mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-14 04:24:30 +00:00
gguf.py : merge all files in gguf.py
This commit is contained in:
parent
88b5769487
commit
c8ee87f141
50
constants.py
50
constants.py
@ -1,50 +0,0 @@
|
||||
GGUF_MAGIC = 0x47475546
|
||||
GGUF_VERSION = 1
|
||||
GGUF_DEFAULT_ALIGNMENT = 32
|
||||
|
||||
# general
|
||||
KEY_GENERAL_ARCHITECTURE = "general.architecture"
|
||||
KEY_GENERAL_QUANTIZATION_VERSION = "general.quantization_version"
|
||||
KEY_GENERAL_ALIGNMENT = "general.alignment"
|
||||
KEY_GENERAL_NAME = "general.name"
|
||||
KEY_GENERAL_AUTHOR = "general.author"
|
||||
KEY_GENERAL_URL = "general.url"
|
||||
KEY_GENERAL_DESCRIPTION = "general.description"
|
||||
KEY_GENERAL_FILE_TYPE = "general.file_type"
|
||||
KEY_GENERAL_LICENSE = "general.license"
|
||||
KEY_GENERAL_SOURCE_URL = "general.source.url"
|
||||
KEY_GENERAL_SOURCE_HF_REPO = "general.source.hugginface.repository"
|
||||
|
||||
# LLM
|
||||
KEY_LLM_CONTEXT_LENGTH = "{llm}.context_length"
|
||||
KEY_LLM_EMBEDDING_LENGTH = "{llm}.embedding_length"
|
||||
KEY_LLM_BLOCK_COUNT = "{llm}.block_count"
|
||||
KEY_LLM_FEED_FORWARD_LENGTH = "{llm}.feed_forward_length"
|
||||
KEY_LLM_USE_PARALLEL_RESIDUAL = "{llm}.use_parallel_residual"
|
||||
KEY_LLM_TENSOR_DATA_LAYOUT = "{llm}.tensor_data_layout"
|
||||
|
||||
# attention
|
||||
KEY_ATTENTION_HEAD_COUNT = "{llm}.attention.head_count"
|
||||
KEY_ATTENTION_HEAD_COUNT_KV = "{llm}.attention.head_count_kv"
|
||||
KEY_ATTENTION_MAX_ALIBI_BIAS = "{llm}.attention.max_alibi_bias"
|
||||
KEY_ATTENTION_CLAMP_KQV = "{llm}.attention.clamp_kqv"
|
||||
KEY_ATTENTION_LAYERNORM_EPS = "{llm}.attention.layer_norm_epsilon"
|
||||
KEY_ATTENTION_LAYERNORM_RMS_EPS = "{llm}.attention.layer_norm_rms_epsilon"
|
||||
|
||||
# RoPE
|
||||
KEY_ROPE_DIMENSION_COUNT = "{llm}.rope.dimension_count"
|
||||
KEY_ROPE_SCALE = "{llm}.rope.scale"
|
||||
|
||||
# tokenization
|
||||
KEY_TOKENIZER_MODEL = "tokenizer.ggml.model"
|
||||
KEY_TOKENIZER_LIST = "tokenizer.ggml.tokens"
|
||||
KEY_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type"
|
||||
KEY_TOKENIZER_SCORES = "tokenizer.ggml.scores"
|
||||
KEY_TOKENIZER_MERGES = "tokenizer.ggml.merges"
|
||||
KEY_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id"
|
||||
KEY_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id"
|
||||
KEY_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id"
|
||||
KEY_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id"
|
||||
KEY_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id"
|
||||
KEY_TOKENIZER_HF_JSON = "tokenizer.huggingface.json"
|
||||
KEY_TOKENIZER_RWKV = "tokenizer.rwkv.world"
|
@ -1,15 +1,15 @@
|
||||
# HF gptneox--> gguf conversion
|
||||
|
||||
import gguf
|
||||
import gguf_namemap as tmap
|
||||
import os
|
||||
import sys
|
||||
import struct
|
||||
import json
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from typing import Any, List
|
||||
from pathlib import Path
|
||||
import torch
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
||||
@ -188,7 +188,7 @@ if Path(dir_model + "/tokenizer.json").is_file():
|
||||
|
||||
# TENSORS
|
||||
|
||||
tensor_map = tmap.get_tensor_namemap(block_count)
|
||||
tensor_map = gguf.get_tensor_name_map(block_count)
|
||||
|
||||
# tensor info
|
||||
print("gguf: get tensor metadata")
|
||||
|
@ -3,18 +3,17 @@
|
||||
# HF files required in the model dir: config.json tokenizer_config.json tokenizer.json tokenizer.model
|
||||
|
||||
import gguf
|
||||
import gguf_namemap as tmap
|
||||
import os
|
||||
import sys
|
||||
import struct
|
||||
import json
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from typing import Any, List
|
||||
from pathlib import Path
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
|
||||
|
||||
#NDArray = np.ndarray[Any, Any]
|
||||
# compatible with python < 3.9
|
||||
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
|
||||
@ -189,7 +188,7 @@ if Path(dir_model + "/tokenizer.json").is_file():
|
||||
|
||||
# TENSORS
|
||||
|
||||
tensor_map = tmap.get_tensor_namemap(block_count)
|
||||
tensor_map = gguf.get_tensor_name_map(block_count)
|
||||
|
||||
# tensor info
|
||||
print("gguf: get tensor metadata")
|
||||
|
@ -1,8 +1,6 @@
|
||||
# HF llama --> gguf conversion
|
||||
|
||||
import gguf
|
||||
import gguf_namemap as tmap
|
||||
|
||||
import os
|
||||
import sys
|
||||
import struct
|
||||
@ -201,7 +199,7 @@ if Path(dir_model + "/tokenizer.json").is_file():
|
||||
|
||||
# TENSORS
|
||||
|
||||
tensor_map = tmap.get_tensor_namemap(block_count)
|
||||
tensor_map = gguf.get_tensor_name_map(block_count)
|
||||
|
||||
# tensor info
|
||||
print("gguf: get tensor metadata")
|
||||
|
238
gguf.py
238
gguf.py
@ -4,14 +4,169 @@
|
||||
3. After development is done, Convert it to a proper pip-installable Python package, and possibly move it to its own repo under ggml-org.
|
||||
"""
|
||||
|
||||
import sys
|
||||
import struct
|
||||
import constants
|
||||
import numpy as np
|
||||
|
||||
from enum import IntEnum
|
||||
from typing import Any, IO, List
|
||||
|
||||
import numpy as np
|
||||
import sys
|
||||
#
|
||||
# constants
|
||||
#
|
||||
|
||||
GGUF_MAGIC = 0x47475546
|
||||
GGUF_VERSION = 1
|
||||
GGUF_DEFAULT_ALIGNMENT = 32
|
||||
|
||||
# general
|
||||
KEY_GENERAL_ARCHITECTURE = "general.architecture"
|
||||
KEY_GENERAL_QUANTIZATION_VERSION = "general.quantization_version"
|
||||
KEY_GENERAL_ALIGNMENT = "general.alignment"
|
||||
KEY_GENERAL_NAME = "general.name"
|
||||
KEY_GENERAL_AUTHOR = "general.author"
|
||||
KEY_GENERAL_URL = "general.url"
|
||||
KEY_GENERAL_DESCRIPTION = "general.description"
|
||||
KEY_GENERAL_FILE_TYPE = "general.file_type"
|
||||
KEY_GENERAL_LICENSE = "general.license"
|
||||
KEY_GENERAL_SOURCE_URL = "general.source.url"
|
||||
KEY_GENERAL_SOURCE_HF_REPO = "general.source.hugginface.repository"
|
||||
|
||||
# LLM
|
||||
KEY_LLM_CONTEXT_LENGTH = "{llm}.context_length"
|
||||
KEY_LLM_EMBEDDING_LENGTH = "{llm}.embedding_length"
|
||||
KEY_LLM_BLOCK_COUNT = "{llm}.block_count"
|
||||
KEY_LLM_FEED_FORWARD_LENGTH = "{llm}.feed_forward_length"
|
||||
KEY_LLM_USE_PARALLEL_RESIDUAL = "{llm}.use_parallel_residual"
|
||||
KEY_LLM_TENSOR_DATA_LAYOUT = "{llm}.tensor_data_layout"
|
||||
|
||||
# attention
|
||||
KEY_ATTENTION_HEAD_COUNT = "{llm}.attention.head_count"
|
||||
KEY_ATTENTION_HEAD_COUNT_KV = "{llm}.attention.head_count_kv"
|
||||
KEY_ATTENTION_MAX_ALIBI_BIAS = "{llm}.attention.max_alibi_bias"
|
||||
KEY_ATTENTION_CLAMP_KQV = "{llm}.attention.clamp_kqv"
|
||||
KEY_ATTENTION_LAYERNORM_EPS = "{llm}.attention.layer_norm_epsilon"
|
||||
KEY_ATTENTION_LAYERNORM_RMS_EPS = "{llm}.attention.layer_norm_rms_epsilon"
|
||||
|
||||
# RoPE
|
||||
KEY_ROPE_DIMENSION_COUNT = "{llm}.rope.dimension_count"
|
||||
KEY_ROPE_SCALE = "{llm}.rope.scale"
|
||||
|
||||
# tokenization
|
||||
KEY_TOKENIZER_MODEL = "tokenizer.ggml.model"
|
||||
KEY_TOKENIZER_LIST = "tokenizer.ggml.tokens"
|
||||
KEY_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type"
|
||||
KEY_TOKENIZER_SCORES = "tokenizer.ggml.scores"
|
||||
KEY_TOKENIZER_MERGES = "tokenizer.ggml.merges"
|
||||
KEY_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id"
|
||||
KEY_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id"
|
||||
KEY_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id"
|
||||
KEY_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id"
|
||||
KEY_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id"
|
||||
KEY_TOKENIZER_HF_JSON = "tokenizer.huggingface.json"
|
||||
KEY_TOKENIZER_RWKV = "tokenizer.rwkv.world"
|
||||
|
||||
#
|
||||
# recommended mapping of model tensor names for storage in gguf
|
||||
#
|
||||
|
||||
def get_tensor_name_map(n_blocks : int):
|
||||
tensor_map = {}
|
||||
# Token embeddings
|
||||
mapped_to = "token_embd"
|
||||
tensor_map["gpt_neox.embed_in"] = mapped_to # gptneox
|
||||
tensor_map["transformer.wte"] = mapped_to # gpt2 mpt
|
||||
tensor_map["transformer.word_embeddings"] = mapped_to # falcon
|
||||
tensor_map["model.embed_tokens"] = mapped_to # llama-hf
|
||||
tensor_map["tok_embeddings"] = mapped_to # llama-pth
|
||||
# Position embeddings
|
||||
mapped_to = "pos_embd"
|
||||
tensor_map["transformer.wpe"] = mapped_to # gpt2
|
||||
# Output norm
|
||||
mapped_to = "output_norm"
|
||||
tensor_map["gpt_neox.final_layer_norm"] = mapped_to # gptneox
|
||||
tensor_map["transformer.ln_f"] = mapped_to # gpt2 falcon
|
||||
tensor_map["transformer.norm_f"] = mapped_to # mpt
|
||||
tensor_map["model.norm"] = mapped_to # llama-hf
|
||||
tensor_map["norm"] = mapped_to # llama-pth
|
||||
# Output
|
||||
mapped_to = "output"
|
||||
tensor_map["embed_out"] = mapped_to # gptneox
|
||||
tensor_map["lm_head"] = mapped_to # gpt2 mpt falcon llama-hf
|
||||
tensor_map["output"] = mapped_to # llama-pth
|
||||
# Attention and fee-forward layer blocks
|
||||
for i in range(0,n_blocks):
|
||||
# Attention norm
|
||||
mapped_to = "blk."+str(i)+".attn_norm"
|
||||
tensor_map["gpt_neox.layers."+str(i)+".input_layernorm"] = mapped_to # gptneox
|
||||
tensor_map["transformer.h."+str(i)+".ln_1"] = mapped_to # gpt2
|
||||
tensor_map["transformer.blocks."+str(i)+".norm_1"] = mapped_to # mpt
|
||||
tensor_map["transformer.h."+str(i)+".input_layernorm"] = mapped_to # falcon7b
|
||||
tensor_map["transformer.h."+str(i)+".ln_attn"] = mapped_to # falcon40b
|
||||
tensor_map["model.layers."+str(i)+".input_layernorm"] = mapped_to # llama-hf
|
||||
tensor_map["layers."+str(i)+".attention_norm"] = mapped_to # llama-pth
|
||||
# Attention norm 2
|
||||
mapped_to = "blk."+str(i)+".attn_norm_2"
|
||||
tensor_map["transformer.h."+str(i)+".ln_mlp"] = mapped_to # falcon40b
|
||||
# Attention query-key-value
|
||||
mapped_to = "blk."+str(i)+".attn_qkv"
|
||||
tensor_map["gpt_neox.layers."+str(i)+".attention.query_key_value"] = mapped_to # gptneox
|
||||
tensor_map["transformer.h."+str(i)+".attn.c_attn"] = mapped_to # gpt2
|
||||
tensor_map["transformer.blocks."+str(i)+".attn.Wqkv"] = mapped_to # mpt
|
||||
tensor_map["transformer.h."+str(i)+".self_attention.query_key_value"] = mapped_to # falcon
|
||||
# Attention query
|
||||
mapped_to = "blk."+str(i)+".attn_q"
|
||||
tensor_map["model.layers."+str(i)+".self_attn.q_proj"] = mapped_to # llama-hf
|
||||
tensor_map["layers."+str(i)+".attention.wq"] = mapped_to # llama-pth
|
||||
# Attention key
|
||||
mapped_to = "blk."+str(i)+".attn_k"
|
||||
tensor_map["model.layers."+str(i)+".self_attn.k_proj"] = mapped_to # llama-hf
|
||||
tensor_map["layers."+str(i)+".attention.wk"] = mapped_to # llama-pth
|
||||
# Attention value
|
||||
mapped_to = "blk."+str(i)+".attn_v"
|
||||
tensor_map["model.layers."+str(i)+".self_attn.v_proj"] = mapped_to # llama-hf
|
||||
tensor_map["layers."+str(i)+".attention.wv"] = mapped_to # llama-pth
|
||||
# Attention output
|
||||
mapped_to = "blk."+str(i)+".attn_output"
|
||||
tensor_map["gpt_neox.layers."+str(i)+".attention.dense"] = mapped_to # gptneox
|
||||
tensor_map["transformer.h."+str(i)+".attn.c_proj"] = mapped_to # gpt2
|
||||
tensor_map["transformer.blocks."+str(i)+".attn.out_proj"] = mapped_to # mpt
|
||||
tensor_map["transformer.h."+str(i)+".self_attention.dense"] = mapped_to # falcon
|
||||
tensor_map["model.layers."+str(i)+".self_attn.o_proj"] = mapped_to # llama-hf
|
||||
tensor_map["layers."+str(i)+".attention.wo"] = mapped_to # llama-pth
|
||||
# Feed-forward norm
|
||||
mapped_to = "blk."+str(i)+".ffn_norm"
|
||||
tensor_map["gpt_neox.layers."+str(i)+".post_attention_layernorm"] = mapped_to # gptneox
|
||||
tensor_map["transformer.h."+str(i)+".ln_2"] = mapped_to # gpt2
|
||||
tensor_map["transformer.blocks."+str(i)+".norm_2"] = mapped_to # mpt
|
||||
tensor_map["model.layers."+str(i)+".post_attention_layernorm"] = mapped_to # llama-hf
|
||||
tensor_map["layers."+str(i)+".ffn_norm"] = mapped_to # llama-pth
|
||||
# Feed-forward up
|
||||
mapped_to = "blk."+str(i)+".ffn_up"
|
||||
tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # gptneox
|
||||
tensor_map["transformer.h."+str(i)+".mlp.c_fc"] = mapped_to # gpt2
|
||||
tensor_map["transformer.blocks."+str(i)+".ffn.up_proj"] = mapped_to # mpt
|
||||
tensor_map["transformer.h."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # falcon
|
||||
tensor_map["model.layers."+str(i)+".mlp.up_proj"] = mapped_to # llama-hf
|
||||
tensor_map["layers."+str(i)+".feed_forward.w3"] = mapped_to # llama-pth
|
||||
# Feed-forward gate
|
||||
mapped_to = "blk."+str(i)+".ffn_gate"
|
||||
tensor_map["model.layers."+str(i)+".mlp.gate_proj"] = mapped_to # llama-hf
|
||||
tensor_map["layers."+str(i)+".feed_forward.w1"] = mapped_to # llama-pth
|
||||
# Feed-forward down
|
||||
mapped_to = "blk."+str(i)+".ffn_down"
|
||||
tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # gptneox
|
||||
tensor_map["transformer.h."+str(i)+".mlp.c_proj"] = mapped_to # gpt2
|
||||
tensor_map["transformer.blocks."+str(i)+".ffn.down_proj"] = mapped_to # mpt
|
||||
tensor_map["transformer.h."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # falcon
|
||||
tensor_map["model.layers."+str(i)+".mlp.down_proj"] = mapped_to # llama-hf
|
||||
tensor_map["layers."+str(i)+".feed_forward.w2"] = mapped_to # llama-pth
|
||||
|
||||
return tensor_map
|
||||
|
||||
#
|
||||
# implementation
|
||||
#
|
||||
|
||||
class GGMLQuantizationType(IntEnum):
|
||||
F32 = 0
|
||||
@ -51,15 +206,15 @@ class GGUFWriter:
|
||||
def __init__(self, fout: IO):
|
||||
self.fout = fout
|
||||
self.offset_tensor = 0
|
||||
self.data_alignment = constants.GGUF_DEFAULT_ALIGNMENT
|
||||
self.data_alignment = GGUF_DEFAULT_ALIGNMENT
|
||||
self.kv_data = b""
|
||||
self.kv_data_count = 0
|
||||
self.ti_data = b""
|
||||
self.ti_data_count = 0
|
||||
|
||||
def write_header_to_file(self):
|
||||
self.fout.write(struct.pack("<I", constants.GGUF_MAGIC))
|
||||
self.fout.write(struct.pack("<I", constants.GGUF_VERSION))
|
||||
self.fout.write(struct.pack("<I", GGUF_MAGIC))
|
||||
self.fout.write(struct.pack("<I", GGUF_VERSION))
|
||||
self.fout.write(struct.pack("<I", self.ti_data_count))
|
||||
self.fout.write(struct.pack("<I", self.kv_data_count))
|
||||
self.flush()
|
||||
@ -201,126 +356,125 @@ class GGUFWriter:
|
||||
self.fout.close()
|
||||
|
||||
def add_architecture(self, architecture: str):
|
||||
self.add_string(constants.KEY_GENERAL_ARCHITECTURE,
|
||||
self.add_string(KEY_GENERAL_ARCHITECTURE,
|
||||
architecture)
|
||||
|
||||
def add_author(self, author: str):
|
||||
self.add_string(constants.KEY_GENERAL_AUTHOR, author)
|
||||
self.add_string(KEY_GENERAL_AUTHOR, author)
|
||||
|
||||
def add_tensor_data_layout(self, layout: str):
|
||||
self.add_string(constants.KEY_LLM_TENSOR_DATA_LAYOUT , layout)
|
||||
self.add_string(KEY_LLM_TENSOR_DATA_LAYOUT , layout)
|
||||
|
||||
def add_url(self, url: str):
|
||||
self.add_string(constants.KEY_GENERAL_URL, url)
|
||||
self.add_string(KEY_GENERAL_URL, url)
|
||||
|
||||
def add_description(self, description: str):
|
||||
self.add_string(constants.KEY_GENERAL_DESCRIPTION, description)
|
||||
self.add_string(KEY_GENERAL_DESCRIPTION, description)
|
||||
|
||||
def add_file_type(self, file_type: str):
|
||||
self.add_string(constants.KEY_GENERAL_FILE_TYPE, file_type)
|
||||
self.add_string(KEY_GENERAL_FILE_TYPE, file_type)
|
||||
|
||||
def add_source_url(self, url: str):
|
||||
self.add_string(constants.KEY_GENERAL_SOURCE_URL, url)
|
||||
self.add_string(KEY_GENERAL_SOURCE_URL, url)
|
||||
|
||||
def add_source_hf_repo(self, repo: str):
|
||||
self.add_string(constants.KEY_GENERAL_SOURCE_HF_REPO, repo)
|
||||
self.add_string(KEY_GENERAL_SOURCE_HF_REPO, repo)
|
||||
|
||||
def add_name(self, name: str):
|
||||
self.add_string(constants.KEY_GENERAL_NAME, name)
|
||||
self.add_string(KEY_GENERAL_NAME, name)
|
||||
|
||||
def add_quantization_version(self, quantization_version: GGMLQuantizationType):
|
||||
self.add_uint32(
|
||||
constants.KEY_GENERAL_QUANTIZATION_VERSION, quantization_version)
|
||||
KEY_GENERAL_QUANTIZATION_VERSION, quantization_version)
|
||||
|
||||
def add_custom_alignment(self, alignment: int):
|
||||
self.data_alignment = alignment
|
||||
self.add_uint32(constants.KEY_GENERAL_ALIGNMENT, alignment)
|
||||
self.add_uint32(KEY_GENERAL_ALIGNMENT, alignment)
|
||||
|
||||
def add_context_length(self, llm: str, length: int):
|
||||
self.add_uint32(
|
||||
constants.KEY_LLM_CONTEXT_LENGTH.format(llm=llm), length)
|
||||
KEY_LLM_CONTEXT_LENGTH.format(llm=llm), length)
|
||||
|
||||
def add_embedding_length(self, llm: str, length: int):
|
||||
self.add_uint32(
|
||||
constants.KEY_LLM_EMBEDDING_LENGTH.format(llm=llm), length)
|
||||
KEY_LLM_EMBEDDING_LENGTH.format(llm=llm), length)
|
||||
|
||||
def add_block_count(self, llm: str, length: int):
|
||||
self.add_uint32(
|
||||
constants.KEY_LLM_BLOCK_COUNT.format(llm=llm), length)
|
||||
KEY_LLM_BLOCK_COUNT.format(llm=llm), length)
|
||||
|
||||
def add_feed_forward_length(self, llm: str, length: int):
|
||||
self.add_uint32(
|
||||
constants.KEY_LLM_FEED_FORWARD_LENGTH.format(llm=llm), length)
|
||||
KEY_LLM_FEED_FORWARD_LENGTH.format(llm=llm), length)
|
||||
|
||||
def add_parallel_residual(self, llm: str, use: bool):
|
||||
self.add_bool(
|
||||
constants.KEY_LLM_USE_PARALLEL_RESIDUAL.format(llm=llm), use)
|
||||
KEY_LLM_USE_PARALLEL_RESIDUAL.format(llm=llm), use)
|
||||
|
||||
def add_tensor_data_layout(self, llm: str, layout: str):
|
||||
self.add_string(
|
||||
constants.KEY_LLM_TENSOR_DATA_LAYOUT.format(llm=llm), layout)
|
||||
KEY_LLM_TENSOR_DATA_LAYOUT.format(llm=llm), layout)
|
||||
|
||||
def add_head_count(self, llm: str, count: int):
|
||||
self.add_uint32(
|
||||
constants.KEY_ATTENTION_HEAD_COUNT.format(llm=llm), count)
|
||||
KEY_ATTENTION_HEAD_COUNT.format(llm=llm), count)
|
||||
|
||||
def add_head_count_kv(self, llm: str, count: int):
|
||||
self.add_uint32(
|
||||
constants.KEY_ATTENTION_HEAD_COUNT_KV.format(llm=llm), count)
|
||||
KEY_ATTENTION_HEAD_COUNT_KV.format(llm=llm), count)
|
||||
|
||||
def add_max_alibi_bias(self, llm: str, bias: float):
|
||||
self.add_float32(
|
||||
constants.KEY_ATTENTION_MAX_ALIBI_BIAS.format(llm=llm), bias)
|
||||
KEY_ATTENTION_MAX_ALIBI_BIAS.format(llm=llm), bias)
|
||||
|
||||
def add_clamp_kqv(self, llm: str, value: float):
|
||||
self.add_float32(
|
||||
constants.KEY_ATTENTION_CLAMP_KQV.format(llm=llm), value)
|
||||
KEY_ATTENTION_CLAMP_KQV.format(llm=llm), value)
|
||||
|
||||
def add_layer_norm_eps(self, llm: str, value: float):
|
||||
self.add_float32(
|
||||
constants.KEY_ATTENTION_LAYERNORM_EPS.format(llm=llm), value)
|
||||
KEY_ATTENTION_LAYERNORM_EPS.format(llm=llm), value)
|
||||
|
||||
def add_layer_norm_rms_eps(self, llm: str, value: float):
|
||||
self.add_float32(
|
||||
constants.KEY_ATTENTION_LAYERNORM_RMS_EPS.format(llm=llm), value)
|
||||
KEY_ATTENTION_LAYERNORM_RMS_EPS.format(llm=llm), value)
|
||||
|
||||
def add_rope_dimension_count(self, llm: str, count: int):
|
||||
self.add_uint32(
|
||||
constants.KEY_ROPE_DIMENSION_COUNT.format(llm=llm), count)
|
||||
KEY_ROPE_DIMENSION_COUNT.format(llm=llm), count)
|
||||
|
||||
def add_rope_scale(self, llm: str, value: float):
|
||||
self.add_float32(constants.KEY_ROPE_SCALE.format(llm=llm), value)
|
||||
self.add_float32(KEY_ROPE_SCALE.format(llm=llm), value)
|
||||
|
||||
def add_tokenizer_model(self, model: str):
|
||||
self.add_string(constants.KEY_TOKENIZER_MODEL, model)
|
||||
self.add_string(KEY_TOKENIZER_MODEL, model)
|
||||
|
||||
def add_token_list(self, tokens: List):
|
||||
self.add_array(constants.KEY_TOKENIZER_LIST, tokens)
|
||||
self.add_array(KEY_TOKENIZER_LIST, tokens)
|
||||
|
||||
def add_token_merges(self, merges: List):
|
||||
self.add_array(constants.KEY_TOKENIZER_MERGES, merges)
|
||||
self.add_array(KEY_TOKENIZER_MERGES, merges)
|
||||
|
||||
def add_token_types(self, types: List[int]):
|
||||
self.add_array(constants.KEY_TOKENIZER_TOKEN_TYPE, types)
|
||||
self.add_array(KEY_TOKENIZER_TOKEN_TYPE, types)
|
||||
|
||||
def add_token_scores(self, scores: List[float]):
|
||||
self.add_array(constants.KEY_TOKENIZER_SCORES, scores)
|
||||
self.add_array(KEY_TOKENIZER_SCORES, scores)
|
||||
|
||||
def add_bos_token_id(self, id: int):
|
||||
self.add_uint32(constants.KEY_TOKENIZER_BOS_ID, id)
|
||||
self.add_uint32(KEY_TOKENIZER_BOS_ID, id)
|
||||
|
||||
def add_eos_token_id(self, id: int):
|
||||
self.add_uint32(constants.KEY_TOKENIZER_EOS_ID, id)
|
||||
self.add_uint32(KEY_TOKENIZER_EOS_ID, id)
|
||||
|
||||
def add_unk_token_id(self, id: int):
|
||||
self.add_uint32(constants.KEY_TOKENIZER_UNK_ID, id)
|
||||
self.add_uint32(KEY_TOKENIZER_UNK_ID, id)
|
||||
|
||||
def add_sep_token_id(self, id: int):
|
||||
self.add_uint32(constants.KEY_TOKENIZER_SEP_ID, id)
|
||||
self.add_uint32(KEY_TOKENIZER_SEP_ID, id)
|
||||
|
||||
def add_pad_token_id(self, id: int):
|
||||
self.add_uint32(constants.KEY_TOKENIZER_PAD_ID, id)
|
||||
|
||||
self.add_uint32(KEY_TOKENIZER_PAD_ID, id)
|
||||
|
||||
# Example usage:
|
||||
if __name__ == "__main__":
|
||||
|
@ -1,95 +0,0 @@
|
||||
# Recommended mapping of model tensor names for storage in gguf
|
||||
|
||||
def get_tensor_namemap( n_blocks : int):
|
||||
tensor_map = {}
|
||||
# Token embeddings
|
||||
mapped_to = "token_embd"
|
||||
tensor_map["gpt_neox.embed_in"] = mapped_to # gptneox
|
||||
tensor_map["transformer.wte"] = mapped_to # gpt2 mpt
|
||||
tensor_map["transformer.word_embeddings"] = mapped_to # falcon
|
||||
tensor_map["model.embed_tokens"] = mapped_to # llama-hf
|
||||
tensor_map["tok_embeddings"] = mapped_to # llama-pth
|
||||
# Position embeddings
|
||||
mapped_to = "pos_embd"
|
||||
tensor_map["transformer.wpe"] = mapped_to # gpt2
|
||||
# Output norm
|
||||
mapped_to = "output_norm"
|
||||
tensor_map["gpt_neox.final_layer_norm"] = mapped_to # gptneox
|
||||
tensor_map["transformer.ln_f"] = mapped_to # gpt2 falcon
|
||||
tensor_map["transformer.norm_f"] = mapped_to # mpt
|
||||
tensor_map["model.norm"] = mapped_to # llama-hf
|
||||
tensor_map["norm"] = mapped_to # llama-pth
|
||||
# Output
|
||||
mapped_to = "output"
|
||||
tensor_map["embed_out"] = mapped_to # gptneox
|
||||
tensor_map["lm_head"] = mapped_to # gpt2 mpt falcon llama-hf
|
||||
tensor_map["output"] = mapped_to # llama-pth
|
||||
# Attention and fee-forward layer blocks
|
||||
for i in range(0,n_blocks):
|
||||
# Attention norm
|
||||
mapped_to = "blk."+str(i)+".attn_norm"
|
||||
tensor_map["gpt_neox.layers."+str(i)+".input_layernorm"] = mapped_to # gptneox
|
||||
tensor_map["transformer.h."+str(i)+".ln_1"] = mapped_to # gpt2
|
||||
tensor_map["transformer.blocks."+str(i)+".norm_1"] = mapped_to # mpt
|
||||
tensor_map["transformer.h."+str(i)+".input_layernorm"] = mapped_to # falcon7b
|
||||
tensor_map["transformer.h."+str(i)+".ln_attn"] = mapped_to # falcon40b
|
||||
tensor_map["model.layers."+str(i)+".input_layernorm"] = mapped_to # llama-hf
|
||||
tensor_map["layers."+str(i)+".attention_norm"] = mapped_to # llama-pth
|
||||
# Attention norm 2
|
||||
mapped_to = "blk."+str(i)+".attn_norm_2"
|
||||
tensor_map["transformer.h."+str(i)+".ln_mlp"] = mapped_to # falcon40b
|
||||
# Attention query-key-value
|
||||
mapped_to = "blk."+str(i)+".attn_qkv"
|
||||
tensor_map["gpt_neox.layers."+str(i)+".attention.query_key_value"] = mapped_to # gptneox
|
||||
tensor_map["transformer.h."+str(i)+".attn.c_attn"] = mapped_to # gpt2
|
||||
tensor_map["transformer.blocks."+str(i)+".attn.Wqkv"] = mapped_to # mpt
|
||||
tensor_map["transformer.h."+str(i)+".self_attention.query_key_value"] = mapped_to # falcon
|
||||
# Attention query
|
||||
mapped_to = "blk."+str(i)+".attn_q"
|
||||
tensor_map["model.layers."+str(i)+".self_attn.q_proj"] = mapped_to # llama-hf
|
||||
tensor_map["layers."+str(i)+".attention.wq"] = mapped_to # llama-pth
|
||||
# Attention key
|
||||
mapped_to = "blk."+str(i)+".attn_k"
|
||||
tensor_map["model.layers."+str(i)+".self_attn.k_proj"] = mapped_to # llama-hf
|
||||
tensor_map["layers."+str(i)+".attention.wk"] = mapped_to # llama-pth
|
||||
# Attention value
|
||||
mapped_to = "blk."+str(i)+".attn_v"
|
||||
tensor_map["model.layers."+str(i)+".self_attn.v_proj"] = mapped_to # llama-hf
|
||||
tensor_map["layers."+str(i)+".attention.wv"] = mapped_to # llama-pth
|
||||
# Attention output
|
||||
mapped_to = "blk."+str(i)+".attn_output"
|
||||
tensor_map["gpt_neox.layers."+str(i)+".attention.dense"] = mapped_to # gptneox
|
||||
tensor_map["transformer.h."+str(i)+".attn.c_proj"] = mapped_to # gpt2
|
||||
tensor_map["transformer.blocks."+str(i)+".attn.out_proj"] = mapped_to # mpt
|
||||
tensor_map["transformer.h."+str(i)+".self_attention.dense"] = mapped_to # falcon
|
||||
tensor_map["model.layers."+str(i)+".self_attn.o_proj"] = mapped_to # llama-hf
|
||||
tensor_map["layers."+str(i)+".attention.wo"] = mapped_to # llama-pth
|
||||
# Feed-forward norm
|
||||
mapped_to = "blk."+str(i)+".ffn_norm"
|
||||
tensor_map["gpt_neox.layers."+str(i)+".post_attention_layernorm"] = mapped_to # gptneox
|
||||
tensor_map["transformer.h."+str(i)+".ln_2"] = mapped_to # gpt2
|
||||
tensor_map["transformer.blocks."+str(i)+".norm_2"] = mapped_to # mpt
|
||||
tensor_map["model.layers."+str(i)+".post_attention_layernorm"] = mapped_to # llama-hf
|
||||
tensor_map["layers."+str(i)+".ffn_norm"] = mapped_to # llama-pth
|
||||
# Feed-forward up
|
||||
mapped_to = "blk."+str(i)+".ffn_up"
|
||||
tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # gptneox
|
||||
tensor_map["transformer.h."+str(i)+".mlp.c_fc"] = mapped_to # gpt2
|
||||
tensor_map["transformer.blocks."+str(i)+".ffn.up_proj"] = mapped_to # mpt
|
||||
tensor_map["transformer.h."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # falcon
|
||||
tensor_map["model.layers."+str(i)+".mlp.up_proj"] = mapped_to # llama-hf
|
||||
tensor_map["layers."+str(i)+".feed_forward.w3"] = mapped_to # llama-pth
|
||||
# Feed-forward gate
|
||||
mapped_to = "blk."+str(i)+".ffn_gate"
|
||||
tensor_map["model.layers."+str(i)+".mlp.gate_proj"] = mapped_to # llama-hf
|
||||
tensor_map["layers."+str(i)+".feed_forward.w1"] = mapped_to # llama-pth
|
||||
# Feed-forward down
|
||||
mapped_to = "blk."+str(i)+".ffn_down"
|
||||
tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # gptneox
|
||||
tensor_map["transformer.h."+str(i)+".mlp.c_proj"] = mapped_to # gpt2
|
||||
tensor_map["transformer.blocks."+str(i)+".ffn.down_proj"] = mapped_to # mpt
|
||||
tensor_map["transformer.h."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # falcon
|
||||
tensor_map["model.layers."+str(i)+".mlp.down_proj"] = mapped_to # llama-hf
|
||||
tensor_map["layers."+str(i)+".feed_forward.w2"] = mapped_to # llama-pth
|
||||
|
||||
return tensor_map
|
Loading…
Reference in New Issue
Block a user