mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 03:31:46 +00:00
infill : add new example + extend server API (#3296)
* vvhg-code-infill (#1) * infill in separate example (#2) * reverted changes to main and added infill example * cleanup * naming improvement * make : add missing blank line * fix missing semicolon * brought infill up to current main code * cleanup --------- Co-authored-by: Cebtenzzre <cebtenzzre@gmail.com>
This commit is contained in:
parent
f5ef5cfb18
commit
c97f01c362
1
.gitignore
vendored
1
.gitignore
vendored
@ -40,6 +40,7 @@ models-mnt
|
|||||||
/embedding
|
/embedding
|
||||||
/gguf
|
/gguf
|
||||||
/gguf-llama-simple
|
/gguf-llama-simple
|
||||||
|
/infill
|
||||||
/libllama.so
|
/libllama.so
|
||||||
/llama-bench
|
/llama-bench
|
||||||
/main
|
/main
|
||||||
|
5
Makefile
5
Makefile
@ -1,5 +1,5 @@
|
|||||||
# Define the default target now so that it is always the first target
|
# Define the default target now so that it is always the first target
|
||||||
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml simple batched save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative benchmark-matmult parallel finetune export-lora tests/test-c.o
|
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml simple batched save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative infill benchmark-matmult parallel finetune export-lora tests/test-c.o
|
||||||
|
|
||||||
# Binaries only useful for tests
|
# Binaries only useful for tests
|
||||||
TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama
|
TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama
|
||||||
@ -543,6 +543,9 @@ main: examples/main/main.cpp build-info.h ggml.
|
|||||||
@echo '==== Run ./main -h for help. ===='
|
@echo '==== Run ./main -h for help. ===='
|
||||||
@echo
|
@echo
|
||||||
|
|
||||||
|
infill: examples/infill/infill.cpp build-info.h ggml.o llama.o common.o console.o grammar-parser.o $(OBJS)
|
||||||
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
simple: examples/simple/simple.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
simple: examples/simple/simple.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
|
@ -389,6 +389,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||||||
params.interactive_first = true;
|
params.interactive_first = true;
|
||||||
} else if (arg == "-ins" || arg == "--instruct") {
|
} else if (arg == "-ins" || arg == "--instruct") {
|
||||||
params.instruct = true;
|
params.instruct = true;
|
||||||
|
} else if (arg == "--infill") {
|
||||||
|
params.infill = true;
|
||||||
} else if (arg == "--multiline-input") {
|
} else if (arg == "--multiline-input") {
|
||||||
params.multiline_input = true;
|
params.multiline_input = true;
|
||||||
} else if (arg == "--simple-io") {
|
} else if (arg == "--simple-io") {
|
||||||
|
@ -120,6 +120,7 @@ struct gpt_params {
|
|||||||
bool use_mlock = false; // use mlock to keep model in memory
|
bool use_mlock = false; // use mlock to keep model in memory
|
||||||
bool numa = false; // attempt optimizations that help on some NUMA systems
|
bool numa = false; // attempt optimizations that help on some NUMA systems
|
||||||
bool verbose_prompt = false; // print prompt tokens before generation
|
bool verbose_prompt = false; // print prompt tokens before generation
|
||||||
|
bool infill = false; // use infill mode
|
||||||
};
|
};
|
||||||
|
|
||||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
||||||
|
8
examples/infill/CMakeLists.txt
Normal file
8
examples/infill/CMakeLists.txt
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
set(TARGET infill)
|
||||||
|
add_executable(${TARGET} infill.cpp)
|
||||||
|
install(TARGETS ${TARGET} RUNTIME)
|
||||||
|
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||||
|
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||||
|
if(TARGET BUILD_INFO)
|
||||||
|
add_dependencies(${TARGET} BUILD_INFO)
|
||||||
|
endif()
|
41
examples/infill/README.md
Normal file
41
examples/infill/README.md
Normal file
@ -0,0 +1,41 @@
|
|||||||
|
# llama.cpp/example/infill
|
||||||
|
|
||||||
|
This example shows how to use the infill mode with Code Llama models supporting infill mode.
|
||||||
|
Currently the 7B and 13B models support infill mode.
|
||||||
|
|
||||||
|
Infill supports most of the options available in the main example.
|
||||||
|
|
||||||
|
For further information have a look at the main README.md in llama.cpp/example/main/README.md
|
||||||
|
|
||||||
|
## Common Options
|
||||||
|
|
||||||
|
In this section, we cover the most commonly used options for running the `infill` program with the LLaMA models:
|
||||||
|
|
||||||
|
- `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.bin`).
|
||||||
|
- `-i, --interactive`: Run the program in interactive mode, allowing you to provide input directly and receive real-time responses.
|
||||||
|
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text. Adjusting this value can influence the length of the generated text.
|
||||||
|
- `-c N, --ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference.
|
||||||
|
|
||||||
|
## Input Prompts
|
||||||
|
|
||||||
|
The `infill` program provides several ways to interact with the LLaMA models using input prompts:
|
||||||
|
|
||||||
|
- `--in-prefix PROMPT_BEFORE_CURSOR`: Provide the prefix directly as a command-line option.
|
||||||
|
- `--in-suffix PROMPT_AFTER_CURSOR`: Provide the suffix directly as a command-line option.
|
||||||
|
- `--interactive-first`: Run the program in interactive mode and wait for input right away. (More on this below.)
|
||||||
|
|
||||||
|
## Interaction
|
||||||
|
|
||||||
|
The `infill` program offers a seamless way to interact with LLaMA models, allowing users to receive real-time infill suggestions. The interactive mode can be triggered using `--interactive`, and `--interactive-first`
|
||||||
|
|
||||||
|
### Interaction Options
|
||||||
|
|
||||||
|
- `-i, --interactive`: Run the program in interactive mode, allowing users to get real time code suggestions from model.
|
||||||
|
- `--interactive-first`: Run the program in interactive mode and immediately wait for user input before starting the text generation.
|
||||||
|
- `--color`: Enable colorized output to differentiate visually distinguishing between prompts, user input, and generated text.
|
||||||
|
|
||||||
|
### Example
|
||||||
|
|
||||||
|
```bash
|
||||||
|
./infill -t 10 -ngl 0 -m models/codellama-13b.Q5_K_S.gguf -c 4096 --temp 0.7 --repeat_penalty 1.1 -n 20 --in-prefix "def helloworld():\n print(\"hell" --in-suffix "\n print(\"goodbye world\")\n "
|
||||||
|
```
|
769
examples/infill/infill.cpp
Normal file
769
examples/infill/infill.cpp
Normal file
@ -0,0 +1,769 @@
|
|||||||
|
#include "common.h"
|
||||||
|
|
||||||
|
#include "console.h"
|
||||||
|
#include "llama.h"
|
||||||
|
#include "build-info.h"
|
||||||
|
#include "grammar-parser.h"
|
||||||
|
|
||||||
|
#include <cassert>
|
||||||
|
#include <cinttypes>
|
||||||
|
#include <cmath>
|
||||||
|
#include <cstdio>
|
||||||
|
#include <cstring>
|
||||||
|
#include <ctime>
|
||||||
|
#include <fstream>
|
||||||
|
#include <iostream>
|
||||||
|
#include <sstream>
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
||||||
|
#include <signal.h>
|
||||||
|
#include <unistd.h>
|
||||||
|
#elif defined (_WIN32)
|
||||||
|
#define WIN32_LEAN_AND_MEAN
|
||||||
|
#ifndef NOMINMAX
|
||||||
|
#define NOMINMAX
|
||||||
|
#endif
|
||||||
|
#include <windows.h>
|
||||||
|
#include <signal.h>
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if defined(_MSC_VER)
|
||||||
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||||
|
#endif
|
||||||
|
|
||||||
|
static llama_context ** g_ctx;
|
||||||
|
static llama_model ** g_model;
|
||||||
|
static gpt_params * g_params;
|
||||||
|
static std::vector<llama_token> * g_input_tokens;
|
||||||
|
static std::ostringstream * g_output_ss;
|
||||||
|
static std::vector<llama_token> * g_output_tokens;
|
||||||
|
static bool is_interacting = false;
|
||||||
|
|
||||||
|
|
||||||
|
static void write_logfile(
|
||||||
|
const llama_context * ctx, const gpt_params & params, const llama_model * model,
|
||||||
|
const std::vector<llama_token> & input_tokens, const std::string & output,
|
||||||
|
const std::vector<llama_token> & output_tokens
|
||||||
|
) {
|
||||||
|
if (params.logdir.empty()) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const std::string timestamp = get_sortable_timestamp();
|
||||||
|
|
||||||
|
const bool success = create_directory_with_parents(params.logdir);
|
||||||
|
if (!success) {
|
||||||
|
fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
|
||||||
|
__func__, params.logdir.c_str());
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const std::string logfile_path = params.logdir + timestamp + ".yml";
|
||||||
|
FILE * logfile = fopen(logfile_path.c_str(), "w");
|
||||||
|
|
||||||
|
if (logfile == NULL) {
|
||||||
|
fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
fprintf(logfile, "binary: infill\n");
|
||||||
|
char model_desc[128];
|
||||||
|
llama_model_desc(model, model_desc, sizeof(model_desc));
|
||||||
|
dump_non_result_info_yaml(logfile, params, ctx, timestamp, input_tokens, model_desc);
|
||||||
|
|
||||||
|
fprintf(logfile, "\n");
|
||||||
|
fprintf(logfile, "######################\n");
|
||||||
|
fprintf(logfile, "# Generation Results #\n");
|
||||||
|
fprintf(logfile, "######################\n");
|
||||||
|
fprintf(logfile, "\n");
|
||||||
|
|
||||||
|
dump_string_yaml_multiline(logfile, "output", output.c_str());
|
||||||
|
dump_vector_int_yaml(logfile, "output_tokens", output_tokens);
|
||||||
|
|
||||||
|
llama_dump_timing_info_yaml(logfile, ctx);
|
||||||
|
fclose(logfile);
|
||||||
|
}
|
||||||
|
|
||||||
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
||||||
|
static void sigint_handler(int signo) {
|
||||||
|
if (signo == SIGINT) {
|
||||||
|
if (!is_interacting) {
|
||||||
|
is_interacting = true;
|
||||||
|
} else {
|
||||||
|
console::cleanup();
|
||||||
|
printf("\n");
|
||||||
|
llama_print_timings(*g_ctx);
|
||||||
|
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
|
||||||
|
_exit(130);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
int main(int argc, char ** argv) {
|
||||||
|
gpt_params params;
|
||||||
|
g_params = ¶ms;
|
||||||
|
|
||||||
|
if (!gpt_params_parse(argc, argv, params)) {
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifndef LOG_DISABLE_LOGS
|
||||||
|
log_set_target(log_filename_generator("infill", "log"));
|
||||||
|
LOG_TEE("Log start\n");
|
||||||
|
log_dump_cmdline(argc, argv);
|
||||||
|
#endif // LOG_DISABLE_LOGS
|
||||||
|
|
||||||
|
console::init(params.simple_io, params.use_color);
|
||||||
|
atexit([]() { console::cleanup(); });
|
||||||
|
|
||||||
|
if (params.logits_all) {
|
||||||
|
printf("\n************\n");
|
||||||
|
printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
|
||||||
|
printf("************\n\n");
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (params.embedding) {
|
||||||
|
printf("\n************\n");
|
||||||
|
printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
|
||||||
|
printf("************\n\n");
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (params.n_ctx != 0 && params.n_ctx < 8) {
|
||||||
|
LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
|
||||||
|
params.n_ctx = 8;
|
||||||
|
}
|
||||||
|
if (params.instruct) {
|
||||||
|
printf("\n************\n");
|
||||||
|
printf("%s: please use the 'main' tool for instruct mode\n", __func__);
|
||||||
|
printf("************\n\n");
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
if (!params.antiprompt.empty()) {
|
||||||
|
printf("\n************\n");
|
||||||
|
printf("%s: please use the 'main' tool for antiprompt mode\n", __func__);
|
||||||
|
printf("************\n\n");
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
if (!params.interactive_first && (params.input_prefix.empty() && params.input_suffix.empty())) {
|
||||||
|
printf("\n************\n");
|
||||||
|
printf("%s: please use '--interactive_first' or specify '--in_prefix' and/or '--in_suffix'\n", __func__);
|
||||||
|
printf("************\n\n");
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
if (params.random_prompt) {
|
||||||
|
printf("\n************\n");
|
||||||
|
printf("%s: please use the 'main' tool for random prompt mode\n", __func__);
|
||||||
|
printf("************\n\n");
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
if (!params.path_prompt_cache.empty()) {
|
||||||
|
printf("\n************\n");
|
||||||
|
printf("%s: infill does not support prompt caching\n", __func__);
|
||||||
|
printf("************\n\n");
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (params.rope_freq_base != 0.0) {
|
||||||
|
LOG_TEE("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (params.rope_freq_scale != 0.0) {
|
||||||
|
LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
|
||||||
|
}
|
||||||
|
|
||||||
|
LOG_TEE("%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||||
|
LOG_TEE("%s: built with %s for %s\n", __func__, BUILD_COMPILER, BUILD_TARGET);
|
||||||
|
|
||||||
|
if (params.seed == LLAMA_DEFAULT_SEED) {
|
||||||
|
params.seed = time(NULL);
|
||||||
|
}
|
||||||
|
|
||||||
|
LOG_TEE("%s: seed = %u\n", __func__, params.seed);
|
||||||
|
|
||||||
|
std::mt19937 rng(params.seed);
|
||||||
|
|
||||||
|
LOG("%s: llama backend init\n", __func__);
|
||||||
|
llama_backend_init(params.numa);
|
||||||
|
|
||||||
|
llama_model * model;
|
||||||
|
llama_context * ctx;
|
||||||
|
llama_context * ctx_guidance = NULL;
|
||||||
|
g_model = &model;
|
||||||
|
g_ctx = &ctx;
|
||||||
|
|
||||||
|
// load the model and apply lora adapter, if any
|
||||||
|
LOG("%s: load the model and apply lora adapter, if any\n", __func__);
|
||||||
|
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||||
|
if (params.cfg_scale > 1.f) {
|
||||||
|
struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
|
||||||
|
ctx_guidance = llama_new_context_with_model(model, lparams);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (model == NULL) {
|
||||||
|
LOG_TEE("%s: error: unable to load model\n", __func__);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int n_ctx_train = llama_n_ctx_train(model);
|
||||||
|
const int n_ctx = llama_n_ctx(ctx);
|
||||||
|
LOG("n_ctx: %d\n", n_ctx);
|
||||||
|
|
||||||
|
if (n_ctx > n_ctx_train) {
|
||||||
|
LOG_TEE("%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||||
|
__func__, n_ctx_train, n_ctx);
|
||||||
|
}
|
||||||
|
|
||||||
|
// print system information
|
||||||
|
{
|
||||||
|
LOG_TEE("\n");
|
||||||
|
LOG_TEE("%s\n", get_system_info(params).c_str());
|
||||||
|
}
|
||||||
|
const bool add_bos = llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM;
|
||||||
|
LOG("add_bos: %d\n", add_bos);
|
||||||
|
|
||||||
|
std::vector<llama_token> embd_inp;
|
||||||
|
std::vector<llama_token> inp_pfx = ::llama_tokenize(ctx, params.input_prefix, add_bos);
|
||||||
|
std::vector<llama_token> inp_sfx = ::llama_tokenize(ctx, params.input_suffix, add_bos);
|
||||||
|
inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(ctx));
|
||||||
|
inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(ctx));
|
||||||
|
embd_inp = inp_pfx;
|
||||||
|
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
|
||||||
|
embd_inp.push_back(llama_token_middle(ctx));
|
||||||
|
|
||||||
|
LOG("prefix: \"%s\"\n", log_tostr(params.input_prefix));
|
||||||
|
LOG("suffix: \"%s\"\n", log_tostr(params.input_suffix));
|
||||||
|
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp));
|
||||||
|
|
||||||
|
// Should not run without any tokens
|
||||||
|
if (embd_inp.empty()) {
|
||||||
|
embd_inp.push_back(llama_token_bos(ctx));
|
||||||
|
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Tokenize negative prompt
|
||||||
|
std::vector<llama_token> guidance_inp;
|
||||||
|
int guidance_offset = 0;
|
||||||
|
int original_prompt_len = 0;
|
||||||
|
if (ctx_guidance) {
|
||||||
|
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(params.cfg_negative_prompt));
|
||||||
|
|
||||||
|
guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, add_bos);
|
||||||
|
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp));
|
||||||
|
|
||||||
|
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||||
|
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp));
|
||||||
|
|
||||||
|
original_prompt_len = original_inp.size();
|
||||||
|
guidance_offset = (int)guidance_inp.size() - original_prompt_len;
|
||||||
|
LOG("original_prompt_len: %s", log_tostr(original_prompt_len));
|
||||||
|
LOG("guidance_offset: %s", log_tostr(guidance_offset));
|
||||||
|
}
|
||||||
|
|
||||||
|
if ((int) embd_inp.size() > n_ctx - 4) {
|
||||||
|
LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
// number of tokens to keep when resetting context
|
||||||
|
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) {
|
||||||
|
params.n_keep = (int)embd_inp.size();
|
||||||
|
}
|
||||||
|
|
||||||
|
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx));
|
||||||
|
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx));
|
||||||
|
|
||||||
|
|
||||||
|
// enable interactive mode if interactive start is specified
|
||||||
|
if (params.interactive_first) {
|
||||||
|
params.interactive = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (params.verbose_prompt) {
|
||||||
|
LOG_TEE("\n");
|
||||||
|
LOG_TEE("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
||||||
|
LOG_TEE("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||||
|
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
||||||
|
LOG_TEE("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||||
|
}
|
||||||
|
|
||||||
|
if (ctx_guidance) {
|
||||||
|
LOG_TEE("\n");
|
||||||
|
LOG_TEE("%s: negative prompt: '%s'\n", __func__, params.cfg_negative_prompt.c_str());
|
||||||
|
LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
|
||||||
|
for (int i = 0; i < (int) guidance_inp.size(); i++) {
|
||||||
|
LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (params.n_keep > 0) {
|
||||||
|
LOG_TEE("%s: static prompt based on n_keep: '", __func__);
|
||||||
|
for (int i = 0; i < params.n_keep; i++) {
|
||||||
|
LOG_TEE("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||||
|
}
|
||||||
|
LOG_TEE("'\n");
|
||||||
|
}
|
||||||
|
LOG_TEE("\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
if (params.interactive) {
|
||||||
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
||||||
|
struct sigaction sigint_action;
|
||||||
|
sigint_action.sa_handler = sigint_handler;
|
||||||
|
sigemptyset (&sigint_action.sa_mask);
|
||||||
|
sigint_action.sa_flags = 0;
|
||||||
|
sigaction(SIGINT, &sigint_action, NULL);
|
||||||
|
#elif defined (_WIN32)
|
||||||
|
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
|
||||||
|
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
|
||||||
|
};
|
||||||
|
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
LOG_TEE("%s: interactive mode on.\n", __func__);
|
||||||
|
|
||||||
|
if (params.input_prefix_bos) {
|
||||||
|
LOG_TEE("Input prefix with BOS\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!params.input_prefix.empty()) {
|
||||||
|
LOG_TEE("Input prefix: '%s'\n", params.input_prefix.c_str());
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!params.input_suffix.empty()) {
|
||||||
|
LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
LOG_TEE("sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n",
|
||||||
|
params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau);
|
||||||
|
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||||
|
LOG_TEE("\n\n");
|
||||||
|
|
||||||
|
struct llama_grammar * grammar = NULL;
|
||||||
|
grammar_parser::parse_state parsed_grammar;
|
||||||
|
|
||||||
|
if (!params.grammar.empty()) {
|
||||||
|
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
||||||
|
// will be empty (default) if there are parse errors
|
||||||
|
if (parsed_grammar.rules.empty()) {
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
LOG_TEE("%s: grammar:\n", __func__);
|
||||||
|
grammar_parser::print_grammar(stderr, parsed_grammar);
|
||||||
|
LOG_TEE("\n");
|
||||||
|
|
||||||
|
{
|
||||||
|
auto it = params.logit_bias.find(llama_token_eos(ctx));
|
||||||
|
if (it != params.logit_bias.end() && it->second == -INFINITY) {
|
||||||
|
LOG_TEE("%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
||||||
|
grammar = llama_grammar_init(
|
||||||
|
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
||||||
|
}
|
||||||
|
|
||||||
|
// TODO: replace with ring-buffer
|
||||||
|
std::vector<llama_token> last_tokens(n_ctx);
|
||||||
|
std::fill(last_tokens.begin(), last_tokens.end(), 0);
|
||||||
|
LOG_TEE("\n##### Infill mode #####\n\n");
|
||||||
|
if (params.infill) {
|
||||||
|
printf("\n************\n");
|
||||||
|
printf("no need to specify '--infill', always running infill\n");
|
||||||
|
printf("************\n\n");
|
||||||
|
}
|
||||||
|
if (params.interactive) {
|
||||||
|
const char *control_message;
|
||||||
|
if (params.multiline_input) {
|
||||||
|
control_message = " - To return control to LLaMa, end your input with '\\'.\n"
|
||||||
|
" - To return control without starting a new line, end your input with '/'.\n";
|
||||||
|
} else {
|
||||||
|
control_message = " - Press Return to return control to LLaMa.\n"
|
||||||
|
" - To return control without starting a new line, end your input with '/'.\n"
|
||||||
|
" - If you want to submit another line, end your input with '\\'.\n";
|
||||||
|
}
|
||||||
|
LOG_TEE("== Running in interactive mode. ==\n");
|
||||||
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
||||||
|
LOG_TEE( " - Press Ctrl+C to interject at any time.\n");
|
||||||
|
#endif
|
||||||
|
LOG_TEE( "%s\n", control_message);
|
||||||
|
|
||||||
|
is_interacting = params.interactive_first;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool input_echo = true;
|
||||||
|
|
||||||
|
int n_past = 0;
|
||||||
|
int n_remain = params.n_predict;
|
||||||
|
int n_consumed = 0;
|
||||||
|
int n_past_guidance = 0;
|
||||||
|
|
||||||
|
std::vector<int> input_tokens; g_input_tokens = &input_tokens;
|
||||||
|
std::vector<int> output_tokens; g_output_tokens = &output_tokens;
|
||||||
|
std::ostringstream output_ss; g_output_ss = &output_ss;
|
||||||
|
|
||||||
|
// the first thing we will do is to output the prompt, so set color accordingly
|
||||||
|
console::set_display(console::prompt);
|
||||||
|
|
||||||
|
std::vector<llama_token> embd;
|
||||||
|
std::vector<llama_token> embd_guidance;
|
||||||
|
|
||||||
|
const int n_vocab = llama_n_vocab(model);
|
||||||
|
|
||||||
|
std::vector<llama_token_data> candidates;
|
||||||
|
candidates.reserve(n_vocab);
|
||||||
|
|
||||||
|
while (n_remain != 0 || params.interactive) {
|
||||||
|
// predict
|
||||||
|
if (!embd.empty()) {
|
||||||
|
// Note: n_ctx - 4 here is to match the logic for commandline prompt handling via
|
||||||
|
// --prompt or --file which uses the same value.
|
||||||
|
int max_embd_size = n_ctx - 4;
|
||||||
|
|
||||||
|
// Ensure the input doesn't exceed the context size by truncating embd if necessary.
|
||||||
|
if ((int) embd.size() > max_embd_size) {
|
||||||
|
const int skipped_tokens = (int) embd.size() - max_embd_size;
|
||||||
|
embd.resize(max_embd_size);
|
||||||
|
|
||||||
|
console::set_display(console::error);
|
||||||
|
printf("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
|
||||||
|
console::set_display(console::reset);
|
||||||
|
fflush(stdout);
|
||||||
|
}
|
||||||
|
|
||||||
|
// infinite text generation via context swapping
|
||||||
|
// if we run out of context:
|
||||||
|
// - take the n_keep first tokens from the original prompt (via n_past)
|
||||||
|
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
|
||||||
|
if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) > n_ctx) {
|
||||||
|
if (params.n_predict == -2) {
|
||||||
|
LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int n_left = n_past - params.n_keep - 1;
|
||||||
|
const int n_discard = n_left/2;
|
||||||
|
|
||||||
|
LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
|
||||||
|
n_past, n_left, n_ctx, params.n_keep, n_discard);
|
||||||
|
|
||||||
|
llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
|
||||||
|
llama_kv_cache_seq_shift(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
|
||||||
|
|
||||||
|
n_past -= n_discard;
|
||||||
|
|
||||||
|
if (ctx_guidance) {
|
||||||
|
n_past_guidance -= n_discard;
|
||||||
|
}
|
||||||
|
|
||||||
|
LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
|
||||||
|
|
||||||
|
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
// evaluate tokens in batches
|
||||||
|
// embd is typically prepared beforehand to fit within a batch, but not always
|
||||||
|
|
||||||
|
if (ctx_guidance) {
|
||||||
|
int input_size = 0;
|
||||||
|
llama_token * input_buf = NULL;
|
||||||
|
|
||||||
|
if (n_past_guidance < (int) guidance_inp.size()) {
|
||||||
|
// Guidance context should have the same data with these modifications:
|
||||||
|
//
|
||||||
|
// * Replace the initial prompt
|
||||||
|
// * Shift everything by guidance_offset
|
||||||
|
embd_guidance = guidance_inp;
|
||||||
|
if (embd.begin() + original_prompt_len < embd.end()) {
|
||||||
|
embd_guidance.insert(
|
||||||
|
embd_guidance.end(),
|
||||||
|
embd.begin() + original_prompt_len,
|
||||||
|
embd.end()
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
input_buf = embd_guidance.data();
|
||||||
|
input_size = embd_guidance.size();
|
||||||
|
|
||||||
|
LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance));
|
||||||
|
} else {
|
||||||
|
input_buf = embd.data();
|
||||||
|
input_size = embd.size();
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < input_size; i += params.n_batch) {
|
||||||
|
int n_eval = std::min(input_size - i, params.n_batch);
|
||||||
|
if (llama_decode(ctx_guidance, llama_batch_get_one(input_buf + i, n_eval, n_past_guidance, 0))) {
|
||||||
|
LOG_TEE("%s : failed to eval\n", __func__);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
n_past_guidance += n_eval;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
|
||||||
|
int n_eval = (int) embd.size() - i;
|
||||||
|
if (n_eval > params.n_batch) {
|
||||||
|
n_eval = params.n_batch;
|
||||||
|
}
|
||||||
|
|
||||||
|
LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
|
||||||
|
|
||||||
|
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
|
||||||
|
LOG_TEE("%s : failed to eval\n", __func__);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
n_past += n_eval;
|
||||||
|
|
||||||
|
LOG("n_past = %d\n", n_past);
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
embd.clear();
|
||||||
|
embd_guidance.clear();
|
||||||
|
|
||||||
|
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
|
||||||
|
|
||||||
|
const llama_token id = llama_sample_token(ctx, ctx_guidance, grammar, params, last_tokens, candidates);
|
||||||
|
|
||||||
|
last_tokens.erase(last_tokens.begin());
|
||||||
|
last_tokens.push_back(id);
|
||||||
|
|
||||||
|
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, last_tokens));
|
||||||
|
|
||||||
|
embd.push_back(id);
|
||||||
|
|
||||||
|
// echo this to console
|
||||||
|
input_echo = true;
|
||||||
|
|
||||||
|
// decrement remaining sampling budget
|
||||||
|
--n_remain;
|
||||||
|
|
||||||
|
LOG("n_remain: %d\n", n_remain);
|
||||||
|
} else {
|
||||||
|
// some user input remains from prompt or interaction, forward it to processing
|
||||||
|
LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
|
||||||
|
while ((int) embd_inp.size() > n_consumed) {
|
||||||
|
embd.push_back(embd_inp[n_consumed]);
|
||||||
|
last_tokens.erase(last_tokens.begin());
|
||||||
|
last_tokens.push_back(embd_inp[n_consumed]);
|
||||||
|
++n_consumed;
|
||||||
|
if ((int) embd.size() >= params.n_batch) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// display text
|
||||||
|
if (input_echo) {
|
||||||
|
for (auto id : embd) {
|
||||||
|
const std::string token_str = llama_token_to_piece(ctx, id);
|
||||||
|
printf("%s", token_str.c_str());
|
||||||
|
|
||||||
|
if (embd.size() > 1) {
|
||||||
|
input_tokens.push_back(id);
|
||||||
|
} else {
|
||||||
|
output_tokens.push_back(id);
|
||||||
|
output_ss << token_str;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
fflush(stdout);
|
||||||
|
}
|
||||||
|
// reset color to default if we there is no pending user input
|
||||||
|
if (input_echo && (int) embd_inp.size() == n_consumed) {
|
||||||
|
console::set_display(console::reset);
|
||||||
|
}
|
||||||
|
|
||||||
|
// if not currently processing queued inputs;
|
||||||
|
if ((int) embd_inp.size() <= n_consumed) {
|
||||||
|
|
||||||
|
// deal with eot token in infill mode
|
||||||
|
if ((last_tokens.back() == llama_token_eot(ctx) || is_interacting) && params.interactive){
|
||||||
|
if(is_interacting && !params.interactive_first) {
|
||||||
|
// print an eot token
|
||||||
|
printf("%s", llama_token_to_piece(ctx, llama_token_eot(ctx)).c_str());
|
||||||
|
}
|
||||||
|
fflush(stdout);
|
||||||
|
printf("\n");
|
||||||
|
console::set_display(console::user_input);
|
||||||
|
std::string buffer;
|
||||||
|
std::string line;
|
||||||
|
bool another_line=true;
|
||||||
|
// set a new prefix via stdin
|
||||||
|
do {
|
||||||
|
another_line = console::readline(line, params.multiline_input);
|
||||||
|
buffer += line;
|
||||||
|
} while (another_line);
|
||||||
|
// check if we got an empty line, if so we use the old input
|
||||||
|
if(!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
|
||||||
|
params.input_prefix = buffer;
|
||||||
|
}
|
||||||
|
buffer.clear();
|
||||||
|
// set a new suffix via stdin
|
||||||
|
do {
|
||||||
|
another_line = console::readline(line, params.multiline_input);
|
||||||
|
buffer += line;
|
||||||
|
} while (another_line);
|
||||||
|
// check if we got an empty line
|
||||||
|
if(!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
|
||||||
|
params.input_suffix = buffer;
|
||||||
|
}
|
||||||
|
buffer.clear();
|
||||||
|
// done taking input, reset color
|
||||||
|
console::set_display(console::reset);
|
||||||
|
// tokenize new prefix and suffix
|
||||||
|
std::vector<llama_token> inp_pfx = ::llama_tokenize(ctx, params.input_prefix, add_bos);
|
||||||
|
std::vector<llama_token> inp_sfx = ::llama_tokenize(ctx, params.input_suffix, add_bos);
|
||||||
|
inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(ctx));
|
||||||
|
inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(ctx));
|
||||||
|
embd_inp = inp_pfx;
|
||||||
|
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
|
||||||
|
embd_inp.push_back(llama_token_middle(ctx));
|
||||||
|
embd.clear();
|
||||||
|
embd_guidance.clear();
|
||||||
|
n_remain = params.n_predict;
|
||||||
|
n_past = 0;
|
||||||
|
n_consumed = 0;
|
||||||
|
// LOG_TEE("took new input\n");
|
||||||
|
is_interacting = false;
|
||||||
|
}
|
||||||
|
// deal with end of text token in interactive mode
|
||||||
|
else if (last_tokens.back() == llama_token_eos(ctx)) {
|
||||||
|
LOG("found EOS token\n");
|
||||||
|
|
||||||
|
if (params.interactive) {
|
||||||
|
|
||||||
|
is_interacting = true;
|
||||||
|
printf("\n");
|
||||||
|
console::set_display(console::user_input);
|
||||||
|
fflush(stdout);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (n_past > 0 && is_interacting && !params.interactive) {
|
||||||
|
LOG("waiting for user input\n");
|
||||||
|
|
||||||
|
if (params.input_prefix_bos) {
|
||||||
|
LOG("adding input prefix BOS token\n");
|
||||||
|
embd_inp.push_back(llama_token_bos(ctx));
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string buffer;
|
||||||
|
if (!params.input_prefix.empty()) {
|
||||||
|
LOG("appending input prefix: '%s'\n", params.input_prefix.c_str());
|
||||||
|
buffer += params.input_prefix;
|
||||||
|
printf("%s", buffer.c_str());
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string line;
|
||||||
|
bool another_line = true;
|
||||||
|
do {
|
||||||
|
another_line = console::readline(line, params.multiline_input);
|
||||||
|
buffer += line;
|
||||||
|
} while (another_line);
|
||||||
|
|
||||||
|
// done taking input, reset color
|
||||||
|
console::set_display(console::reset);
|
||||||
|
|
||||||
|
// Add tokens to embd only if the input buffer is non-empty
|
||||||
|
// Entering a empty line lets the user pass control back
|
||||||
|
if (buffer.length() > 1) {
|
||||||
|
// append input suffix if any
|
||||||
|
if (!params.input_suffix.empty()) {
|
||||||
|
LOG("appending input suffix: '%s'\n", params.input_suffix.c_str());
|
||||||
|
buffer += params.input_suffix;
|
||||||
|
printf("%s", params.input_suffix.c_str());
|
||||||
|
}
|
||||||
|
|
||||||
|
LOG("buffer: '%s'\n", buffer.c_str());
|
||||||
|
|
||||||
|
const size_t original_size = embd_inp.size();
|
||||||
|
|
||||||
|
const auto line_inp = ::llama_tokenize(ctx, buffer, false);
|
||||||
|
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp));
|
||||||
|
|
||||||
|
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
|
||||||
|
|
||||||
|
for (size_t i = original_size; i < embd_inp.size(); ++i) {
|
||||||
|
const llama_token token = embd_inp[i];
|
||||||
|
output_tokens.push_back(token);
|
||||||
|
output_ss << llama_token_to_piece(ctx, token);
|
||||||
|
}
|
||||||
|
|
||||||
|
n_remain -= line_inp.size();
|
||||||
|
LOG("n_remain: %d\n", n_remain);
|
||||||
|
} else {
|
||||||
|
LOG("empty line, passing control back\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
input_echo = false; // do not echo this again
|
||||||
|
}
|
||||||
|
|
||||||
|
if (n_past > 0) {
|
||||||
|
if (is_interacting) {
|
||||||
|
// reset grammar state if we're restarting generation
|
||||||
|
if (grammar != NULL) {
|
||||||
|
llama_grammar_free(grammar);
|
||||||
|
|
||||||
|
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
||||||
|
grammar = llama_grammar_init(
|
||||||
|
grammar_rules.data(), grammar_rules.size(),
|
||||||
|
parsed_grammar.symbol_ids.at("root"));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
is_interacting = false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// end of text token
|
||||||
|
if (!embd.empty() && embd.back() == llama_token_eos(ctx) && !params.interactive) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
|
||||||
|
// We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size).
|
||||||
|
if (params.interactive && n_remain <= 0 && params.n_predict >= 0) {
|
||||||
|
n_remain = params.n_predict;
|
||||||
|
is_interacting = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (!params.interactive && n_remain <= 0) {
|
||||||
|
printf("%s", llama_token_to_piece(ctx, llama_token_eot(ctx)).c_str());
|
||||||
|
fflush(stdout);
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_print_timings(ctx);
|
||||||
|
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
|
||||||
|
|
||||||
|
if (ctx_guidance) { llama_free(ctx_guidance); }
|
||||||
|
llama_free(ctx);
|
||||||
|
llama_free_model(model);
|
||||||
|
|
||||||
|
if (grammar != NULL) {
|
||||||
|
llama_grammar_free(grammar);
|
||||||
|
}
|
||||||
|
llama_backend_free();
|
||||||
|
|
||||||
|
#ifndef LOG_DISABLE_LOGS
|
||||||
|
LOG_TEE("Log end\n");
|
||||||
|
#endif // LOG_DISABLE_LOGS
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
@ -176,6 +176,16 @@ node index.js
|
|||||||
|
|
||||||
`content`: Set the text to process.
|
`content`: Set the text to process.
|
||||||
|
|
||||||
|
**POST** `/infill`: For code infilling. Takes a prefix and a suffix and returns the predicted completion as stream.
|
||||||
|
|
||||||
|
*Options:*
|
||||||
|
|
||||||
|
`input_prefix`: Set the prefix of the code to infill.
|
||||||
|
|
||||||
|
`input_suffix`: Set the suffix of the code to infill.
|
||||||
|
|
||||||
|
It also accepts all the options of `/completion` except `stream` and `prompt`.
|
||||||
|
|
||||||
## More examples
|
## More examples
|
||||||
|
|
||||||
### Interactive mode
|
### Interactive mode
|
||||||
|
@ -342,6 +342,70 @@ struct llama_server_context
|
|||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void loadInfill()
|
||||||
|
{
|
||||||
|
auto prefix_tokens = tokenize(params.input_prefix, true); // always add BOS
|
||||||
|
auto suffix_tokens = tokenize(params.input_suffix, true); // always add BOS
|
||||||
|
prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(ctx));
|
||||||
|
prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(ctx));
|
||||||
|
prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
|
||||||
|
prefix_tokens.push_back(llama_token_middle(ctx));
|
||||||
|
auto prompt_tokens = prefix_tokens;
|
||||||
|
|
||||||
|
num_prompt_tokens = prompt_tokens.size();
|
||||||
|
|
||||||
|
if (params.n_keep < 0)
|
||||||
|
{
|
||||||
|
params.n_keep = (int)num_prompt_tokens;
|
||||||
|
}
|
||||||
|
params.n_keep = std::min(params.n_ctx - 4, params.n_keep);
|
||||||
|
|
||||||
|
// if input prompt is too big, truncate like normal
|
||||||
|
if (num_prompt_tokens >= (size_t)params.n_ctx)
|
||||||
|
{
|
||||||
|
printf("Input prompt is too big, truncating. Can only take %d tokens but got %zu\n", params.n_ctx, num_prompt_tokens);
|
||||||
|
// todo we probably want to cut from both sides
|
||||||
|
const int n_left = (params.n_ctx - params.n_keep) / 2;
|
||||||
|
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
|
||||||
|
const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
|
||||||
|
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
|
||||||
|
std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin());
|
||||||
|
|
||||||
|
LOG_VERBOSE("input truncated", {
|
||||||
|
{"n_ctx", params.n_ctx},
|
||||||
|
{"n_keep", params.n_keep},
|
||||||
|
{"n_left", n_left},
|
||||||
|
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
|
||||||
|
});
|
||||||
|
|
||||||
|
truncated = true;
|
||||||
|
prompt_tokens = new_tokens;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
const size_t ps = num_prompt_tokens;
|
||||||
|
std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
|
||||||
|
std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
|
||||||
|
}
|
||||||
|
|
||||||
|
// compare the evaluated prompt with the new prompt
|
||||||
|
n_past = common_part(embd, prompt_tokens);
|
||||||
|
embd = prompt_tokens;
|
||||||
|
if (n_past == num_prompt_tokens)
|
||||||
|
{
|
||||||
|
// we have to evaluate at least 1 token to generate logits.
|
||||||
|
printf("we have to evaluate at least 1 token to generate logits\n");
|
||||||
|
n_past--;
|
||||||
|
}
|
||||||
|
|
||||||
|
LOG_VERBOSE("prompt ingested", {
|
||||||
|
{"n_past", n_past},
|
||||||
|
{"cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past)},
|
||||||
|
{"to_eval", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())},
|
||||||
|
});
|
||||||
|
|
||||||
|
has_next_token = true;
|
||||||
|
}
|
||||||
void loadPrompt()
|
void loadPrompt()
|
||||||
{
|
{
|
||||||
auto prompt_tokens = tokenize(prompt, true); // always add BOS
|
auto prompt_tokens = tokenize(prompt, true); // always add BOS
|
||||||
@ -1219,6 +1283,27 @@ static void parse_options_completion(const json &body, llama_server_context &lla
|
|||||||
LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama));
|
LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void parse_options_infill(const json &body, llama_server_context &llama)
|
||||||
|
{
|
||||||
|
if (body.count("input_prefix") != 0)
|
||||||
|
{
|
||||||
|
llama.params.input_prefix = body["input_prefix"];
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
llama.params.input_prefix = "";
|
||||||
|
}
|
||||||
|
if (body.count("input_suffix") != 0)
|
||||||
|
{
|
||||||
|
llama.params.input_suffix = body["input_suffix"];
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
llama.params.input_suffix = "";
|
||||||
|
}
|
||||||
|
parse_options_completion(body, llama);
|
||||||
|
}
|
||||||
|
|
||||||
static void log_server_request(const Request &req, const Response &res)
|
static void log_server_request(const Request &req, const Response &res)
|
||||||
{
|
{
|
||||||
LOG_INFO("request", {
|
LOG_INFO("request", {
|
||||||
@ -1519,6 +1604,127 @@ int main(int argc, char **argv)
|
|||||||
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
|
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
|
||||||
} });
|
} });
|
||||||
|
|
||||||
|
svr.Post("/infill", [&llama](const Request &req, Response &res)
|
||||||
|
{
|
||||||
|
auto lock = llama.lock();
|
||||||
|
|
||||||
|
llama.rewind();
|
||||||
|
|
||||||
|
llama_reset_timings(llama.ctx);
|
||||||
|
|
||||||
|
parse_options_infill(json::parse(req.body), llama);
|
||||||
|
|
||||||
|
if (!llama.loadGrammar())
|
||||||
|
{
|
||||||
|
res.status = 400;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
llama.loadInfill();
|
||||||
|
llama.beginCompletion();
|
||||||
|
const auto chunked_content_provider = [&](size_t, DataSink & sink) {
|
||||||
|
size_t sent_count = 0;
|
||||||
|
size_t sent_token_probs_index = 0;
|
||||||
|
|
||||||
|
while (llama.has_next_token) {
|
||||||
|
const completion_token_output token_with_probs = llama.doCompletion();
|
||||||
|
if (token_with_probs.tok == -1 || llama.multibyte_pending > 0) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
const std::string token_text = llama_token_to_piece(llama.ctx, token_with_probs.tok);
|
||||||
|
|
||||||
|
size_t pos = std::min(sent_count, llama.generated_text.size());
|
||||||
|
|
||||||
|
const std::string str_test = llama.generated_text.substr(pos);
|
||||||
|
bool is_stop_full = false;
|
||||||
|
size_t stop_pos =
|
||||||
|
llama.findStoppingStrings(str_test, token_text.size(), STOP_FULL);
|
||||||
|
if (stop_pos != std::string::npos) {
|
||||||
|
is_stop_full = true;
|
||||||
|
llama.generated_text.erase(
|
||||||
|
llama.generated_text.begin() + pos + stop_pos,
|
||||||
|
llama.generated_text.end());
|
||||||
|
pos = std::min(sent_count, llama.generated_text.size());
|
||||||
|
} else {
|
||||||
|
is_stop_full = false;
|
||||||
|
stop_pos = llama.findStoppingStrings(str_test, token_text.size(),
|
||||||
|
STOP_PARTIAL);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (
|
||||||
|
stop_pos == std::string::npos ||
|
||||||
|
// Send rest of the text if we are at the end of the generation
|
||||||
|
(!llama.has_next_token && !is_stop_full && stop_pos > 0)
|
||||||
|
) {
|
||||||
|
const std::string to_send = llama.generated_text.substr(pos, std::string::npos);
|
||||||
|
|
||||||
|
sent_count += to_send.size();
|
||||||
|
|
||||||
|
std::vector<completion_token_output> probs_output = {};
|
||||||
|
|
||||||
|
if (llama.params.n_probs > 0) {
|
||||||
|
const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
|
||||||
|
size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size());
|
||||||
|
size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size());
|
||||||
|
if (probs_pos < probs_stop_pos) {
|
||||||
|
probs_output = std::vector<completion_token_output>(llama.generated_token_probs.begin() + probs_pos, llama.generated_token_probs.begin() + probs_stop_pos);
|
||||||
|
}
|
||||||
|
sent_token_probs_index = probs_stop_pos;
|
||||||
|
}
|
||||||
|
|
||||||
|
const json data = format_partial_response(llama, to_send, probs_output);
|
||||||
|
|
||||||
|
const std::string str =
|
||||||
|
"data: " +
|
||||||
|
data.dump(-1, ' ', false, json::error_handler_t::replace) +
|
||||||
|
"\n\n";
|
||||||
|
|
||||||
|
LOG_VERBOSE("data stream", {
|
||||||
|
{ "to_send", str }
|
||||||
|
});
|
||||||
|
|
||||||
|
if (!sink.write(str.data(), str.size())) {
|
||||||
|
LOG_VERBOSE("stream closed", {});
|
||||||
|
llama_print_timings(llama.ctx);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!llama.has_next_token) {
|
||||||
|
// Generation is done, send extra information.
|
||||||
|
const json data = format_final_response(
|
||||||
|
llama,
|
||||||
|
"",
|
||||||
|
std::vector<completion_token_output>(llama.generated_token_probs.begin(), llama.generated_token_probs.begin() + sent_token_probs_index)
|
||||||
|
);
|
||||||
|
|
||||||
|
const std::string str =
|
||||||
|
"data: " +
|
||||||
|
data.dump(-1, ' ', false, json::error_handler_t::replace) +
|
||||||
|
"\n\n";
|
||||||
|
|
||||||
|
LOG_VERBOSE("data stream", {
|
||||||
|
{ "to_send", str }
|
||||||
|
});
|
||||||
|
|
||||||
|
if (!sink.write(str.data(), str.size())) {
|
||||||
|
LOG_VERBOSE("stream closed", {});
|
||||||
|
llama_print_timings(llama.ctx);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_print_timings(llama.ctx);
|
||||||
|
sink.done();
|
||||||
|
return true;
|
||||||
|
};
|
||||||
|
const auto on_complete = [&](bool) {
|
||||||
|
llama.mutex.unlock();
|
||||||
|
};
|
||||||
|
lock.release();
|
||||||
|
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
|
||||||
|
});
|
||||||
|
|
||||||
svr.Get("/model.json", [&llama](const Request &, Response &res)
|
svr.Get("/model.json", [&llama](const Request &, Response &res)
|
||||||
{
|
{
|
||||||
const json data = format_generation_settings(llama);
|
const json data = format_generation_settings(llama);
|
||||||
|
20
llama.cpp
20
llama.cpp
@ -1076,6 +1076,10 @@ struct llama_vocab {
|
|||||||
id special_pad_id = -1;
|
id special_pad_id = -1;
|
||||||
|
|
||||||
id linefeed_id = 13;
|
id linefeed_id = 13;
|
||||||
|
id special_prefix_id = 32007;
|
||||||
|
id special_middle_id = 32009;
|
||||||
|
id special_suffix_id = 32008;
|
||||||
|
id special_eot_id = 32010;
|
||||||
|
|
||||||
int find_bpe_rank(std::string token_left, std::string token_right) const {
|
int find_bpe_rank(std::string token_left, std::string token_right) const {
|
||||||
replace_all(token_left, " ", "\u0120");
|
replace_all(token_left, " ", "\u0120");
|
||||||
@ -7489,6 +7493,22 @@ llama_token llama_token_eos(const struct llama_context * ctx) {
|
|||||||
llama_token llama_token_nl(const struct llama_context * ctx) {
|
llama_token llama_token_nl(const struct llama_context * ctx) {
|
||||||
return ctx->model.vocab.linefeed_id;
|
return ctx->model.vocab.linefeed_id;
|
||||||
}
|
}
|
||||||
|
llama_token llama_token_prefix(const struct llama_context * ctx) {
|
||||||
|
return ctx->model.vocab.special_prefix_id;
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_token llama_token_middle(const struct llama_context * ctx) {
|
||||||
|
return ctx->model.vocab.special_middle_id;
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_token llama_token_suffix(const struct llama_context * ctx) {
|
||||||
|
return ctx->model.vocab.special_suffix_id;
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_token llama_token_eot(const struct llama_context * ctx) {
|
||||||
|
return ctx->model.vocab.special_eot_id;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
int llama_tokenize(
|
int llama_tokenize(
|
||||||
const struct llama_model * model,
|
const struct llama_model * model,
|
||||||
|
5
llama.h
5
llama.h
@ -490,6 +490,11 @@ extern "C" {
|
|||||||
LLAMA_API llama_token llama_token_bos(const struct llama_context * ctx); // beginning-of-sentence
|
LLAMA_API llama_token llama_token_bos(const struct llama_context * ctx); // beginning-of-sentence
|
||||||
LLAMA_API llama_token llama_token_eos(const struct llama_context * ctx); // end-of-sentence
|
LLAMA_API llama_token llama_token_eos(const struct llama_context * ctx); // end-of-sentence
|
||||||
LLAMA_API llama_token llama_token_nl (const struct llama_context * ctx); // next-line
|
LLAMA_API llama_token llama_token_nl (const struct llama_context * ctx); // next-line
|
||||||
|
// codellama infill tokens
|
||||||
|
LLAMA_API llama_token llama_token_prefix(const struct llama_context * ctx); // Beginning of infill prefix
|
||||||
|
LLAMA_API llama_token llama_token_middle(const struct llama_context * ctx); // Beginning of infill middle
|
||||||
|
LLAMA_API llama_token llama_token_suffix(const struct llama_context * ctx); // Beginning of infill suffix
|
||||||
|
LLAMA_API llama_token llama_token_eot (const struct llama_context * ctx); // End of infill middle
|
||||||
|
|
||||||
//
|
//
|
||||||
// Tokenization
|
// Tokenization
|
||||||
|
Loading…
Reference in New Issue
Block a user