metal : handle buffers larger than device's maxBufferLength (#1826)

* metal : handle buffers larger than device's maxBufferLength

* metal : print more verbose device info + handle errors

* metal : fix prints for overlapping views

* metal : minimize view overlap to try to utilize device memory better
This commit is contained in:
Georgi Gerganov 2023-06-18 09:09:47 +03:00 committed by GitHub
parent 57cd69460f
commit ce2c7d72e2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 125 additions and 35 deletions

View File

@ -252,7 +252,7 @@ $(info )
ggml.o: ggml.c ggml.h ggml-cuda.h ggml.o: ggml.c ggml.h ggml-cuda.h
$(CC) $(CFLAGS) -c $< -o $@ $(CC) $(CFLAGS) -c $< -o $@
llama.o: llama.cpp ggml.h ggml-cuda.h llama.h llama-util.h llama.o: llama.cpp ggml.h ggml-cuda.h ggml-metal.h llama.h llama-util.h
$(CXX) $(CXXFLAGS) -c $< -o $@ $(CXX) $(CXXFLAGS) -c $< -o $@
common.o: examples/common.cpp examples/common.h common.o: examples/common.cpp examples/common.h

View File

@ -41,12 +41,15 @@ void ggml_metal_free(struct ggml_metal_context * ctx);
// - make sure to map all buffers used in the graph before calling ggml_metal_graph_compute // - make sure to map all buffers used in the graph before calling ggml_metal_graph_compute
// - the mapping is used during computation to determine the arguments of the compute kernels // - the mapping is used during computation to determine the arguments of the compute kernels
// - you don't need to keep the host memory buffer allocated as it is never accessed by Metal // - you don't need to keep the host memory buffer allocated as it is never accessed by Metal
// - max_size specifies the maximum size of a tensor and is used to create shared views such
// that it is guaranteed that the tensor will fit in at least one of the views
// //
bool ggml_metal_add_buffer( bool ggml_metal_add_buffer(
struct ggml_metal_context * ctx, struct ggml_metal_context * ctx,
const char * name, const char * name,
void * data, void * data,
size_t size); size_t size,
size_t max_size);
// set data from host memory into the device // set data from host memory into the device
void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t); void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);

View File

@ -183,6 +183,14 @@ struct ggml_metal_context * ggml_metal_init(void) {
#undef GGML_METAL_ADD_KERNEL #undef GGML_METAL_ADD_KERNEL
} }
fprintf(stderr, "%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
fprintf(stderr, "%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
if (ctx->device.maxTransferRate != 0) {
fprintf(stderr, "%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
} else {
fprintf(stderr, "%s: maxTransferRate = built-in GPU\n", __func__);
}
return ctx; return ctx;
} }
@ -199,10 +207,13 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) { static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) {
//fprintf(stderr, "%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach); //fprintf(stderr, "%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach);
const int64_t tsize = ggml_nbytes(t);
// find the view that contains the tensor fully
for (int i = 0; i < ctx->n_buffers; ++i) { for (int i = 0; i < ctx->n_buffers; ++i) {
const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data; const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data;
if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) { if (ioffs >= 0 && ioffs + tsize <= (int64_t) ctx->buffers[i].size) {
*offs = (size_t) ioffs; *offs = (size_t) ioffs;
//fprintf(stderr, "%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs); //fprintf(stderr, "%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs);
@ -220,7 +231,8 @@ bool ggml_metal_add_buffer(
struct ggml_metal_context * ctx, struct ggml_metal_context * ctx,
const char * name, const char * name,
void * data, void * data,
size_t size) { size_t size,
size_t max_size) {
if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) { if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) {
fprintf(stderr, "%s: too many buffers\n", __func__); fprintf(stderr, "%s: too many buffers\n", __func__);
return false; return false;
@ -237,30 +249,68 @@ bool ggml_metal_add_buffer(
} }
} }
size_t page_size = getpagesize(); const size_t size_page = getpagesize();
size_t aligned_size = size;
if ((aligned_size % page_size) != 0) { size_t size_aligned = size;
aligned_size += (page_size - (aligned_size % page_size)); if ((size_aligned % size_page) != 0) {
size_aligned += (size_page - (size_aligned % size_page));
} }
ctx->buffers[ctx->n_buffers].name = name; // the buffer fits into the max buffer size allowed by the device
ctx->buffers[ctx->n_buffers].data = data; if (size_aligned <= ctx->device.maxBufferLength) {
ctx->buffers[ctx->n_buffers].size = size; ctx->buffers[ctx->n_buffers].name = name;
ctx->buffers[ctx->n_buffers].data = data;
ctx->buffers[ctx->n_buffers].size = size;
if (ctx->device.maxBufferLength < aligned_size) { ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
fprintf(stderr, "%s: buffer '%s' size %zu is larger than buffer maximum of %zu\n", __func__, name, aligned_size, ctx->device.maxBufferLength);
return false;
}
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:aligned_size options:MTLResourceStorageModeShared deallocator:nil];
if (ctx->buffers[ctx->n_buffers].metal == nil) { if (ctx->buffers[ctx->n_buffers].metal == nil) {
fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, aligned_size / 1024.0 / 1024.0); fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0);
return false; return false;
}
fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0);
++ctx->n_buffers;
} else {
// this overlap between the views will guarantee that the tensor with the maximum size will fully fit into
// one of the views
const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case
const size_t size_step = ctx->device.maxBufferLength - size_ovlp;
const size_t size_view = ctx->device.maxBufferLength;
for (size_t i = 0; i < size; i += size_step) {
const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i);
ctx->buffers[ctx->n_buffers].name = name;
ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i);
ctx->buffers[ctx->n_buffers].size = size_step_aligned;
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
if (ctx->buffers[ctx->n_buffers].metal == nil) {
fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0);
return false;
}
fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i);
if (i + size_step < size) {
fprintf(stderr, "\n");
}
++ctx->n_buffers;
}
} }
fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB\n", __func__, name, aligned_size / 1024.0 / 1024.0); fprintf(stderr, ", (%8.2f / %8.2f)",
ctx->device.currentAllocatedSize / 1024.0 / 1024.0,
ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
++ctx->n_buffers; if (ctx->device.currentAllocatedSize > ctx->device.recommendedMaxWorkingSetSize) {
fprintf(stderr, ", warning: current allocated size is greater than the recommended max working set size\n");
} else {
fprintf(stderr, "\n");
}
} }
return true; return true;
@ -909,4 +959,14 @@ void ggml_metal_graph_compute(
dispatch_barrier_sync(queue, ^{}); dispatch_barrier_sync(queue, ^{});
[command_buffers[n_cb - 1] waitUntilCompleted]; [command_buffers[n_cb - 1] waitUntilCompleted];
// check status of command buffers
// needed to detect if the device ran out-of-memory for example (#1881)
for (int i = 0; i < n_cb; i++) {
MTLCommandBufferStatus status = (MTLCommandBufferStatus) [command_buffers[i] status];
if (status != MTLCommandBufferStatusCompleted) {
fprintf(stderr, "%s: command buffer %d failed with status %lu\n", __func__, i, status);
GGML_ASSERT(false);
}
}
} }

24
ggml.c
View File

@ -4154,14 +4154,34 @@ void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
ctx->no_alloc = no_alloc; ctx->no_alloc = no_alloc;
} }
void * ggml_get_mem_buffer(struct ggml_context * ctx) { void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
return ctx->mem_buffer; return ctx->mem_buffer;
} }
size_t ggml_get_mem_size(struct ggml_context * ctx) { size_t ggml_get_mem_size(const struct ggml_context * ctx) {
return ctx->mem_size; return ctx->mem_size;
} }
size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
size_t max_size = 0;
struct ggml_object * obj = ctx->objects_begin;
while (obj != NULL) {
struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
const size_t size = ggml_nbytes(tensor);
if (max_size < size) {
max_size = size;
}
obj = obj->next;
}
return max_size;
}
// IMPORTANT: // IMPORTANT:
// when creating "opt" tensors, always save and load the scratch buffer // when creating "opt" tensors, always save and load the scratch buffer
// this is an error prone process, but it is necessary to support inplace // this is an error prone process, but it is necessary to support inplace

5
ggml.h
View File

@ -500,8 +500,9 @@ extern "C" {
GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch); GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc); GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
GGML_API void * ggml_get_mem_buffer(struct ggml_context * ctx); GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
GGML_API size_t ggml_get_mem_size (struct ggml_context * ctx); GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
GGML_API struct ggml_tensor * ggml_new_tensor( GGML_API struct ggml_tensor * ggml_new_tensor(
struct ggml_context * ctx, struct ggml_context * ctx,

View File

@ -2696,16 +2696,21 @@ struct llama_context * llama_init_from_file(
// this allocates all Metal resources and memory buffers // this allocates all Metal resources and memory buffers
ctx->ctx_metal = ggml_metal_init(); ctx->ctx_metal = ggml_metal_init();
void *data_ptr = NULL; void * data_ptr = NULL;
size_t data_size = 0; size_t data_size = 0;
if (params.use_mmap) { if (params.use_mmap) {
data_ptr = ctx->model.mapping->addr; data_ptr = ctx->model.mapping->addr;
data_size= ctx->model.mapping->size; data_size = ctx->model.mapping->size;
} else { } else {
data_ptr = ggml_get_mem_buffer(ctx->model.ctx); data_ptr = ggml_get_mem_buffer(ctx->model.ctx);
data_size= ggml_get_mem_size(ctx->model.ctx); data_size = ggml_get_mem_size (ctx->model.ctx);
} }
const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
printf("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
#define LLAMA_METAL_CHECK_BUF(result) \ #define LLAMA_METAL_CHECK_BUF(result) \
if (!(result)) { \ if (!(result)) { \
fprintf(stderr, "%s: failed to add buffer\n", __func__); \ fprintf(stderr, "%s: failed to add buffer\n", __func__); \
@ -2713,12 +2718,13 @@ struct llama_context * llama_init_from_file(
return NULL; \ return NULL; \
} }
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size)); LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->model.kv_self.buf.addr, ctx->model.kv_self.buf.size)); LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size, 0));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size)); LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->model.kv_self.buf.addr, ctx->model.kv_self.buf.size, 0));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size, 0));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size, 0));
#undef LLAMA_METAL_CHECK_BUF #undef LLAMA_METAL_CHECK_BUF
} }
#endif #endif