llama : support Jamba

This commit is contained in:
Francis Couture-Harpin 2024-05-24 19:27:27 -04:00
parent 7e13f19fb5
commit cbc743e600
5 changed files with 606 additions and 123 deletions

View File

@ -2300,7 +2300,7 @@ class MambaModel(Model):
self.gguf_writer.add_embedding_length(d_model) self.gguf_writer.add_embedding_length(d_model)
self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
self.gguf_writer.add_block_count(self.hparams["n_layer"]) self.gguf_writer.add_block_count(self.block_count)
self.gguf_writer.add_ssm_conv_kernel(d_conv) self.gguf_writer.add_ssm_conv_kernel(d_conv)
self.gguf_writer.add_ssm_inner_size(d_inner) self.gguf_writer.add_ssm_inner_size(d_inner)
self.gguf_writer.add_ssm_state_size(d_state) self.gguf_writer.add_ssm_state_size(d_state)
@ -2346,6 +2346,107 @@ class MambaModel(Model):
) )
@Model.register("JambaForCausalLM")
class JambaModel(Model):
model_arch = gguf.MODEL_ARCH.JAMBA
def get_vocab_base_pre(self, tokenizer) -> str:
del tokenizer # unused
return "gpt-2"
def set_gguf_parameters(self):
d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
d_inner = self.hparams["mamba_expand"] * d_model
d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
# ceiling division
# ref: https://stackoverflow.com/a/17511341/22827863
# ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
n_kv_head = self.hparams["num_key_value_heads"]
attn_offset = self.hparams["attn_layer_offset"]
attn_period = self.hparams["attn_layer_period"]
n_kv_vec = [0 for _ in range(attn_offset)] + [
n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
]
self.gguf_writer.add_name(self.dir_model.name)
self.gguf_writer.add_block_count(self.block_count)
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
self.gguf_writer.add_embedding_length(d_model)
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
self.gguf_writer.add_head_count_kv(n_kv_vec)
self.gguf_writer.add_ssm_conv_kernel(d_conv)
self.gguf_writer.add_ssm_inner_size(d_inner)
self.gguf_writer.add_ssm_state_size(d_state)
self.gguf_writer.add_ssm_time_step_rank(dt_rank)
self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
self.gguf_writer.add_expert_count(self.hparams["num_experts"])
self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
self.gguf_writer.add_file_type(self.ftype)
_experts: list[dict[str, Tensor]] | None = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# process the experts separately
if ".feed_forward.experts." in name:
n_experts = self.hparams["num_experts"]
assert bid is not None
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
# merge the experts into a single 3d tensor
for wid in ["down_proj", "gate_proj", "up_proj"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
# using the same merged name as qwen2moe
merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
new_name = self.map_tensor_name(merged_name)
yield new_name, data_torch
return
new_name = self.map_tensor_name(name)
if name.endswith(".A_log"):
logger.debug("A_log --> A ==> " + new_name)
data_torch = -torch.exp(data_torch)
yield new_name, data_torch
# same as Mamba
def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
del n_dims # unused
return bid is not None and new_name in (
self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [
gguf.MODEL_TENSOR.SSM_CONV1D,
gguf.MODEL_TENSOR.SSM_X,
gguf.MODEL_TENSOR.SSM_DT,
gguf.MODEL_TENSOR.SSM_A,
gguf.MODEL_TENSOR.SSM_D,
]
)
@Model.register("CohereForCausalLM") @Model.register("CohereForCausalLM")
class CommandR2Model(Model): class CommandR2Model(Model):
model_arch = gguf.MODEL_ARCH.COMMAND_R model_arch = gguf.MODEL_ARCH.COMMAND_R

View File

@ -135,6 +135,7 @@ class MODEL_ARCH(IntEnum):
GEMMA = auto() GEMMA = auto()
STARCODER2 = auto() STARCODER2 = auto()
MAMBA = auto() MAMBA = auto()
JAMBA = auto()
XVERSE = auto() XVERSE = auto()
COMMAND_R = auto() COMMAND_R = auto()
DBRX = auto() DBRX = auto()
@ -180,7 +181,10 @@ class MODEL_TENSOR(IntEnum):
SSM_CONV1D = auto() SSM_CONV1D = auto()
SSM_X = auto() SSM_X = auto()
SSM_DT = auto() SSM_DT = auto()
SSM_DT_NORM = auto()
SSM_A = auto() SSM_A = auto()
SSM_B_NORM = auto()
SSM_C_NORM = auto()
SSM_D = auto() SSM_D = auto()
SSM_OUT = auto() SSM_OUT = auto()
@ -214,6 +218,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.GEMMA: "gemma", MODEL_ARCH.GEMMA: "gemma",
MODEL_ARCH.STARCODER2: "starcoder2", MODEL_ARCH.STARCODER2: "starcoder2",
MODEL_ARCH.MAMBA: "mamba", MODEL_ARCH.MAMBA: "mamba",
MODEL_ARCH.JAMBA: "jamba",
MODEL_ARCH.XVERSE: "xverse", MODEL_ARCH.XVERSE: "xverse",
MODEL_ARCH.COMMAND_R: "command-r", MODEL_ARCH.COMMAND_R: "command-r",
MODEL_ARCH.DBRX: "dbrx", MODEL_ARCH.DBRX: "dbrx",
@ -259,7 +264,10 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d", MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x", MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt", MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
MODEL_TENSOR.SSM_DT_NORM: "blk.{bid}.ssm_dt_norm",
MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a", MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
MODEL_TENSOR.SSM_B_NORM: "blk.{bid}.ssm_b_norm",
MODEL_TENSOR.SSM_C_NORM: "blk.{bid}.ssm_c_norm",
MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d", MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out", MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
} }
@ -678,6 +686,34 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.SSM_D, MODEL_TENSOR.SSM_D,
MODEL_TENSOR.SSM_OUT, MODEL_TENSOR.SSM_OUT,
], ],
MODEL_ARCH.JAMBA: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.SSM_IN,
MODEL_TENSOR.SSM_CONV1D,
MODEL_TENSOR.SSM_X,
MODEL_TENSOR.SSM_DT,
MODEL_TENSOR.SSM_DT_NORM,
MODEL_TENSOR.SSM_A,
MODEL_TENSOR.SSM_B_NORM,
MODEL_TENSOR.SSM_C_NORM,
MODEL_TENSOR.SSM_D,
MODEL_TENSOR.SSM_OUT,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
MODEL_ARCH.XVERSE: [ MODEL_ARCH.XVERSE: [
MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM, MODEL_TENSOR.OUTPUT_NORM,

View File

@ -385,8 +385,11 @@ class GGUFWriter:
def add_head_count(self, count: int) -> None: def add_head_count(self, count: int) -> None:
self.add_uint32(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count) self.add_uint32(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count)
def add_head_count_kv(self, count: int) -> None: def add_head_count_kv(self, count: int | Sequence[int]) -> None:
if isinstance(count, int):
self.add_uint32(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count) self.add_uint32(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)
else:
self.add_array(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)
def add_key_length(self, length: int) -> None: def add_key_length(self, length: int) -> None:
self.add_uint32(Keys.Attention.KEY_LENGTH.format(arch=self.arch), length) self.add_uint32(Keys.Attention.KEY_LENGTH.format(arch=self.arch), length)

View File

@ -206,6 +206,7 @@ class TensorNameMap:
"h.{bid}.ln_2", # gpt2 "h.{bid}.ln_2", # gpt2
"model.layers.{bid}.ffn_norm", # internlm2 "model.layers.{bid}.ffn_norm", # internlm2
"transformer.decoder_layer.{bid}.rms_norm_2", # Grok "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
"model.layers.{bid}.pre_ff_layernorm", # jamba
), ),
MODEL_TENSOR.FFN_GATE_INP: ( MODEL_TENSOR.FFN_GATE_INP: (
@ -214,6 +215,7 @@ class TensorNameMap:
"model.layers.{bid}.mlp.gate", # qwen2moe "model.layers.{bid}.mlp.gate", # qwen2moe
"transformer.decoder_layer.{bid}.router", # Grok "transformer.decoder_layer.{bid}.router", # Grok
"transformer.blocks.{bid}.ffn.router.layer", # dbrx "transformer.blocks.{bid}.ffn.router.layer", # dbrx
"model.layers.{bid}.feed_forward.router", # jamba
), ),
MODEL_TENSOR.FFN_GATE_INP_SHEXP: ( MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
@ -244,6 +246,7 @@ class TensorNameMap:
"encoder.layers.{bid}.mlp.fc11", # nomic-bert "encoder.layers.{bid}.mlp.fc11", # nomic-bert
"model.layers.{bid}.mlp.c_fc", # starcoder2 "model.layers.{bid}.mlp.c_fc", # starcoder2
"encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
"model.layers.{bid}.feed_forward.up_proj", # jamba
), ),
MODEL_TENSOR.FFN_UP_EXP: ( MODEL_TENSOR.FFN_UP_EXP: (
@ -272,6 +275,7 @@ class TensorNameMap:
"encoder.layers.{bid}.mlp.fc12", # nomic-bert "encoder.layers.{bid}.mlp.fc12", # nomic-bert
"encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
"transformer.h.{bid}.mlp.linear_1", # refact "transformer.h.{bid}.mlp.linear_1", # refact
"model.layers.{bid}.feed_forward.gate_proj", # jamba
), ),
MODEL_TENSOR.FFN_GATE_EXP: ( MODEL_TENSOR.FFN_GATE_EXP: (
@ -306,6 +310,7 @@ class TensorNameMap:
"encoder.layers.{bid}.mlp.fc2", # nomic-bert "encoder.layers.{bid}.mlp.fc2", # nomic-bert
"model.layers.{bid}.mlp.c_proj", # starcoder2 "model.layers.{bid}.mlp.c_proj", # starcoder2
"encoder.layer.{bid}.mlp.wo", # jina-bert-v2 "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
"model.layers.{bid}.feed_forward.down_proj", # jamba
), ),
MODEL_TENSOR.FFN_DOWN_EXP: ( MODEL_TENSOR.FFN_DOWN_EXP: (
@ -347,38 +352,57 @@ class TensorNameMap:
), ),
MODEL_TENSOR.SSM_IN: ( MODEL_TENSOR.SSM_IN: (
"model.layers.{bid}.in_proj", "model.layers.{bid}.in_proj", # mamba-hf
"backbone.layers.{bid}.mixer.in_proj", "backbone.layers.{bid}.mixer.in_proj", # mamba
"model.layers.{bid}.mamba.in_proj", # jamba
), ),
MODEL_TENSOR.SSM_CONV1D: ( MODEL_TENSOR.SSM_CONV1D: (
"model.layers.{bid}.conv1d", "model.layers.{bid}.conv1d", # mamba-hf
"backbone.layers.{bid}.mixer.conv1d", "backbone.layers.{bid}.mixer.conv1d", # mamba
"model.layers.{bid}.mamba.conv1d", # jamba
), ),
MODEL_TENSOR.SSM_X: ( MODEL_TENSOR.SSM_X: (
"model.layers.{bid}.x_proj", "model.layers.{bid}.x_proj", # mamba-hf
"backbone.layers.{bid}.mixer.x_proj", "backbone.layers.{bid}.mixer.x_proj", # mamba
"model.layers.{bid}.mamba.x_proj", # jamba
), ),
MODEL_TENSOR.SSM_DT: ( MODEL_TENSOR.SSM_DT: (
"model.layers.{bid}.dt_proj", "model.layers.{bid}.dt_proj", # mamba-hf
"backbone.layers.{bid}.mixer.dt_proj", "backbone.layers.{bid}.mixer.dt_proj", # mamba
"model.layers.{bid}.mamba.dt_proj", # jamba
),
MODEL_TENSOR.SSM_DT_NORM: (
"model.layers.{bid}.mamba.dt_layernorm", # jamba
), ),
MODEL_TENSOR.SSM_A: ( MODEL_TENSOR.SSM_A: (
"model.layers.{bid}.A_log", "model.layers.{bid}.A_log", # mamba-hf
"backbone.layers.{bid}.mixer.A_log", "backbone.layers.{bid}.mixer.A_log", # mamba
"model.layers.{bid}.mamba.A_log", # jamba
),
MODEL_TENSOR.SSM_B_NORM: (
"model.layers.{bid}.mamba.b_layernorm", # jamba
),
MODEL_TENSOR.SSM_C_NORM: (
"model.layers.{bid}.mamba.c_layernorm", # jamba
), ),
MODEL_TENSOR.SSM_D: ( MODEL_TENSOR.SSM_D: (
"model.layers.{bid}.D", "model.layers.{bid}.D", # mamba-hf
"backbone.layers.{bid}.mixer.D", "backbone.layers.{bid}.mixer.D", # mamba
"model.layers.{bid}.mamba.D", # jamba
), ),
MODEL_TENSOR.SSM_OUT: ( MODEL_TENSOR.SSM_OUT: (
"model.layers.{bid}.out_proj", "model.layers.{bid}.out_proj", # mamba-hf
"backbone.layers.{bid}.mixer.out_proj", "backbone.layers.{bid}.mixer.out_proj", # mamba
"model.layers.{bid}.mamba.out_proj", # jamba
), ),
} }

523
llama.cpp
View File

@ -221,6 +221,7 @@ enum llm_arch {
LLM_ARCH_GEMMA, LLM_ARCH_GEMMA,
LLM_ARCH_STARCODER2, LLM_ARCH_STARCODER2,
LLM_ARCH_MAMBA, LLM_ARCH_MAMBA,
LLM_ARCH_JAMBA,
LLM_ARCH_XVERSE, LLM_ARCH_XVERSE,
LLM_ARCH_COMMAND_R, LLM_ARCH_COMMAND_R,
LLM_ARCH_DBRX, LLM_ARCH_DBRX,
@ -257,6 +258,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_GEMMA, "gemma" }, { LLM_ARCH_GEMMA, "gemma" },
{ LLM_ARCH_STARCODER2, "starcoder2" }, { LLM_ARCH_STARCODER2, "starcoder2" },
{ LLM_ARCH_MAMBA, "mamba" }, { LLM_ARCH_MAMBA, "mamba" },
{ LLM_ARCH_JAMBA, "jamba" },
{ LLM_ARCH_XVERSE, "xverse" }, { LLM_ARCH_XVERSE, "xverse" },
{ LLM_ARCH_COMMAND_R, "command-r" }, { LLM_ARCH_COMMAND_R, "command-r" },
{ LLM_ARCH_DBRX, "dbrx" }, { LLM_ARCH_DBRX, "dbrx" },
@ -472,7 +474,10 @@ enum llm_tensor {
LLM_TENSOR_SSM_CONV1D, LLM_TENSOR_SSM_CONV1D,
LLM_TENSOR_SSM_X, LLM_TENSOR_SSM_X,
LLM_TENSOR_SSM_DT, LLM_TENSOR_SSM_DT,
LLM_TENSOR_SSM_DT_NORM,
LLM_TENSOR_SSM_A, LLM_TENSOR_SSM_A,
LLM_TENSOR_SSM_B_NORM,
LLM_TENSOR_SSM_C_NORM,
LLM_TENSOR_SSM_D, LLM_TENSOR_SSM_D,
LLM_TENSOR_SSM_OUT, LLM_TENSOR_SSM_OUT,
}; };
@ -970,6 +975,37 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
{ LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" }, { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
}, },
}, },
{
LLM_ARCH_JAMBA,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
{ LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
{ LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
{ LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
{ LLM_TENSOR_SSM_DT_NORM, "blk.%d.ssm_dt_norm" },
{ LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
{ LLM_TENSOR_SSM_B_NORM, "blk.%d.ssm_b_norm" },
{ LLM_TENSOR_SSM_C_NORM, "blk.%d.ssm_c_norm" },
{ LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
{ LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
{ {
LLM_ARCH_XVERSE, LLM_ARCH_XVERSE,
{ {
@ -1905,6 +1941,9 @@ struct llama_layer {
struct ggml_tensor * attn_k_norm_b; struct ggml_tensor * attn_k_norm_b;
struct ggml_tensor * attn_out_norm; struct ggml_tensor * attn_out_norm;
struct ggml_tensor * attn_out_norm_b; struct ggml_tensor * attn_out_norm_b;
struct ggml_tensor * ssm_dt_norm;
struct ggml_tensor * ssm_b_norm;
struct ggml_tensor * ssm_c_norm;
// attention // attention
struct ggml_tensor * wq; struct ggml_tensor * wq;
@ -5150,6 +5189,22 @@ static void llm_load_hparams(
default: model.type = e_model::MODEL_UNKNOWN; default: model.type = e_model::MODEL_UNKNOWN;
} }
} break; } break;
case LLM_ARCH_JAMBA:
{
ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
// TODO: Jamba layers are a bit heterogenous, so naming this is hard.
case 12: // 900M 8x???M
case 32: // 51B 16x?B
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_XVERSE: case LLM_ARCH_XVERSE:
{ {
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@ -6854,6 +6909,118 @@ static bool llm_load_tensors(
layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}); layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
} }
} break; } break;
case LLM_ARCH_JAMBA:
{
const int64_t d_conv = hparams.ssm_d_conv;
const int64_t d_inner = hparams.ssm_d_inner;
const int64_t d_state = hparams.ssm_d_state;
const int64_t dt_rank = hparams.ssm_dt_rank;
// only an expansion factor of 2 is supported for now
GGML_ASSERT(2 * n_embd == d_inner);
GGML_ASSERT((int64_t) hparams.n_head_kv_vec.size() == n_layer);
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed, duplicated to allow offloading
if (model.output == NULL) {
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
}
}
for (int i = 0; i < n_layer; ++i) {
const int64_t n_head_kv = hparams.n_head_kv_vec[i];
const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
// norm
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
if (n_head_kv == 0) {
// Mamba layer
layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
layer.ssm_dt_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT_NORM, "weight", i), {dt_rank});
layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
layer.ssm_b_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_B_NORM, "weight", i), {d_state});
layer.ssm_c_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_C_NORM, "weight", i), {d_state});
// no "weight" suffix for these
layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
// out_proj
layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
layer.wq = nullptr;
layer.wk = nullptr;
layer.wv = nullptr;
layer.wo = nullptr;
} else {
// Attention layers
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
layer.ssm_in = nullptr;
layer.ssm_conv1d = nullptr;
layer.ssm_conv1d_b = nullptr;
layer.ssm_x = nullptr;
layer.ssm_dt_norm = nullptr;
layer.ssm_dt = nullptr;
layer.ssm_dt_b = nullptr;
layer.ssm_b_norm = nullptr;
layer.ssm_c_norm = nullptr;
layer.ssm_a = nullptr;
layer.ssm_d = nullptr;
layer.ssm_out = nullptr;
}
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
if (layer.ffn_gate_inp) {
// MoE
layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
layer.ffn_gate = nullptr;
layer.ffn_down = nullptr;
layer.ffn_up = nullptr;
} else {
// FFN (no MoE)
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
layer.ffn_gate_exps = nullptr;
layer.ffn_down_exps = nullptr;
layer.ffn_up_exps = nullptr;
}
}
} break;
case LLM_ARCH_XVERSE: case LLM_ARCH_XVERSE:
{ {
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
@ -7632,6 +7799,132 @@ static struct ggml_tensor * llm_build_kv(
return cur; return cur;
} }
// TODO: split
static struct ggml_tensor * llm_build_mamba(
struct ggml_context * ctx,
const llama_model & model,
const llama_hparams & hparams,
const llama_rs_cache & rs,
struct ggml_cgraph * graph,
struct ggml_tensor * cur,
struct ggml_tensor * state_copy,
struct ggml_tensor * state_mask,
struct ggml_tensor * state_seq,
struct ggml_tensor * w_dt_norm,
struct ggml_tensor * w_b_norm,
struct ggml_tensor * w_c_norm,
int32_t n_tokens,
int32_t rs_head,
int32_t n_rs,
const llm_build_cb & cb,
int il) {
const int64_t d_conv = hparams.ssm_d_conv;
const int64_t d_inner = hparams.ssm_d_inner;
const int64_t d_state = hparams.ssm_d_state;
const int64_t dt_rank = hparams.ssm_dt_rank;
struct ggml_tensor * conv_states = ggml_reshape_2d(ctx, rs.r_l[il], hparams.n_embd_r(il), rs.size);
struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx, rs.s_l[il], hparams.n_embd_s(il), rs.size);
// copy states
{
// TODO: use some sort of read-only head and n to pass smaller tensors to ggml_get_rows
// NOTE: assuming the copy destinations are ALL contained in the current batch
// this shrinks the tensors's ne[1] to n_rs
conv_states = ggml_get_rows(ctx, conv_states, state_copy);
ssm_states = ggml_get_rows(ctx, ssm_states, state_copy);
}
// clear states of sequences which are starting at the beginning of this batch
{
conv_states = ggml_mul(ctx, conv_states, state_mask);
ssm_states = ggml_mul(ctx, ssm_states, state_mask);
}
conv_states = ggml_reshape_3d(ctx, conv_states, d_conv - 1, d_inner, n_rs);
ssm_states = ggml_reshape_3d(ctx, ssm_states, d_state, d_inner, n_rs);
// {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
struct ggml_tensor * xz = ggml_mul_mat(ctx, model.layers[il].ssm_in, cur);
// split the above in two
// => {d_inner, n_tokens}
struct ggml_tensor * x = ggml_view_2d(ctx, xz, d_inner, xz->ne[1], xz->nb[1], 0);
struct ggml_tensor * z = ggml_view_2d(ctx, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
// conv
{
// Custom operator which is needed only to ease simultaneous sequence processing.
// For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
// then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
// then element-wise multiply that with the conv1d weigth,
// then sum the elements of each row,
// (the last two steps are a dot product over rows (also doable with mul_mat))
// then permute away the ne[0] dimension,
// and then you're left with the resulting x tensor.
// The new conv_states is the last (d_conv - 1) columns
// of the last 3rd dimensional "layer" of the self-overlapping view.
// For simultaneous sequences, it's more complicated.
struct ggml_tensor * x_conv = ggml_ssm_conv(ctx, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
// store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
ggml_build_forward_expand(graph,
ggml_cpy(ctx,
ggml_view_2d(ctx, x_conv, d_conv - 1, d_inner*n_rs, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
ggml_view_1d(ctx, rs.r_l[il], (d_conv - 1)*(d_inner)*(n_rs), rs_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
// extract x from x_conv
x = ggml_view_2d(ctx, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
// bias
x = ggml_add(ctx, x, model.layers[il].ssm_conv1d_b);
x = ggml_silu(ctx, x);
}
// ssm
{
// {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
struct ggml_tensor * x_db = ggml_mul_mat(ctx, model.layers[il].ssm_x, x);
// split
struct ggml_tensor * dt = ggml_view_2d(ctx, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
struct ggml_tensor * B = ggml_view_2d(ctx, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
struct ggml_tensor * C = ggml_view_2d(ctx, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
if (w_dt_norm) { dt = llm_build_norm(ctx, dt, hparams, w_dt_norm, NULL, LLM_NORM_RMS, cb, il); }
if (w_b_norm) { B = llm_build_norm(ctx, B, hparams, w_b_norm, NULL, LLM_NORM_RMS, cb, il); }
if (w_c_norm) { C = llm_build_norm(ctx, C, hparams, w_b_norm, NULL, LLM_NORM_RMS, cb, il); }
// {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
dt = ggml_mul_mat(ctx, model.layers[il].ssm_dt, dt);
dt = ggml_add(ctx, dt, model.layers[il].ssm_dt_b);
// Custom operator to optimize the parallel associative scan
// as described in the Annex D of the Mamba paper.
// => {d_inner, n_tokens} and {d_state, d_inner, n_rs} combined,
// because only a single tensor can be returned.
struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
// store last states (the second part of y_ssm_states)
ggml_build_forward_expand(graph,
ggml_cpy(ctx,
ggml_view_1d(ctx, y_ssm_states, d_state*d_inner*n_rs, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
ggml_view_1d(ctx, rs.s_l[il], d_state*d_inner*n_rs, rs_head*d_state*d_inner*ggml_element_size(ssm_states))));
struct ggml_tensor * y = ggml_view_2d(ctx, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
// TODO: skip computing output for unused tokens
// {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
y = ggml_add(ctx, y, ggml_mul(ctx, x, model.layers[il].ssm_d));
y = ggml_mul(ctx, y, ggml_silu(ctx, z));
// {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
cur = ggml_mul_mat(ctx, model.layers[il].ssm_out, y);
}
return cur;
}
struct llm_build_context { struct llm_build_context {
const llama_model & model; const llama_model & model;
llama_context & lctx; llama_context & lctx;
@ -11024,13 +11317,6 @@ struct llm_build_context {
struct ggml_cgraph * build_mamba() { struct ggml_cgraph * build_mamba() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
const int64_t d_model = n_embd;
const int64_t d_conv = hparams.ssm_d_conv;
const int64_t d_inner = hparams.ssm_d_inner;
GGML_ASSERT(2 * d_model == d_inner);
const int64_t d_state = hparams.ssm_d_state;
const int64_t dt_rank = hparams.ssm_dt_rank;
struct ggml_tensor * cur; struct ggml_tensor * cur;
struct ggml_tensor * inpL; struct ggml_tensor * inpL;
@ -11042,114 +11328,23 @@ struct llm_build_context {
struct ggml_tensor * state_seq = build_inp_s_seq(); struct ggml_tensor * state_seq = build_inp_s_seq();
for (int il = 0; il < n_layer; ++il) { for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, rs_self.r_l[il], hparams.n_embd_r(il), rs_self.size);
struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, rs_self.s_l[il], hparams.n_embd_s(il), rs_self.size);
// copy states
{
// TODO: use some sort of read-only head and n to pass smaller tensors to ggml_get_rows
// NOTE: assuming the copy destinations are ALL contained in the current batch
// this shrinks the tensors's ne[1] to n_rs
conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
}
// clear states of sequences which are starting at the beginning of this batch
{
conv_states = ggml_mul(ctx0, conv_states, state_mask);
ssm_states = ggml_mul(ctx0, ssm_states, state_mask);
}
conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_rs);
ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_rs);
// norm // norm
cur = llm_build_norm(ctx0, inpL, hparams, cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL, model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il); LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il); cb(cur, "attn_norm", il);
// {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens} cur = llm_build_mamba(ctx0, model, hparams, rs_self, gf, cur,
struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur); state_copy, state_mask, state_seq, NULL, NULL, NULL,
// split the above in two n_tokens, rs_head, n_rs, cb, il);
// => {d_inner, n_tokens}
struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
// conv
{
// Custom operator which is needed only to ease simultaneous sequence processing.
// For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
// then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
// then element-wise multiply that with the conv1d weigth,
// then sum the elements of each row,
// (the last two steps are a dot product over rows (also doable with mul_mat))
// then permute away the ne[0] dimension,
// and then you're left with the resulting x tensor.
// The new conv_states is the last (d_conv - 1) columns
// of the last 3rd dimensional "layer" of the self-overlapping view.
// For simultaneous sequences, it's more complicated.
struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
// store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
ggml_build_forward_expand(gf,
ggml_cpy(ctx0,
ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_rs, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
ggml_view_1d(ctx0, rs_self.r_l[il], (d_conv - 1)*(d_inner)*(n_rs), rs_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
// extract x from x_conv
x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
// bias
x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
x = ggml_silu(ctx0, x);
}
// ssm
{
// {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
// split
struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
// {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
// Custom operator to optimize the parallel associative scan
// as described in the Annex D of the Mamba paper.
// => {d_inner, n_tokens} and {d_state, d_inner, n_rs} combined,
// because only a single tensor can be returned.
struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
// store last states (the second part of y_ssm_states)
ggml_build_forward_expand(gf,
ggml_cpy(ctx0,
ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_rs, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
ggml_view_1d(ctx0, rs_self.s_l[il], d_state*d_inner*n_rs, rs_head*d_state*d_inner*ggml_element_size(ssm_states))));
struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
if (il == n_layer - 1) { if (il == n_layer - 1) {
// skip computing output for unused tokens // skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids(); struct ggml_tensor * inp_out_ids = build_inp_out_ids();
x = ggml_get_rows(ctx0, x, inp_out_ids); cur = ggml_get_rows(ctx0, cur, inp_out_ids);
y = ggml_get_rows(ctx0, y, inp_out_ids);
z = ggml_get_rows(ctx0, z, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
} }
// {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
// {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
}
// residual // residual
cur = ggml_add(ctx0, cur, inpL); cur = ggml_add(ctx0, cur, inpL);
cb(cur, "l_out", il); cb(cur, "l_out", il);
@ -11173,6 +11368,125 @@ struct llm_build_context {
return gf; return gf;
} }
struct ggml_cgraph * build_jamba() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
const int64_t n_embd_head = hparams.n_embd_head_v;
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
// {n_embd, n_tokens}
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
struct ggml_tensor * state_copy = build_inp_s_copy();
struct ggml_tensor * state_mask = build_inp_s_mask();
struct ggml_tensor * state_seq = build_inp_s_seq();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
const int64_t n_head_kv = hparams.n_head_kv_l(il);
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
if (n_head_kv == 0) {
// Mamba
cur = llm_build_mamba(ctx0, model, hparams, rs_self, gf, cur,
state_copy, state_mask, state_seq,
model.layers[il].ssm_dt_norm, model.layers[il].ssm_b_norm, model.layers[il].ssm_c_norm,
n_tokens, rs_head, n_rs, cb, il);
} else {
// Attention
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
// No RoPE :)
cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
model.layers[il].wo, NULL,
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// residual
struct ggml_tensor * ffn_inp = ggml_add(ctx0, inpL, cur);
cb(cur, "ffn_inp", il);
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
// feed-forward network
if (model.layers[il].ffn_gate_inp == nullptr) {
// FFN
cur = llm_build_ffn(ctx0, cur,
model.layers[il].ffn_up, NULL,
model.layers[il].ffn_gate, NULL,
model.layers[il].ffn_down, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
} else {
// MoE branch
cur = llm_build_moe_ffn(ctx0, cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
n_expert, n_expert_used,
LLM_FFN_SILU, false,
cb, il);
cb(cur, "ffn_moe_out", il);
}
// residual
cur = ggml_add(ctx0, ffn_inp, cur);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
// final rmsnorm
cur = llm_build_norm(ctx0, inpL, hparams,
model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
cur = ggml_mul_mat(ctx0, model.output, cur);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
struct ggml_cgraph * build_command_r() { struct ggml_cgraph * build_command_r() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
@ -11630,6 +11944,10 @@ static struct ggml_cgraph * llama_build_graph(
{ {
result = llm.build_mamba(); result = llm.build_mamba();
} break; } break;
case LLM_ARCH_JAMBA:
{
result = llm.build_jamba();
} break;
case LLM_ARCH_XVERSE: case LLM_ARCH_XVERSE:
{ {
result = llm.build_xverse(); result = llm.build_xverse();
@ -16644,6 +16962,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
case LLM_ARCH_REFACT: case LLM_ARCH_REFACT:
case LLM_ARCH_BLOOM: case LLM_ARCH_BLOOM:
case LLM_ARCH_MAMBA: case LLM_ARCH_MAMBA:
case LLM_ARCH_JAMBA:
case LLM_ARCH_JINA_BERT_V2: case LLM_ARCH_JINA_BERT_V2:
return LLAMA_ROPE_TYPE_NONE; return LLAMA_ROPE_TYPE_NONE;