch), count)
|
||||
|
||||
def add_expert_used_count(self, count: int) -> None:
|
||||
self.add_uint32(Keys.LLM.EXPERT_USED_COUNT.format(arch=self.arch), count)
|
||||
|
||||
def add_layer_norm_eps(self, value: float) -> None:
|
||||
self.add_float32(Keys.Attention.LAYERNORM_EPS.format(arch=self.arch), value)
|
||||
|
||||
|
@ -149,6 +149,11 @@ class TensorNameMap:
|
||||
"model.layers.{bid}.ln2", # yi
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_INP: (
|
||||
"layers.{bid}.feed_forward.gate", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.gate", # mixtral
|
||||
),
|
||||
|
||||
# Feed-forward up
|
||||
MODEL_TENSOR.FFN_UP: (
|
||||
"gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
|
||||
@ -164,6 +169,11 @@ class TensorNameMap:
|
||||
"transformer.h.{bid}.mlp.w1", # qwen
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_UP_EXP: (
|
||||
"layers.{bid}.feed_forward.experts.{xid}.w3", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.experts.{xid}.w3", # mixtral
|
||||
),
|
||||
|
||||
# Feed-forward gate
|
||||
MODEL_TENSOR.FFN_GATE: (
|
||||
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact
|
||||
@ -171,6 +181,11 @@ class TensorNameMap:
|
||||
"transformer.h.{bid}.mlp.w2", # qwen
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_EXP: (
|
||||
"layers.{bid}.feed_forward.experts.{xid}.w1", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.experts.{xid}.w1", # mixtral
|
||||
),
|
||||
|
||||
# Feed-forward down
|
||||
MODEL_TENSOR.FFN_DOWN: (
|
||||
"gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
|
||||
@ -185,6 +200,11 @@ class TensorNameMap:
|
||||
"language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_DOWN_EXP: (
|
||||
"layers.{bid}.feed_forward.experts.{xid}.w2", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.experts.{xid}.w2", # mixtral
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_Q_NORM: (
|
||||
"language_model.encoder.layers.{bid}.self_attention.q_layernorm",
|
||||
),
|
||||
@ -213,10 +233,13 @@ class TensorNameMap:
|
||||
for tensor, keys in self.block_mappings_cfg.items():
|
||||
if tensor not in MODEL_TENSORS[arch]:
|
||||
continue
|
||||
tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
|
||||
# TODO: make this configurable
|
||||
n_experts = 8
|
||||
for xid in range(n_experts):
|
||||
tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
|
||||
self.mapping[tensor_name] = (tensor, tensor_name)
|
||||
for key in keys:
|
||||
key = key.format(bid = bid)
|
||||
key = key.format(bid = bid, xid = xid)
|
||||
self.mapping[key] = (tensor, tensor_name)
|
||||
|
||||
def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
|
||||
|
@ -1,6 +1,6 @@
|
||||
[tool.poetry]
|
||||
name = "gguf"
|
||||
version = "0.6.0"
|
||||
version = "0.7.0"
|
||||
description = "Read and write ML models in GGUF for GGML"
|
||||
authors = ["GGML <ggml@ggml.ai>"]
|
||||
packages = [
|
||||
|
186
llama.cpp
186
llama.cpp
@ -92,6 +92,7 @@
|
||||
#endif
|
||||
|
||||
#define LLAMA_MAX_NODES 8192
|
||||
#define LLAMA_MAX_EXPERTS 8
|
||||
|
||||
//
|
||||
// logging
|
||||
@ -231,6 +232,8 @@ enum llm_kv {
|
||||
LLM_KV_FEED_FORWARD_LENGTH,
|
||||
LLM_KV_USE_PARALLEL_RESIDUAL,
|
||||
LLM_KV_TENSOR_DATA_LAYOUT,
|
||||
LLM_KV_EXPERT_COUNT,
|
||||
LLM_KV_EXPERT_USED_COUNT,
|
||||
|
||||
LLM_KV_ATTENTION_HEAD_COUNT,
|
||||
LLM_KV_ATTENTION_HEAD_COUNT_KV,
|
||||
@ -281,6 +284,8 @@ static std::map<llm_kv, std::string> LLM_KV_NAMES = {
|
||||
{ LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
|
||||
{ LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
|
||||
{ LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
|
||||
{ LLM_KV_EXPERT_COUNT, "%s.expert_count" },
|
||||
{ LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
|
||||
|
||||
{ LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
|
||||
{ LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
|
||||
@ -338,10 +343,14 @@ enum llm_tensor {
|
||||
LLM_TENSOR_ATTN_NORM,
|
||||
LLM_TENSOR_ATTN_NORM_2,
|
||||
LLM_TENSOR_ATTN_ROT_EMBD,
|
||||
LLM_TENSOR_FFN_GATE_INP,
|
||||
LLM_TENSOR_FFN_NORM,
|
||||
LLM_TENSOR_FFN_GATE,
|
||||
LLM_TENSOR_FFN_DOWN,
|
||||
LLM_TENSOR_FFN_UP,
|
||||
LLM_TENSOR_FFN_NORM,
|
||||
LLM_TENSOR_FFN_DOWN_EXP,
|
||||
LLM_TENSOR_FFN_GATE_EXP,
|
||||
LLM_TENSOR_FFN_UP_EXP,
|
||||
LLM_TENSOR_ATTN_Q_NORM,
|
||||
LLM_TENSOR_ATTN_K_NORM,
|
||||
};
|
||||
@ -360,10 +369,14 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
||||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
|
||||
{ LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
|
||||
},
|
||||
},
|
||||
{
|
||||
@ -585,6 +598,10 @@ struct LLM_TN {
|
||||
std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
|
||||
return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid) + "." + suffix;
|
||||
}
|
||||
|
||||
std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
|
||||
return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid, xid) + "." + suffix;
|
||||
}
|
||||
};
|
||||
|
||||
//
|
||||
@ -1164,6 +1181,8 @@ struct llama_hparams {
|
||||
uint32_t n_layer;
|
||||
uint32_t n_rot;
|
||||
uint32_t n_ff;
|
||||
uint32_t n_expert = 0;
|
||||
uint32_t n_expert_used = 0;
|
||||
|
||||
float f_norm_eps;
|
||||
float f_norm_rms_eps;
|
||||
@ -1187,6 +1206,9 @@ struct llama_hparams {
|
||||
if (this->n_layer != other.n_layer) return true;
|
||||
if (this->n_rot != other.n_rot) return true;
|
||||
if (this->n_ff != other.n_ff) return true;
|
||||
if (this->n_expert != other.n_expert) return true;
|
||||
if (this->n_expert_used != other.n_expert_used) return true;
|
||||
|
||||
if (this->rope_finetuned != other.rope_finetuned) return true;
|
||||
if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
|
||||
|
||||
@ -1268,6 +1290,12 @@ struct llama_layer {
|
||||
struct ggml_tensor * ffn_down; // w2
|
||||
struct ggml_tensor * ffn_up; // w3
|
||||
|
||||
// ff MoE
|
||||
struct ggml_tensor * ffn_gate_inp;
|
||||
struct ggml_tensor * ffn_gate_exp[LLAMA_MAX_EXPERTS];
|
||||
struct ggml_tensor * ffn_down_exp[LLAMA_MAX_EXPERTS];
|
||||
struct ggml_tensor * ffn_up_exp [LLAMA_MAX_EXPERTS];
|
||||
|
||||
// ff bias
|
||||
struct ggml_tensor * ffn_down_b; // b2
|
||||
struct ggml_tensor * ffn_up_b; // b3
|
||||
@ -2440,6 +2468,16 @@ static void llm_load_hparams(
|
||||
ml.get_key (LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
|
||||
ml.get_key (LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
|
||||
ml.get_key (LLM_KV_BLOCK_COUNT, hparams.n_layer);
|
||||
ml.get_key (LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
|
||||
ml.get_key (LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
|
||||
|
||||
GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
|
||||
GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
|
||||
if (hparams.n_expert > 0) {
|
||||
GGML_ASSERT(hparams.n_expert_used > 0);
|
||||
} else {
|
||||
GGML_ASSERT(hparams.n_expert_used == 0);
|
||||
}
|
||||
|
||||
// n_head_kv is optional, default to n_head
|
||||
hparams.n_head_kv = hparams.n_head;
|
||||
@ -2758,7 +2796,7 @@ static void llm_load_vocab(
|
||||
// The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
|
||||
// to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
|
||||
// are special tokens.
|
||||
// From testing, this appears to corelate 1:1 with special tokens.
|
||||
// From testing, this appears to correlate 1:1 with special tokens.
|
||||
//
|
||||
|
||||
// Counting special tokens and verifying in only one direction
|
||||
@ -2871,6 +2909,8 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
|
||||
LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
|
||||
LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
|
||||
LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
|
||||
LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
|
||||
LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
|
||||
LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type.c_str());
|
||||
LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
|
||||
LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
|
||||
@ -3025,9 +3065,26 @@ static void llm_load_tensors(
|
||||
|
||||
layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
|
||||
|
||||
layer.ffn_gate_inp = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd}, backend, false);
|
||||
|
||||
if (layer.ffn_gate_inp == nullptr) {
|
||||
GGML_ASSERT(hparams.n_expert == 0);
|
||||
GGML_ASSERT(hparams.n_expert_used == 0);
|
||||
|
||||
layer.ffn_gate = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
|
||||
layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
|
||||
layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
|
||||
} else {
|
||||
GGML_ASSERT(hparams.n_expert > 0);
|
||||
GGML_ASSERT(hparams.n_expert_used > 0);
|
||||
|
||||
// MoE branch
|
||||
for (uint32_t x = 0; x < hparams.n_expert; ++x) {
|
||||
layer.ffn_gate_exp[x] = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), {n_embd, n_ff}, backend_split);
|
||||
layer.ffn_down_exp[x] = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd}, backend_split);
|
||||
layer.ffn_up_exp[x] = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), {n_embd, n_ff}, backend_split);
|
||||
}
|
||||
}
|
||||
|
||||
if (backend == GGML_BACKEND_GPU) {
|
||||
vram_weights +=
|
||||
@ -3037,8 +3094,18 @@ static void llm_load_tensors(
|
||||
(layer.bk ? ggml_nbytes(layer.bk) : 0) +
|
||||
(layer.bv ? ggml_nbytes(layer.bv) : 0) +
|
||||
(layer.bo ? ggml_nbytes(layer.bo) : 0) +
|
||||
ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_gate) +
|
||||
ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_up);
|
||||
ggml_nbytes(layer.ffn_norm);
|
||||
|
||||
if (layer.ffn_gate_inp == nullptr) {
|
||||
vram_weights +=
|
||||
ggml_nbytes(layer.ffn_gate) + ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_up);
|
||||
} else {
|
||||
vram_weights += ggml_nbytes(layer.ffn_gate_inp);
|
||||
for (uint32_t x = 0; x < hparams.n_expert; ++x) {
|
||||
vram_weights +=
|
||||
ggml_nbytes(layer.ffn_gate_exp[x]) + ggml_nbytes(layer.ffn_down_exp[x]) + ggml_nbytes(layer.ffn_up_exp[x]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} break;
|
||||
@ -4019,6 +4086,8 @@ struct llm_build_context {
|
||||
const int64_t n_head_kv;
|
||||
const int64_t n_embd_head;
|
||||
const int64_t n_embd_gqa;
|
||||
const int64_t n_expert;
|
||||
const int64_t n_expert_used;
|
||||
|
||||
const float freq_base;
|
||||
const float freq_scale;
|
||||
@ -4060,6 +4129,8 @@ struct llm_build_context {
|
||||
n_head_kv (hparams.n_head_kv),
|
||||
n_embd_head (hparams.n_embd_head()),
|
||||
n_embd_gqa (hparams.n_embd_gqa()),
|
||||
n_expert (hparams.n_expert),
|
||||
n_expert_used (hparams.n_expert_used),
|
||||
freq_base (cparams.rope_freq_base),
|
||||
freq_scale (cparams.rope_freq_scale),
|
||||
ext_factor (cparams.yarn_ext_factor),
|
||||
@ -4184,7 +4255,7 @@ struct llm_build_context {
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// feed-forward network
|
||||
{
|
||||
if (model.layers[il].ffn_gate_inp == nullptr) {
|
||||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
@ -4196,6 +4267,69 @@ struct llm_build_context {
|
||||
model.layers[il].ffn_down, NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
} else {
|
||||
// MoE branch
|
||||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts]
|
||||
cb(logits, "ffn_moe_logits", il);
|
||||
|
||||
ggml_tensor * probs = ggml_soft_max(ctx0, logits); // [n_tokens, num_experts]
|
||||
cb(probs, "ffn_moe_probs", il);
|
||||
|
||||
// select experts
|
||||
ggml_tensor * selected_experts = ggml_top_k(ctx0, probs, n_expert_used); // [n_tokens, num_experts_per_tok]
|
||||
cb(selected_experts->src[0], "ffn_moe_argsort", il);
|
||||
|
||||
ggml_tensor * weights = ggml_get_rows(ctx0,
|
||||
ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts);
|
||||
cb(weights, "ffn_moe_weights", il);
|
||||
|
||||
weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok]
|
||||
|
||||
ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights);
|
||||
cb(weights_sum, "ffn_moe_weights_sum", il);
|
||||
|
||||
weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok]
|
||||
cb(weights, "ffn_moe_weights_norm", il);
|
||||
|
||||
// compute expert outputs
|
||||
ggml_tensor * moe_out = nullptr;
|
||||
|
||||
for (int i = 0; i < n_expert_used; ++i) {
|
||||
ggml_tensor * cur_expert;
|
||||
|
||||
ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exp, n_expert, selected_experts, i, cur);
|
||||
cb(cur_up, "ffn_moe_up", il);
|
||||
|
||||
ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exp, n_expert, selected_experts, i, cur);
|
||||
cb(cur_gate, "ffn_moe_gate", il);
|
||||
|
||||
cur_gate = ggml_silu(ctx0, cur_gate);
|
||||
cb(cur_gate, "ffn_moe_silu", il);
|
||||
|
||||
cur_expert = ggml_mul(ctx0, cur_up, cur_gate); // [n_tokens, n_embd]
|
||||
cb(cur_expert, "ffn_moe_gate_par", il);
|
||||
|
||||
cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exp, n_expert, selected_experts, i, cur_expert); // [n_tokens, n_embd]
|
||||
cb(cur_expert, "ffn_moe_down", il);
|
||||
|
||||
cur_expert = ggml_mul(ctx0, cur_expert,
|
||||
ggml_view_2d(ctx0, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0]));
|
||||
cb(cur_expert, "ffn_moe_weighted", il);
|
||||
|
||||
if (i == 0) {
|
||||
moe_out = cur_expert;
|
||||
} else {
|
||||
moe_out = ggml_add(ctx0, moe_out, cur_expert);
|
||||
cb(moe_out, "ffn_moe_out", il);
|
||||
}
|
||||
}
|
||||
|
||||
cur = moe_out;
|
||||
}
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
@ -5450,6 +5584,20 @@ static const std::unordered_map<const char *, llm_offload_func_e> k_offload_map
|
||||
{ "ffn_relu", OFFLOAD_FUNC },
|
||||
{ "ffn_sqr(relu)", OFFLOAD_FUNC },
|
||||
|
||||
{ "ffn_moe_logits", OFFLOAD_FUNC },
|
||||
{ "ffn_moe_probs", OFFLOAD_FUNC },
|
||||
{ "ffn_moe_argsort", OFFLOAD_FUNC },
|
||||
{ "ffn_moe_weights", OFFLOAD_FUNC },
|
||||
{ "ffn_moe_weights_sum", OFFLOAD_FUNC },
|
||||
{ "ffn_moe_weights_norm", OFFLOAD_FUNC },
|
||||
{ "ffn_moe_weighted", OFFLOAD_FUNC },
|
||||
{ "ffn_moe_up", OFFLOAD_FUNC },
|
||||
{ "ffn_moe_gate", OFFLOAD_FUNC },
|
||||
{ "ffn_moe_silu", OFFLOAD_FUNC },
|
||||
{ "ffn_moe_gate_par", OFFLOAD_FUNC },
|
||||
{ "ffn_moe_down", OFFLOAD_FUNC },
|
||||
{ "ffn_moe_out", OFFLOAD_FUNC },
|
||||
|
||||
{ "l_out", OFFLOAD_FUNC },
|
||||
|
||||
{ "result_norm", OFFLOAD_FUNC_EMB },
|
||||
@ -5846,7 +5994,7 @@ static int llama_decode_internal(
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
const int64_t n_vocab = hparams.n_vocab;
|
||||
|
||||
// helpers for smoother batch API transistion
|
||||
// helpers for smoother batch API transition
|
||||
// after deprecating the llama_eval calls, these will be removed
|
||||
std::vector<llama_pos> pos;
|
||||
|
||||
@ -6625,12 +6773,12 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<
|
||||
|
||||
// loop over the text
|
||||
while (true) {
|
||||
// find the first occurence of a given special token in this fragment
|
||||
// find the first occurrence of a given special token in this fragment
|
||||
// passing offset argument only limit the "search area" but match coordinates
|
||||
// are still relative to the source full raw_text
|
||||
auto match = raw_text->find(special_token, raw_text_base_offset);
|
||||
|
||||
// no occurences found, stop processing this fragment for a given special token
|
||||
// no occurrences found, stop processing this fragment for a given special token
|
||||
if (match == std::string::npos) break;
|
||||
|
||||
// check if match is within bounds of offset <-> length
|
||||
@ -7829,7 +7977,7 @@ struct llama_beam_search_data {
|
||||
}
|
||||
|
||||
// Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
|
||||
// The repetative patterns below reflect the 2 stages of heaps:
|
||||
// The repetitive patterns below reflect the 2 stages of heaps:
|
||||
// * Gather elements until the vector is full, then call std::make_heap() on it.
|
||||
// * If the heap is full and a new element is found that should be included, pop the
|
||||
// least element to the back(), replace it with the new, then push it into the heap.
|
||||
@ -8067,11 +8215,9 @@ static void llama_convert_tensor_internal(
|
||||
workers.clear();
|
||||
}
|
||||
|
||||
static ggml_type get_k_quant_type(
|
||||
quantize_state_internal & qs,
|
||||
ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype
|
||||
) {
|
||||
static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
|
||||
const std::string name = ggml_get_name(tensor);
|
||||
|
||||
// TODO: avoid hardcoded tensor names - use the TN_* constants
|
||||
const llm_arch arch = qs.model.arch;
|
||||
const auto tn = LLM_TN(arch);
|
||||
@ -8105,7 +8251,18 @@ static ggml_type get_k_quant_type(
|
||||
// nearly negligible increase in model size by quantizing this tensor with more bits:
|
||||
if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
if (qs.model.hparams.n_expert == 8) {
|
||||
// for the 8-expert model, bumping this to Q8_0 trades just ~128MB
|
||||
// TODO: explore better strategies
|
||||
new_type = GGML_TYPE_Q8_0;
|
||||
}
|
||||
++qs.i_attention_wv;
|
||||
} else if (name.find("attn_k.weight") != std::string::npos) {
|
||||
if (qs.model.hparams.n_expert == 8) {
|
||||
// for the 8-expert model, bumping this to Q8_0 trades just ~128MB
|
||||
// TODO: explore better strategies
|
||||
new_type = GGML_TYPE_Q8_0;
|
||||
}
|
||||
} else if (name.find("ffn_down.weight") != std::string::npos) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
||||
@ -8318,6 +8475,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
quantize &= params->quantize_output_tensor || name != "output.weight";
|
||||
quantize &= !params->only_copy;
|
||||
|
||||
// do not quantize expert gating tensors
|
||||
quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
|
||||
|
||||
enum ggml_type new_type;
|
||||
void * new_data;
|
||||
size_t new_size;
|
||||
|
2
llama.h
2
llama.h
@ -216,7 +216,7 @@ extern "C" {
|
||||
|
||||
// Keep the booleans together to avoid misalignment during copy-by-value.
|
||||
bool mul_mat_q; // if true, use experimental mul_mat_q kernels (DEPRECATED - always true)
|
||||
bool logits_all; // the llama_eval() call computes all logits, not just the last one
|
||||
bool logits_all; // the llama_eval() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
|
||||
bool embedding; // embedding mode only
|
||||
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
|
||||
};
|
||||
|
@ -20,8 +20,6 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
|
||||
size_t size = ggml_nelements(tensor);
|
||||
std::vector<float> data(size);
|
||||
|
||||
std::random_device rd;
|
||||
|
||||
#if 0
|
||||
std::default_random_engine generator(rd());
|
||||
std::uniform_real_distribution<float> distribution(min, max);
|
||||
@ -31,6 +29,7 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
|
||||
}
|
||||
#endif
|
||||
auto init_thread = [&](size_t start, size_t end) {
|
||||
std::random_device rd;
|
||||
std::default_random_engine generator(rd());
|
||||
std::uniform_real_distribution<float> distribution(min, max);
|
||||
|
||||
@ -51,7 +50,7 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
|
||||
t.join();
|
||||
}
|
||||
|
||||
if (tensor->type == GGML_TYPE_F32) {
|
||||
if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
|
||||
ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float));
|
||||
} else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16) {
|
||||
GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0);
|
||||
@ -71,23 +70,28 @@ static std::vector<float> tensor_to_float(const ggml_tensor * t) {
|
||||
std::vector<uint8_t> buf(ggml_nbytes(t));
|
||||
ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
|
||||
|
||||
ggml_type_traits_t tt = ggml_internal_get_type_traits(t->type);
|
||||
size_t bs = ggml_blck_size(t->type);
|
||||
|
||||
// access elements by index to avoid gaps in views
|
||||
for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
|
||||
for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
|
||||
for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
|
||||
for (int64_t i0 = 0; i0 < t->ne[0]; i0++) {
|
||||
size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0*t->nb[0];
|
||||
float v;
|
||||
for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
|
||||
size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
|
||||
if (t->type == GGML_TYPE_F16) {
|
||||
v = (float) ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]);
|
||||
tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
|
||||
} else if (t->type == GGML_TYPE_F32) {
|
||||
v = *(float *) &buf[i];
|
||||
tv.push_back(*(float *) &buf[i]);
|
||||
} else if (t->type == GGML_TYPE_I32) {
|
||||
v = *(int32_t *) &buf[i];
|
||||
tv.push_back((float)*(int32_t *) &buf[i]);
|
||||
} else if (ggml_is_quantized(t->type)) {
|
||||
std::vector<float> vq(ggml_blck_size(t->type));
|
||||
tt.to_float(&buf[i], vq.data(), ggml_blck_size(t->type));
|
||||
tv.insert(tv.end(), vq.begin(), vq.end());
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
tv.push_back(v);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -233,6 +237,10 @@ static bool ggml_is_view_op(enum ggml_op op) {
|
||||
struct test_case {
|
||||
virtual ~test_case() {}
|
||||
|
||||
virtual std::string op_desc(ggml_tensor * t) {
|
||||
return ggml_op_desc(t);
|
||||
}
|
||||
|
||||
virtual std::string vars() {
|
||||
return "";
|
||||
}
|
||||
@ -240,7 +248,7 @@ struct test_case {
|
||||
virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
|
||||
|
||||
virtual double max_nmse_err() {
|
||||
return 1e-6;
|
||||
return 1e-7;
|
||||
}
|
||||
|
||||
virtual void initialize_tensors(ggml_context * ctx) {
|
||||
@ -270,13 +278,13 @@ struct test_case {
|
||||
|
||||
ggml_tensor * out = build_graph(ctx);
|
||||
|
||||
if (op_name != nullptr && strcmp(ggml_op_desc(out), op_name) != 0) {
|
||||
//printf(" %s: skipping\n", ggml_op_desc(out));
|
||||
if (op_name != nullptr && op_desc(out) != op_name) {
|
||||
//printf(" %s: skipping\n", op_desc(out).c_str());
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
printf(" %s(%s): ", ggml_op_desc(out), vars().c_str());
|
||||
printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
|
||||
fflush(stdout);
|
||||
|
||||
// check if backends support op
|
||||
@ -317,7 +325,7 @@ struct test_case {
|
||||
for (size_t i = 0; i < f1.size(); i++) {
|
||||
// check for nans
|
||||
if (std::isnan(f1[i]) || std::isnan(f2[i])) {
|
||||
printf("NaN at index %zu ", i);
|
||||
printf("[%s] NaN at index %zu (%f %f) ", ggml_op_desc(t1), i, f1[i], f2[i]);
|
||||
ud->ok = false;
|
||||
return true;
|
||||
}
|
||||
@ -325,12 +333,12 @@ struct test_case {
|
||||
if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
|
||||
if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
|
||||
if (std::signbit(f1[i]) != std::signbit(f2[i])) {
|
||||
printf("inf sign mismatch: %f %f ", f1[i], f2[i]);
|
||||
printf("[%s] inf sign mismatch: %f %f ", ggml_op_desc(t1), f1[i], f2[i]);
|
||||
ud->ok = false;
|
||||
return true;
|
||||
}
|
||||
} else {
|
||||
printf("inf mismatch: %f %f ", f1[i], f2[i]);
|
||||
printf("[%s] inf mismatch: %f %f ", ggml_op_desc(t1), f1[i], f2[i]);
|
||||
ud->ok = false;
|
||||
return true;
|
||||
}
|
||||
@ -339,10 +347,16 @@ struct test_case {
|
||||
|
||||
double err = nmse(f1.data(), f2.data(), f1.size());
|
||||
if (err > ud->max_err) {
|
||||
printf("NMSE = %f ", err);
|
||||
printf("[%s] NMSE = %f ", ggml_op_desc(t1), err);
|
||||
//for (int i = 0; i < f1.size(); i++) {
|
||||
// printf("(%f, %f) ", f1[i], f2[i]);
|
||||
//}
|
||||
//printf("\n");
|
||||
ud->ok = false;
|
||||
}
|
||||
return true;
|
||||
|
||||
GGML_UNUSED(index);
|
||||
};
|
||||
|
||||
ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
|
||||
@ -372,13 +386,13 @@ struct test_case {
|
||||
|
||||
ggml_tensor * out = build_graph(ctx);
|
||||
|
||||
if (op_name != nullptr && strcmp(ggml_op_desc(out), op_name) != 0) {
|
||||
//printf(" %s: skipping\n", ggml_op_desc(out));
|
||||
if (op_name != nullptr && op_desc(out) != op_name) {
|
||||
//printf(" %s: skipping\n", op_desc(out).c_str());
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
int len = printf(" %s(%s): ", ggml_op_desc(out), vars().c_str());
|
||||
int len = printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
|
||||
fflush(stdout);
|
||||
|
||||
// check if backends support op
|
||||
@ -430,8 +444,9 @@ struct test_case {
|
||||
return size;
|
||||
};
|
||||
for (int i = 0; i < gf->n_nodes; i++) {
|
||||
if (ggml_is_view_op(gf->nodes[i]->op) || gf->nodes[i] == out)
|
||||
if (ggml_is_view_op(gf->nodes[i]->op) || gf->nodes[i] == out) {
|
||||
continue;
|
||||
}
|
||||
mem += tensor_op_size(gf->nodes[i]);
|
||||
}
|
||||
|
||||
@ -486,17 +501,22 @@ struct test_get_rows : public test_case {
|
||||
const int n; // cols
|
||||
const int m; // rows
|
||||
const int r; // rows to get
|
||||
const int b; // batch size
|
||||
const bool v; // view (non-contiguous src1)
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR4(type, n, m, r);
|
||||
return VARS_TO_STR6(type, n, m, r, b, v);
|
||||
}
|
||||
|
||||
test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3)
|
||||
: type(type), n(n), m(m), r(r) {}
|
||||
test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
|
||||
: type(type), n(n), m(m), r(r), b(b), v(v) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * in = ggml_new_tensor_2d(ctx, type, n, m);
|
||||
ggml_tensor * rows = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, r);
|
||||
ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
|
||||
ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
|
||||
if (v) {
|
||||
rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
|
||||
}
|
||||
ggml_tensor * out = ggml_get_rows(ctx, in, rows);
|
||||
return out;
|
||||
}
|
||||
@ -504,12 +524,13 @@ struct test_get_rows : public test_case {
|
||||
void initialize_tensors(ggml_context * ctx) override {
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
if (t->type == GGML_TYPE_I32) {
|
||||
if (ggml_is_view_op(t->op)) { continue; }
|
||||
// rows
|
||||
std::vector<int> data(r);
|
||||
for (int i = 0; i < r; i++) {
|
||||
std::vector<int> data(r*b);
|
||||
for (int i = 0; i < r*b; i++) {
|
||||
data[i] = rand() % m;
|
||||
}
|
||||
ggml_backend_tensor_set(t, data.data(), 0, r * sizeof(int));
|
||||
ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
|
||||
} else {
|
||||
init_tensor_uniform(t);
|
||||
}
|
||||
@ -770,11 +791,10 @@ struct test_mul_mat_id : public test_case {
|
||||
const int64_t m;
|
||||
const int64_t n;
|
||||
const int64_t k;
|
||||
const std::array<int64_t, 2> bs; // dims 3 and 4
|
||||
const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
|
||||
const bool v; // view (non-contiguous ids)
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR9(type_a, type_b, n_mats, id, m, n, k, bs, nr);
|
||||
return VARS_TO_STR8(type_a, type_b, n_mats, id, m, n, k, v);
|
||||
}
|
||||
|
||||
double max_nmse_err() override {
|
||||
@ -782,7 +802,7 @@ struct test_mul_mat_id : public test_case {
|
||||
}
|
||||
|
||||
size_t op_size(ggml_tensor * t) override {
|
||||
size_t a = ggml_nbytes(t->src[2]) * n * nr[0] * nr[1];
|
||||
size_t a = ggml_nbytes(t->src[2]) * n;
|
||||
size_t b = ggml_nbytes(t->src[1]) * m;
|
||||
size_t c = ggml_nbytes(t);
|
||||
return a + b + c;
|
||||
@ -792,35 +812,41 @@ struct test_mul_mat_id : public test_case {
|
||||
|
||||
test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
|
||||
int n_mats = 2, int id = 0,
|
||||
int64_t m = 32, int64_t n = 32, int64_t k = 32,
|
||||
std::array<int64_t, 2> bs = {10, 10},
|
||||
std::array<int64_t, 2> nr = {2, 2})
|
||||
int64_t m = 32, int64_t n = 32, int64_t k = 32, bool v = false)
|
||||
: type_a(type_a), type_b(type_b), n_mats(n_mats), id(id),
|
||||
m(m), n(n), k(k), bs(bs), nr(nr) {}
|
||||
m(m), n(n), k(k), v(v) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
// C^T = A * B^T: (k, m) * (k, n) => (m, n)
|
||||
std::vector<ggml_tensor *> mats;
|
||||
for (int i = 0; i < n_mats; i++) {
|
||||
ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
|
||||
ggml_tensor * a = ggml_new_tensor_2d(ctx, type_a, k, m);
|
||||
mats.push_back(a);
|
||||
}
|
||||
ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_mats);
|
||||
ggml_tensor * b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
|
||||
ggml_tensor * out = ggml_mul_mat_id(ctx, mats.data(), ids, id, b);
|
||||
ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
|
||||
if (v) {
|
||||
ids = ggml_view_2d(ctx, ids, n_mats/2, ids->ne[1], ids->nb[1], 0);
|
||||
}
|
||||
ggml_tensor * b = ggml_new_tensor_2d(ctx, type_b, k, n);
|
||||
ggml_tensor * out = ggml_mul_mat_id(ctx, mats.data(), n_mats, ids, v ? id/2 : id, b);
|
||||
return out;
|
||||
}
|
||||
|
||||
void initialize_tensors(ggml_context * ctx) override {
|
||||
std::random_device rd;
|
||||
std::default_random_engine rng(rd());
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
if (t->type == GGML_TYPE_I32) {
|
||||
if (ggml_is_view_op(t->op)) { continue; }
|
||||
// ids
|
||||
std::vector<int> data(n_mats);
|
||||
for (int i = 0; i < n_mats; i++) {
|
||||
data[i] = i;
|
||||
for (int64_t r = 0; r < ggml_nrows(t); r++) {
|
||||
std::vector<int32_t> data(t->ne[0]);
|
||||
for (int i = 0; i < t->ne[0]; i++) {
|
||||
data[i] = i % n_mats;
|
||||
}
|
||||
std::shuffle(data.begin(), data.end(), rng);
|
||||
ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
|
||||
}
|
||||
std::shuffle(data.begin(), data.end(), std::default_random_engine(std::random_device()()));
|
||||
ggml_backend_tensor_set(t, data.data(), 0, n_mats * sizeof(int));
|
||||
} else {
|
||||
init_tensor_uniform(t);
|
||||
}
|
||||
@ -1109,6 +1135,90 @@ struct test_sum_rows : public test_case {
|
||||
}
|
||||
};
|
||||
|
||||
// Mixtral MOE
|
||||
struct test_moe : public test_case {
|
||||
const int n_experts;
|
||||
const int n_experts_per_tok;
|
||||
const int n_tokens;
|
||||
const int n_embd;
|
||||
const int n_ff;
|
||||
|
||||
std::string op_desc(ggml_tensor * t) override {
|
||||
return "MOE";
|
||||
|
||||
GGML_UNUSED(t);
|
||||
}
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR5(n_experts, n_experts_per_tok, n_tokens, n_embd, n_ff);
|
||||
}
|
||||
|
||||
test_moe(int n_experts = 8, int n_experts_per_tok = 2, int n_tokens = 1, int n_embd = 4096, int n_ff = 14336)
|
||||
: n_experts(n_experts), n_experts_per_tok(n_experts_per_tok), n_tokens(n_tokens), n_embd(n_embd), n_ff(n_ff) {
|
||||
}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * ffn_gate_inp = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_experts);
|
||||
|
||||
std::vector<ggml_tensor *> ffn_up_exp(n_experts);
|
||||
std::vector<ggml_tensor *> ffn_gate_exp(n_experts);
|
||||
std::vector<ggml_tensor *> ffn_down_exp(n_experts);
|
||||
|
||||
for (int i = 0; i < n_experts; ++i) {
|
||||
ffn_up_exp[i] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
|
||||
ffn_gate_exp[i] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
|
||||
ffn_down_exp[i] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
|
||||
}
|
||||
|
||||
ggml_tensor * cur = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_tokens);
|
||||
|
||||
ggml_tensor * logits = ggml_mul_mat(ctx, ffn_gate_inp, cur);
|
||||
ggml_tensor * probs = ggml_soft_max_ext(ctx, logits, nullptr, 1.0f/sqrtf(n_embd));
|
||||
|
||||
// select experts
|
||||
ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_experts_per_tok);
|
||||
|
||||
ggml_tensor * weights = ggml_get_rows(ctx,
|
||||
ggml_reshape_3d(ctx, probs, 1, n_experts, n_tokens), selected_experts);
|
||||
|
||||
weights = ggml_reshape_2d(ctx, weights, n_experts_per_tok, n_tokens);
|
||||
|
||||
ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights);
|
||||
|
||||
weights = ggml_div(ctx, weights, weights_sum);
|
||||
|
||||
// compute expert outputs
|
||||
ggml_tensor * moe_out = nullptr;
|
||||
|
||||
for (int i = 0; i < n_experts_per_tok; ++i) {
|
||||
ggml_tensor * cur_expert;
|
||||
|
||||
ggml_tensor * cur_up = ggml_mul_mat_id(ctx, ffn_up_exp.data(), n_experts, selected_experts, i, cur);
|
||||
|
||||
ggml_tensor * cur_gate = ggml_mul_mat_id(ctx, ffn_gate_exp.data(), n_experts, selected_experts, i, cur);
|
||||
|
||||
cur_gate = ggml_silu(ctx, cur_gate);
|
||||
|
||||
cur_expert = ggml_mul(ctx, cur_up, cur_gate);
|
||||
|
||||
cur_expert = ggml_mul_mat_id(ctx, ffn_down_exp.data(), n_experts, selected_experts, i, cur_expert);
|
||||
|
||||
cur_expert = ggml_mul(ctx, cur_expert,
|
||||
ggml_view_2d(ctx, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0]));
|
||||
|
||||
if (i == 0) {
|
||||
moe_out = cur_expert;
|
||||
} else {
|
||||
moe_out = ggml_add(ctx, moe_out, cur_expert);
|
||||
}
|
||||
}
|
||||
|
||||
cur = moe_out;
|
||||
|
||||
return cur;
|
||||
}
|
||||
};
|
||||
|
||||
enum test_mode {
|
||||
MODE_TEST,
|
||||
MODE_PERF,
|
||||
@ -1117,14 +1227,28 @@ enum test_mode {
|
||||
static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) {
|
||||
std::vector<std::unique_ptr<test_case>> test_cases;
|
||||
|
||||
const ggml_type all_types[] = {
|
||||
GGML_TYPE_F32, GGML_TYPE_F16,
|
||||
GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
|
||||
GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
|
||||
GGML_TYPE_Q8_0,
|
||||
GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
|
||||
GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
|
||||
GGML_TYPE_Q6_K
|
||||
};
|
||||
|
||||
// unary ops
|
||||
for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
|
||||
test_cases.emplace_back(new test_unary((ggml_unary_op) op));
|
||||
}
|
||||
|
||||
for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
|
||||
test_cases.emplace_back(new test_get_rows(type, 10, 5, 3));
|
||||
test_cases.emplace_back(new test_get_rows(type, 16, 5, 3));
|
||||
test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
|
||||
for (ggml_type type : all_types) {
|
||||
for (int b : {1, 7}) {
|
||||
for (bool v : {false, true}) {
|
||||
test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 1}));
|
||||
@ -1134,7 +1258,11 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 2}));
|
||||
|
||||
test_cases.emplace_back(new test_dup());
|
||||
test_cases.emplace_back(new test_cpy());
|
||||
|
||||
for (ggml_type type : all_types) {
|
||||
test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, type, {256, 10, 10, 1}));
|
||||
}
|
||||
|
||||
test_cases.emplace_back(new test_cont());
|
||||
|
||||
auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
|
||||
@ -1144,6 +1272,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
};
|
||||
|
||||
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 8, 1}, {1, 1, 1, 1});
|
||||
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1, 1}, {32, 1, 1, 1});
|
||||
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 320, 320}, {1, 1, 1, 1});
|
||||
add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 1, 1}, {1, 1, 1, 1});
|
||||
add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 1}, {1, 1, 1, 1});
|
||||
@ -1170,8 +1299,8 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 640, 1}, {32, 32, 1, 1});
|
||||
add_test_bin_bcast(GGML_TYPE_F32, {5120, 1, 1, 1}, {1, 256, 1, 1});
|
||||
add_test_bin_bcast(GGML_TYPE_F32, {640, 1, 1, 1}, {1, 1, 1, 1});
|
||||
add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {1, 1, 1, 1});
|
||||
add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {2, 1, 1, 1});
|
||||
//add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {1, 1, 1, 1});
|
||||
//add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {2, 1, 1, 1});
|
||||
|
||||
test_cases.emplace_back(new test_scale());
|
||||
|
||||
@ -1180,16 +1309,6 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps));
|
||||
}
|
||||
|
||||
const ggml_type all_types[] = {
|
||||
GGML_TYPE_F32, GGML_TYPE_F16,
|
||||
GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
|
||||
GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
|
||||
GGML_TYPE_Q8_0,
|
||||
GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
|
||||
GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
|
||||
GGML_TYPE_Q6_K
|
||||
};
|
||||
|
||||
for (ggml_type type_a : all_types) {
|
||||
for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
|
||||
// FIXME: CPU crashes on f16xf16
|
||||
@ -1213,9 +1332,11 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
|
||||
for (ggml_type type_a : all_types) {
|
||||
for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
|
||||
for (int n_mats : {1, 2, 4}) {
|
||||
for (int n_mats : {2, 4, 8}) {
|
||||
for (int id = 0; id < n_mats; id++) {
|
||||
test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, id, 16, 16, 256, {1, 1}, {1, 1}));
|
||||
for (bool v : {false, true}) {
|
||||
test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, id, 16, 16, 256, v));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1247,10 +1368,18 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
test_cases.emplace_back(new test_concat());
|
||||
|
||||
for (ggml_sort_order order : {GGML_SORT_ASC, GGML_SORT_DESC}) {
|
||||
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
|
||||
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
|
||||
}
|
||||
|
||||
test_cases.emplace_back(new test_sum_rows());
|
||||
test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, {10, 10, 10, 10}));
|
||||
test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, {2, 1, 1, 1}));
|
||||
|
||||
#if !defined(__SANITIZE_THREAD__)
|
||||
// FIXME: these tests use too much memory with thread sanitizer
|
||||
test_cases.emplace_back(new test_moe(8, 2, 1, 4096, 14336));
|
||||
//test_cases.emplace_back(new test_moe(8, 2, 8, 4096, 14336));
|
||||
#endif
|
||||
|
||||
// run tests
|
||||
if (mode == MODE_TEST) {
|
||||
@ -1267,14 +1396,17 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
ggml_backend_free(backend_cpu);
|
||||
|
||||
return n_ok == test_cases.size();
|
||||
} else if (mode == MODE_PERF) {
|
||||
}
|
||||
|
||||
if (mode == MODE_PERF) {
|
||||
for (auto & test : test_cases) {
|
||||
test->eval_perf(backend, op_name);
|
||||
}
|
||||
return true;
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
GGML_ASSERT(false);
|
||||
return false;
|
||||
}
|
||||
|
||||
static void usage(char ** argv) {
|
||||
@ -1347,11 +1479,12 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
printf("%zu/%zu backends passed\n", n_ok, ggml_backend_reg_get_count());
|
||||
|
||||
if (n_ok != ggml_backend_reg_get_count()) {
|
||||
printf("\033[1;31mFAIL\033[0m\n");
|
||||
return 1;
|
||||
} else {
|
||||
}
|
||||
|
||||
printf("\033[1;32mOK\033[0m\n");
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
@ -1,4 +1,4 @@
|
||||
#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
|
||||
#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
|
||||
#include "ggml.h"
|
||||
|
||||
#include <cmath>
|
||||
|
@ -117,7 +117,7 @@ static void usage(char * argv[]) {
|
||||
printf(" --size SIZE set test size, divisible by 32 (L1_SIZE:%d)\n", L1_SIZE);
|
||||
printf(" -3 use size as L1, L2, L3 sizes (L1:%d L2:%d L3:%d)\n", L1_SIZE, L2_SIZE, L3_SIZE);
|
||||
printf(" -4 use size as L1, L2, L3, MEM sizes (L1:%d L2:%d L3:%d MEM:%d)\n", L1_SIZE, L2_SIZE, L3_SIZE, MEM_SIZE);
|
||||
printf(" --op OP set test opration as quantize_row_q_reference, quantize_row_q, dequantize_row_q,\n");
|
||||
printf(" --op OP set test operation as quantize_row_q_reference, quantize_row_q, dequantize_row_q,\n");
|
||||
printf(" quantize_row_q_dot, vec_dot_q (all)\n");
|
||||
printf(" --type TYPE set test type as");
|
||||
for (int i = 0; i < GGML_TYPE_COUNT; i++) {
|
||||
@ -202,7 +202,7 @@ int main(int argc, char * argv[]) {
|
||||
}
|
||||
int alignment = std::stoi(argv[i]);
|
||||
if (alignment < 0 || alignment > MAX_ALIGNMENT) {
|
||||
fprintf(stderr, "error: aligment-offset must be less than %d\n", MAX_ALIGNMENT);
|
||||
fprintf(stderr, "error: alignment-offset must be less than %d\n", MAX_ALIGNMENT);
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user