mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-24 10:24:35 +00:00
llama : support input embeddings directly (#1910)
* add interface for float input * fixed inpL shape and type * add examples of input floats * add test example for embd input * fixed sampling * add free for context * fixed add end condition for generating * add examples for llava.py * add READMD for llava.py * add READMD for llava.py * add example of PandaGPT * refactor the interface and fixed the styles * add cmake build for embd-input * add cmake build for embd-input * Add MiniGPT-4 example * change the order of the args of llama_eval_internal * fix ci error
This commit is contained in:
parent
9d23589d63
commit
cfa0750bc9
3
.gitignore
vendored
3
.gitignore
vendored
@ -1,5 +1,6 @@
|
|||||||
*.o
|
*.o
|
||||||
*.a
|
*.a
|
||||||
|
*.so
|
||||||
.DS_Store
|
.DS_Store
|
||||||
.build/
|
.build/
|
||||||
.cache/
|
.cache/
|
||||||
@ -39,8 +40,8 @@ models/*
|
|||||||
/vdot
|
/vdot
|
||||||
/server
|
/server
|
||||||
/Pipfile
|
/Pipfile
|
||||||
|
/embd-input-test
|
||||||
/libllama.so
|
/libllama.so
|
||||||
|
|
||||||
build-info.h
|
build-info.h
|
||||||
arm_neon.h
|
arm_neon.h
|
||||||
compile_commands.json
|
compile_commands.json
|
||||||
|
11
Makefile
11
Makefile
@ -1,5 +1,5 @@
|
|||||||
# Define the default target now so that it is always the first target
|
# Define the default target now so that it is always the first target
|
||||||
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch simple
|
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch simple libembdinput.so embd-input-test
|
||||||
|
|
||||||
ifdef LLAMA_BUILD_SERVER
|
ifdef LLAMA_BUILD_SERVER
|
||||||
BUILD_TARGETS += server
|
BUILD_TARGETS += server
|
||||||
@ -272,7 +272,7 @@ libllama.so: llama.o ggml.o $(OBJS)
|
|||||||
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
|
||||||
|
|
||||||
clean:
|
clean:
|
||||||
rm -vf *.o *.so main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server vdot train-text-from-scratch build-info.h
|
rm -vf *.o *.so main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server vdot train-text-from-scratch embd-input-test build-info.h
|
||||||
|
|
||||||
#
|
#
|
||||||
# Examples
|
# Examples
|
||||||
@ -305,6 +305,13 @@ save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.
|
|||||||
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp build-info.h ggml.o llama.o common.o $(OBJS)
|
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
|
libembdinput.so: examples/embd-input/embd-input.h examples/embd-input/embd-input-lib.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||||
|
$(CXX) --shared $(CXXFLAGS) $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
|
|
||||||
|
embd-input-test: libembdinput.so examples/embd-input/embd-input-test.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||||
|
$(CXX) $(CXXFLAGS) $(filter-out %.so,$(filter-out %.h,$(filter-out %.hpp,$^))) -o $@ $(LDFLAGS) -L. -lembdinput
|
||||||
|
|
||||||
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp build-info.h ggml.o llama.o $(OBJS)
|
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp build-info.h ggml.o llama.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
|
@ -113,6 +113,10 @@ with open(output_path, "wb") as fout:
|
|||||||
|
|
||||||
write_file_header(fout, params)
|
write_file_header(fout, params)
|
||||||
for k, v in model.items():
|
for k, v in model.items():
|
||||||
|
if k.endswith(".default.weight"):
|
||||||
|
k = k.replace(".default.weight", ".weight")
|
||||||
|
if k in ["llama_proj.weight", "llama_proj.bias"]:
|
||||||
|
continue
|
||||||
if k.endswith("lora_A.weight"):
|
if k.endswith("lora_A.weight"):
|
||||||
if v.dtype != torch.float16 and v.dtype != torch.float32:
|
if v.dtype != torch.float16 and v.dtype != torch.float32:
|
||||||
v = v.float()
|
v = v.float()
|
||||||
@ -120,7 +124,7 @@ with open(output_path, "wb") as fout:
|
|||||||
else:
|
else:
|
||||||
v = v.float()
|
v = v.float()
|
||||||
|
|
||||||
t = v.numpy()
|
t = v.detach().numpy()
|
||||||
tname = translate_tensor_name(k)
|
tname = translate_tensor_name(k)
|
||||||
print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
|
print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
|
||||||
write_tensor_header(fout, tname, t.shape, t.dtype)
|
write_tensor_header(fout, tname, t.shape, t.dtype)
|
||||||
|
@ -39,6 +39,7 @@ else()
|
|||||||
add_subdirectory(baby-llama)
|
add_subdirectory(baby-llama)
|
||||||
add_subdirectory(train-text-from-scratch)
|
add_subdirectory(train-text-from-scratch)
|
||||||
add_subdirectory(simple)
|
add_subdirectory(simple)
|
||||||
|
add_subdirectory(embd-input)
|
||||||
if (LLAMA_METAL)
|
if (LLAMA_METAL)
|
||||||
add_subdirectory(metal)
|
add_subdirectory(metal)
|
||||||
endif()
|
endif()
|
||||||
|
4
examples/embd-input/.gitignore
vendored
Normal file
4
examples/embd-input/.gitignore
vendored
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
PandaGPT
|
||||||
|
MiniGPT-4
|
||||||
|
*.pth
|
||||||
|
|
15
examples/embd-input/CMakeLists.txt
Normal file
15
examples/embd-input/CMakeLists.txt
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
set(TARGET embdinput)
|
||||||
|
add_library(${TARGET} embd-input-lib.cpp embd-input.h)
|
||||||
|
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||||
|
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||||
|
if(TARGET BUILD_INFO)
|
||||||
|
add_dependencies(${TARGET} BUILD_INFO)
|
||||||
|
endif()
|
||||||
|
|
||||||
|
set(TARGET embd-input-test)
|
||||||
|
add_executable(${TARGET} embd-input-test.cpp)
|
||||||
|
target_link_libraries(${TARGET} PRIVATE common llama embdinput ${CMAKE_THREAD_LIBS_INIT})
|
||||||
|
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||||
|
if(TARGET BUILD_INFO)
|
||||||
|
add_dependencies(${TARGET} BUILD_INFO)
|
||||||
|
endif()
|
63
examples/embd-input/README.md
Normal file
63
examples/embd-input/README.md
Normal file
@ -0,0 +1,63 @@
|
|||||||
|
### Examples for input embedding directly
|
||||||
|
|
||||||
|
## Requirement
|
||||||
|
build `libembdinput.so`
|
||||||
|
run the following comman in main dir (../../).
|
||||||
|
```
|
||||||
|
make
|
||||||
|
```
|
||||||
|
|
||||||
|
## [LLaVA](https://github.com/haotian-liu/LLaVA/) example (llava.py)
|
||||||
|
|
||||||
|
1. Obtian LLaVA model (following https://github.com/haotian-liu/LLaVA/ , use https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1/).
|
||||||
|
2. Convert it to ggml format.
|
||||||
|
3. `llava_projection.pth` is [pytorch_model-00003-of-00003.bin](https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1/blob/main/pytorch_model-00003-of-00003.bin).
|
||||||
|
|
||||||
|
```
|
||||||
|
import torch
|
||||||
|
|
||||||
|
bin_path = "../LLaVA-13b-delta-v1-1/pytorch_model-00003-of-00003.bin"
|
||||||
|
pth_path = "./examples/embd_input/llava_projection.pth"
|
||||||
|
|
||||||
|
dic = torch.load(bin_path)
|
||||||
|
used_key = ["model.mm_projector.weight","model.mm_projector.bias"]
|
||||||
|
torch.save({k: dic[k] for k in used_key}, pth_path)
|
||||||
|
```
|
||||||
|
4. Check the path of LLaVA model and `llava_projection.pth` in `llava.py`.
|
||||||
|
|
||||||
|
|
||||||
|
## [PandaGPT](https://github.com/yxuansu/PandaGPT) example (panda_gpt.py)
|
||||||
|
|
||||||
|
1. Obtian PandaGPT lora model from https://github.com/yxuansu/PandaGPT. Rename the file to `adapter_model.bin`. Use [convert-lora-to-ggml.py](../../convert-lora-to-ggml.py) to convert it to ggml format.
|
||||||
|
The `adapter_config.json` is
|
||||||
|
```
|
||||||
|
{
|
||||||
|
"peft_type": "LORA",
|
||||||
|
"fan_in_fan_out": false,
|
||||||
|
"bias": null,
|
||||||
|
"modules_to_save": null,
|
||||||
|
"r": 32,
|
||||||
|
"lora_alpha": 32,
|
||||||
|
"lora_dropout": 0.1,
|
||||||
|
"target_modules": ["q_proj", "k_proj", "v_proj", "o_proj"]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
2. Papare the `vicuna` v0 model.
|
||||||
|
3. Obtain the [ImageBind](https://dl.fbaipublicfiles.com/imagebind/imagebind_huge.pth) model.
|
||||||
|
4. Clone the PandaGPT source.
|
||||||
|
```
|
||||||
|
git clone https://github.com/yxuansu/PandaGPT
|
||||||
|
```
|
||||||
|
5. Install the requirement of PandaGPT.
|
||||||
|
6. Check the path of PandaGPT source, ImageBind model, lora model and vicuna model in panda_gpt.py.
|
||||||
|
|
||||||
|
## [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4/) example (minigpt4.py)
|
||||||
|
|
||||||
|
1. Obtain MiniGPT-4 model from https://github.com/Vision-CAIR/MiniGPT-4/ and put it in `embd-input`.
|
||||||
|
2. Clone the MiniGPT-4 source.
|
||||||
|
```
|
||||||
|
git clone https://github.com/Vision-CAIR/MiniGPT-4/
|
||||||
|
```
|
||||||
|
3. Install the requirement of PandaGPT.
|
||||||
|
4. Papare the `vicuna` v0 model.
|
||||||
|
5. Check the path of MiniGPT-4 source, MiniGPT-4 model and vicuna model in `minigpt4.py`.
|
220
examples/embd-input/embd-input-lib.cpp
Normal file
220
examples/embd-input/embd-input-lib.cpp
Normal file
@ -0,0 +1,220 @@
|
|||||||
|
// Defines sigaction on msys:
|
||||||
|
#ifndef _GNU_SOURCE
|
||||||
|
#define _GNU_SOURCE
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#include "embd-input.h"
|
||||||
|
|
||||||
|
#include <cassert>
|
||||||
|
#include <cinttypes>
|
||||||
|
#include <cmath>
|
||||||
|
#include <cstdio>
|
||||||
|
#include <cstring>
|
||||||
|
#include <ctime>
|
||||||
|
#include <fstream>
|
||||||
|
#include <iostream>
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
static llama_context ** g_ctx;
|
||||||
|
|
||||||
|
extern "C" {
|
||||||
|
|
||||||
|
struct MyModel* create_mymodel(int argc, char ** argv) {
|
||||||
|
gpt_params params;
|
||||||
|
|
||||||
|
if (gpt_params_parse(argc, argv, params) == false) {
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||||
|
|
||||||
|
if (params.seed < 0) {
|
||||||
|
params.seed = time(NULL);
|
||||||
|
}
|
||||||
|
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
|
||||||
|
|
||||||
|
llama_init_backend(params.numa);
|
||||||
|
|
||||||
|
llama_model * model;
|
||||||
|
llama_context * ctx;
|
||||||
|
|
||||||
|
g_ctx = &ctx;
|
||||||
|
|
||||||
|
// load the model and apply lora adapter, if any
|
||||||
|
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||||
|
if (model == NULL) {
|
||||||
|
fprintf(stderr, "%s: error: unable to load model\n", __func__);
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
// print system information
|
||||||
|
{
|
||||||
|
fprintf(stderr, "\n");
|
||||||
|
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
|
||||||
|
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
||||||
|
}
|
||||||
|
struct MyModel * ret = new MyModel();
|
||||||
|
ret->ctx = ctx;
|
||||||
|
ret->params = params;
|
||||||
|
ret->n_past = 0;
|
||||||
|
// printf("ctx: %d\n", ret->ctx);
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
void free_mymodel(struct MyModel * mymodel) {
|
||||||
|
llama_context * ctx = mymodel->ctx;
|
||||||
|
llama_print_timings(ctx);
|
||||||
|
llama_free(ctx);
|
||||||
|
delete mymodel;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
bool eval_float(void * model, float * input, int N){
|
||||||
|
MyModel * mymodel = (MyModel*)model;
|
||||||
|
llama_context * ctx = mymodel->ctx;
|
||||||
|
gpt_params params = mymodel->params;
|
||||||
|
int n_emb = llama_n_embd(ctx);
|
||||||
|
int n_past = mymodel->n_past;
|
||||||
|
int n_batch = N; // params.n_batch;
|
||||||
|
|
||||||
|
for (int i = 0; i < (int) N; i += n_batch) {
|
||||||
|
int n_eval = (int) N - i;
|
||||||
|
if (n_eval > n_batch) {
|
||||||
|
n_eval = n_batch;
|
||||||
|
}
|
||||||
|
if (llama_eval_embd(ctx, (input+i*n_emb), n_eval, n_past, params.n_threads)) {
|
||||||
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
n_past += n_eval;
|
||||||
|
}
|
||||||
|
mymodel->n_past = n_past;
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool eval_tokens(void * model, std::vector<llama_token> tokens) {
|
||||||
|
MyModel * mymodel = (MyModel* )model;
|
||||||
|
llama_context * ctx;
|
||||||
|
ctx = mymodel->ctx;
|
||||||
|
gpt_params params = mymodel->params;
|
||||||
|
int n_past = mymodel->n_past;
|
||||||
|
for (int i = 0; i < (int) tokens.size(); i += params.n_batch) {
|
||||||
|
int n_eval = (int) tokens.size() - i;
|
||||||
|
if (n_eval > params.n_batch) {
|
||||||
|
n_eval = params.n_batch;
|
||||||
|
}
|
||||||
|
if (llama_eval(ctx, &tokens[i], n_eval, n_past, params.n_threads)) {
|
||||||
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
n_past += n_eval;
|
||||||
|
}
|
||||||
|
mymodel->n_past = n_past;
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool eval_id(struct MyModel* mymodel, int id) {
|
||||||
|
std::vector<llama_token> tokens;
|
||||||
|
tokens.push_back(id);
|
||||||
|
return eval_tokens(mymodel, tokens);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool eval_string(struct MyModel * mymodel,const char* str){
|
||||||
|
llama_context * ctx = mymodel->ctx;
|
||||||
|
std::string str2 = str;
|
||||||
|
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx, str2, true);
|
||||||
|
eval_tokens(mymodel, embd_inp);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_token sampling_id(struct MyModel* mymodel) {
|
||||||
|
llama_context* ctx = mymodel->ctx;
|
||||||
|
gpt_params params = mymodel->params;
|
||||||
|
// int n_ctx = llama_n_ctx(ctx);
|
||||||
|
|
||||||
|
// out of user input, sample next token
|
||||||
|
const float temp = params.temp;
|
||||||
|
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
|
||||||
|
const float top_p = params.top_p;
|
||||||
|
const float tfs_z = params.tfs_z;
|
||||||
|
const float typical_p = params.typical_p;
|
||||||
|
// const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
|
||||||
|
// const float repeat_penalty = params.repeat_penalty;
|
||||||
|
// const float alpha_presence = params.presence_penalty;
|
||||||
|
// const float alpha_frequency = params.frequency_penalty;
|
||||||
|
const int mirostat = params.mirostat;
|
||||||
|
const float mirostat_tau = params.mirostat_tau;
|
||||||
|
const float mirostat_eta = params.mirostat_eta;
|
||||||
|
// const bool penalize_nl = params.penalize_nl;
|
||||||
|
|
||||||
|
llama_token id = 0;
|
||||||
|
{
|
||||||
|
auto logits = llama_get_logits(ctx);
|
||||||
|
auto n_vocab = llama_n_vocab(ctx);
|
||||||
|
|
||||||
|
// Apply params.logit_bias map
|
||||||
|
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
|
||||||
|
logits[it->first] += it->second;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<llama_token_data> candidates;
|
||||||
|
candidates.reserve(n_vocab);
|
||||||
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||||
|
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||||
|
|
||||||
|
// TODO: Apply penalties
|
||||||
|
// float nl_logit = logits[llama_token_nl()];
|
||||||
|
// auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
|
||||||
|
// llama_sample_repetition_penalty(ctx, &candidates_p,
|
||||||
|
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
||||||
|
// last_n_repeat, repeat_penalty);
|
||||||
|
// llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
|
||||||
|
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
||||||
|
// last_n_repeat, alpha_frequency, alpha_presence);
|
||||||
|
// if (!penalize_nl) {
|
||||||
|
// logits[llama_token_nl()] = nl_logit;
|
||||||
|
// }
|
||||||
|
|
||||||
|
if (temp <= 0) {
|
||||||
|
// Greedy sampling
|
||||||
|
id = llama_sample_token_greedy(ctx, &candidates_p);
|
||||||
|
} else {
|
||||||
|
if (mirostat == 1) {
|
||||||
|
static float mirostat_mu = 2.0f * mirostat_tau;
|
||||||
|
const int mirostat_m = 100;
|
||||||
|
llama_sample_temperature(ctx, &candidates_p, temp);
|
||||||
|
id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
|
||||||
|
} else if (mirostat == 2) {
|
||||||
|
static float mirostat_mu = 2.0f * mirostat_tau;
|
||||||
|
llama_sample_temperature(ctx, &candidates_p, temp);
|
||||||
|
id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
||||||
|
} else {
|
||||||
|
// Temperature sampling
|
||||||
|
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
|
||||||
|
llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
|
||||||
|
llama_sample_typical(ctx, &candidates_p, typical_p, 1);
|
||||||
|
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
|
||||||
|
llama_sample_temperature(ctx, &candidates_p, temp);
|
||||||
|
id = llama_sample_token(ctx, &candidates_p);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return id;
|
||||||
|
}
|
||||||
|
|
||||||
|
const char * sampling(struct MyModel * mymodel) {
|
||||||
|
llama_context * ctx = mymodel->ctx;
|
||||||
|
int id = sampling_id(mymodel);
|
||||||
|
std::string ret;
|
||||||
|
if (id == llama_token_eos()) ret = "</s>";
|
||||||
|
else ret = llama_token_to_str(ctx, id);
|
||||||
|
eval_id(mymodel, id);
|
||||||
|
return ret.c_str();
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
35
examples/embd-input/embd-input-test.cpp
Normal file
35
examples/embd-input/embd-input-test.cpp
Normal file
@ -0,0 +1,35 @@
|
|||||||
|
#include "embd-input.h"
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <random>
|
||||||
|
#include <string.h>
|
||||||
|
|
||||||
|
int main(int argc, char** argv) {
|
||||||
|
|
||||||
|
auto mymodel = create_mymodel(argc, argv);
|
||||||
|
int N = 10;
|
||||||
|
int max_tgt_len = 500;
|
||||||
|
int n_embd = llama_n_embd(mymodel->ctx);
|
||||||
|
|
||||||
|
// add random float embd to test evaluation
|
||||||
|
float * data = new float[N*n_embd];
|
||||||
|
std::default_random_engine e;
|
||||||
|
std::uniform_real_distribution<float> u(0,1);
|
||||||
|
for (int i=0;i<N*n_embd;i++) {
|
||||||
|
data[i] = u(e);
|
||||||
|
}
|
||||||
|
|
||||||
|
eval_string(mymodel, "user: what is the color of the flag of UN?");
|
||||||
|
eval_float(mymodel, data, N);
|
||||||
|
eval_string(mymodel, "assistant:");
|
||||||
|
eval_string(mymodel, mymodel->params.prompt.c_str());
|
||||||
|
const char* tmp;
|
||||||
|
for (int i=0; i<max_tgt_len; i++) {
|
||||||
|
tmp = sampling(mymodel);
|
||||||
|
if (strcmp(tmp, "</s>")==0) break;
|
||||||
|
printf("%s", tmp);
|
||||||
|
fflush(stdout);
|
||||||
|
}
|
||||||
|
printf("\n");
|
||||||
|
free_mymodel(mymodel);
|
||||||
|
return 0;
|
||||||
|
}
|
30
examples/embd-input/embd-input.h
Normal file
30
examples/embd-input/embd-input.h
Normal file
@ -0,0 +1,30 @@
|
|||||||
|
#ifndef _EMBD_INPUT_H_
|
||||||
|
#define _EMBD_INPUT_H_ 1
|
||||||
|
|
||||||
|
#include "common.h"
|
||||||
|
#include "llama.h"
|
||||||
|
#include "build-info.h"
|
||||||
|
|
||||||
|
|
||||||
|
extern "C" {
|
||||||
|
|
||||||
|
typedef struct MyModel {
|
||||||
|
llama_context* ctx;
|
||||||
|
gpt_params params;
|
||||||
|
int n_past = 0;
|
||||||
|
} MyModel;
|
||||||
|
|
||||||
|
|
||||||
|
struct MyModel* create_mymodel(int argc, char ** argv);
|
||||||
|
|
||||||
|
bool eval_float(void* model, float* input, int N);
|
||||||
|
bool eval_tokens(void* model, std::vector<llama_token> tokens);
|
||||||
|
bool eval_id(struct MyModel* mymodel, int id);
|
||||||
|
bool eval_string(struct MyModel* mymodel, const char* str);
|
||||||
|
const char* sampling(struct MyModel* mymodel);
|
||||||
|
llama_token sampling_id(struct MyModel* mymodel);
|
||||||
|
void free_mymodel(struct MyModel* mymodel);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
71
examples/embd-input/embd_input.py
Normal file
71
examples/embd-input/embd_input.py
Normal file
@ -0,0 +1,71 @@
|
|||||||
|
import ctypes
|
||||||
|
from ctypes import cdll, c_char_p, c_void_p, POINTER, c_float, c_int
|
||||||
|
import numpy as np
|
||||||
|
import os
|
||||||
|
|
||||||
|
libc = cdll.LoadLibrary("./libembdinput.so")
|
||||||
|
libc.sampling.restype=c_char_p
|
||||||
|
libc.create_mymodel.restype=c_void_p
|
||||||
|
libc.eval_string.argtypes=[c_void_p, c_char_p]
|
||||||
|
libc.sampling.argtypes=[c_void_p]
|
||||||
|
libc.eval_float.argtypes=[c_void_p, POINTER(c_float), c_int]
|
||||||
|
|
||||||
|
|
||||||
|
class MyModel:
|
||||||
|
def __init__(self, args):
|
||||||
|
argc = len(args)
|
||||||
|
c_str = [c_char_p(i.encode()) for i in args]
|
||||||
|
args_c = (c_char_p * argc)(*c_str)
|
||||||
|
self.model = c_void_p(libc.create_mymodel(argc, args_c))
|
||||||
|
self.max_tgt_len = 512
|
||||||
|
self.print_string_eval = True
|
||||||
|
|
||||||
|
def __del__(self):
|
||||||
|
libc.free_mymodel(self.model)
|
||||||
|
|
||||||
|
def eval_float(self, x):
|
||||||
|
libc.eval_float(self.model, x.astype(np.float32).ctypes.data_as(POINTER(c_float)), x.shape[1])
|
||||||
|
|
||||||
|
def eval_string(self, x):
|
||||||
|
libc.eval_string(self.model, x.encode()) # c_char_p(x.encode()))
|
||||||
|
if self.print_string_eval:
|
||||||
|
print(x)
|
||||||
|
|
||||||
|
def eval_token(self, x):
|
||||||
|
libc.eval_id(self.model, x)
|
||||||
|
|
||||||
|
def sampling(self):
|
||||||
|
s = libc.sampling(self.model)
|
||||||
|
return s
|
||||||
|
|
||||||
|
def stream_generate(self, end="</s>"):
|
||||||
|
ret = b""
|
||||||
|
end = end.encode()
|
||||||
|
for _ in range(self.max_tgt_len):
|
||||||
|
tmp = self.sampling()
|
||||||
|
ret += tmp
|
||||||
|
yield tmp
|
||||||
|
if ret.endswith(end):
|
||||||
|
break
|
||||||
|
|
||||||
|
def generate_with_print(self, end="</s>"):
|
||||||
|
ret = b""
|
||||||
|
for i in self.stream_generate(end=end):
|
||||||
|
ret += i
|
||||||
|
print(i.decode(errors="replace"), end="", flush=True)
|
||||||
|
print("")
|
||||||
|
return ret.decode(errors="replace")
|
||||||
|
|
||||||
|
|
||||||
|
def generate(self, end="</s>"):
|
||||||
|
text = b"".join(self.stream_generate(end=end))
|
||||||
|
return text.decode(errors="replace")
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
model = MyModel(["main", "--model", "../llama.cpp/models/ggml-vic13b-q4_1.bin", "-c", "2048"])
|
||||||
|
model.eval_string("""user: what is the color of the flag of UN?""")
|
||||||
|
x = np.random.random((5120,10))# , dtype=np.float32)
|
||||||
|
model.eval_float(x)
|
||||||
|
model.eval_string("""assistant:""")
|
||||||
|
for i in model.generate():
|
||||||
|
print(i.decode(errors="replace"), end="", flush=True)
|
70
examples/embd-input/llava.py
Normal file
70
examples/embd-input/llava.py
Normal file
@ -0,0 +1,70 @@
|
|||||||
|
import sys
|
||||||
|
import os
|
||||||
|
sys.path.insert(0, os.path.dirname(__file__))
|
||||||
|
from embd_input import MyModel
|
||||||
|
import numpy as np
|
||||||
|
from torch import nn
|
||||||
|
import torch
|
||||||
|
from transformers import CLIPVisionModel, CLIPImageProcessor
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
|
# model parameters from 'liuhaotian/LLaVA-13b-delta-v1-1'
|
||||||
|
vision_tower = "openai/clip-vit-large-patch14"
|
||||||
|
select_hidden_state_layer = -2
|
||||||
|
# (vision_config.image_size // vision_config.patch_size) ** 2
|
||||||
|
image_token_len = (224//14)**2
|
||||||
|
|
||||||
|
class Llava:
|
||||||
|
def __init__(self, args):
|
||||||
|
self.image_processor = CLIPImageProcessor.from_pretrained(vision_tower)
|
||||||
|
self.vision_tower = CLIPVisionModel.from_pretrained(vision_tower)
|
||||||
|
self.mm_projector = nn.Linear(1024, 5120)
|
||||||
|
self.model = MyModel(["main", *args])
|
||||||
|
|
||||||
|
def load_projection(self, path):
|
||||||
|
state = torch.load(path)
|
||||||
|
self.mm_projector.load_state_dict({
|
||||||
|
"weight": state["model.mm_projector.weight"],
|
||||||
|
"bias": state["model.mm_projector.bias"]})
|
||||||
|
|
||||||
|
def chat(self, question):
|
||||||
|
self.model.eval_string("user: ")
|
||||||
|
self.model.eval_string(question)
|
||||||
|
self.model.eval_string("\nassistant: ")
|
||||||
|
return self.model.generate_with_print()
|
||||||
|
|
||||||
|
def chat_with_image(self, image, question):
|
||||||
|
with torch.no_grad():
|
||||||
|
embd_image = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
||||||
|
image_forward_out = self.vision_tower(embd_image.unsqueeze(0), output_hidden_states=True)
|
||||||
|
select_hidden_state = image_forward_out.hidden_states[select_hidden_state_layer]
|
||||||
|
image_feature = select_hidden_state[:, 1:]
|
||||||
|
embd_image = self.mm_projector(image_feature)
|
||||||
|
embd_image = embd_image.cpu().numpy()[0]
|
||||||
|
self.model.eval_string("user: ")
|
||||||
|
self.model.eval_token(32003-2) # im_start
|
||||||
|
self.model.eval_float(embd_image.T)
|
||||||
|
for i in range(image_token_len-embd_image.shape[0]):
|
||||||
|
self.model.eval_token(32003-3) # im_patch
|
||||||
|
self.model.eval_token(32003-1) # im_end
|
||||||
|
self.model.eval_string(question)
|
||||||
|
self.model.eval_string("\nassistant: ")
|
||||||
|
return self.model.generate_with_print()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__=="__main__":
|
||||||
|
# model form liuhaotian/LLaVA-13b-delta-v1-1
|
||||||
|
a = Llava(["--model", "./models/ggml-llava-13b-v1.1.bin", "-c", "2048"])
|
||||||
|
# Extract from https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1/blob/main/pytorch_model-00003-of-00003.bin.
|
||||||
|
# Also here can use pytorch_model-00003-of-00003.bin directly.
|
||||||
|
a.load_projection(os.path.join(
|
||||||
|
os.path.dirname(__file__) ,
|
||||||
|
"llava_projetion.pth"))
|
||||||
|
respose = a.chat_with_image(
|
||||||
|
Image.open("./media/llama1-logo.png").convert('RGB'),
|
||||||
|
"what is the text in the picture?")
|
||||||
|
respose
|
||||||
|
a.chat("what is the color of it?")
|
||||||
|
|
||||||
|
|
||||||
|
|
128
examples/embd-input/minigpt4.py
Normal file
128
examples/embd-input/minigpt4.py
Normal file
@ -0,0 +1,128 @@
|
|||||||
|
import sys
|
||||||
|
import os
|
||||||
|
sys.path.insert(0, os.path.dirname(__file__))
|
||||||
|
from embd_input import MyModel
|
||||||
|
import numpy as np
|
||||||
|
from torch import nn
|
||||||
|
import torch
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
|
minigpt4_path = os.path.join(os.path.dirname(__file__), "MiniGPT-4")
|
||||||
|
sys.path.insert(0, minigpt4_path)
|
||||||
|
from minigpt4.models.blip2 import Blip2Base
|
||||||
|
from minigpt4.processors.blip_processors import Blip2ImageEvalProcessor
|
||||||
|
|
||||||
|
|
||||||
|
class MiniGPT4(Blip2Base):
|
||||||
|
"""
|
||||||
|
MiniGPT4 model from https://github.com/Vision-CAIR/MiniGPT-4
|
||||||
|
"""
|
||||||
|
def __init__(self,
|
||||||
|
args,
|
||||||
|
vit_model="eva_clip_g",
|
||||||
|
q_former_model="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth",
|
||||||
|
img_size=224,
|
||||||
|
drop_path_rate=0,
|
||||||
|
use_grad_checkpoint=False,
|
||||||
|
vit_precision="fp32",
|
||||||
|
freeze_vit=True,
|
||||||
|
freeze_qformer=True,
|
||||||
|
num_query_token=32,
|
||||||
|
llama_model="",
|
||||||
|
prompt_path="",
|
||||||
|
prompt_template="",
|
||||||
|
max_txt_len=32,
|
||||||
|
end_sym='\n',
|
||||||
|
low_resource=False, # use 8 bit and put vit in cpu
|
||||||
|
device_8bit=0
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.img_size = img_size
|
||||||
|
self.low_resource = low_resource
|
||||||
|
self.preprocessor = Blip2ImageEvalProcessor(img_size)
|
||||||
|
|
||||||
|
print('Loading VIT')
|
||||||
|
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
|
||||||
|
vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision
|
||||||
|
)
|
||||||
|
print('Loading VIT Done')
|
||||||
|
print('Loading Q-Former')
|
||||||
|
self.Qformer, self.query_tokens = self.init_Qformer(
|
||||||
|
num_query_token, self.visual_encoder.num_features
|
||||||
|
)
|
||||||
|
self.Qformer.cls = None
|
||||||
|
self.Qformer.bert.embeddings.word_embeddings = None
|
||||||
|
self.Qformer.bert.embeddings.position_embeddings = None
|
||||||
|
for layer in self.Qformer.bert.encoder.layer:
|
||||||
|
layer.output = None
|
||||||
|
layer.intermediate = None
|
||||||
|
self.load_from_pretrained(url_or_filename=q_former_model)
|
||||||
|
print('Loading Q-Former Done')
|
||||||
|
self.llama_proj = nn.Linear(
|
||||||
|
self.Qformer.config.hidden_size, 5120 # self.llama_model.config.hidden_size
|
||||||
|
)
|
||||||
|
self.max_txt_len = max_txt_len
|
||||||
|
self.end_sym = end_sym
|
||||||
|
self.model = MyModel(["main", *args])
|
||||||
|
# system promt
|
||||||
|
self.model.eval_string("Give the following image: <Img>ImageContent</Img>. "
|
||||||
|
"You will be able to see the image once I provide it to you. Please answer my questions."
|
||||||
|
"###")
|
||||||
|
|
||||||
|
def encode_img(self, image):
|
||||||
|
image = self.preprocessor(image)
|
||||||
|
image = image.unsqueeze(0)
|
||||||
|
device = image.device
|
||||||
|
if self.low_resource:
|
||||||
|
self.vit_to_cpu()
|
||||||
|
image = image.to("cpu")
|
||||||
|
|
||||||
|
with self.maybe_autocast():
|
||||||
|
image_embeds = self.ln_vision(self.visual_encoder(image)).to(device)
|
||||||
|
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device)
|
||||||
|
|
||||||
|
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
||||||
|
query_output = self.Qformer.bert(
|
||||||
|
query_embeds=query_tokens,
|
||||||
|
encoder_hidden_states=image_embeds,
|
||||||
|
encoder_attention_mask=image_atts,
|
||||||
|
return_dict=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
inputs_llama = self.llama_proj(query_output.last_hidden_state)
|
||||||
|
# atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device)
|
||||||
|
return inputs_llama
|
||||||
|
|
||||||
|
def load_projection(self, path):
|
||||||
|
state = torch.load(path)["model"]
|
||||||
|
self.llama_proj.load_state_dict({
|
||||||
|
"weight": state["llama_proj.weight"],
|
||||||
|
"bias": state["llama_proj.bias"]})
|
||||||
|
|
||||||
|
def chat(self, question):
|
||||||
|
self.model.eval_string("Human: ")
|
||||||
|
self.model.eval_string(question)
|
||||||
|
self.model.eval_string("\n### Assistant:")
|
||||||
|
return self.model.generate_with_print(end="###")
|
||||||
|
|
||||||
|
def chat_with_image(self, image, question):
|
||||||
|
with torch.no_grad():
|
||||||
|
embd_image = self.encode_img(image)
|
||||||
|
embd_image = embd_image.cpu().numpy()[0]
|
||||||
|
self.model.eval_string("Human: <Img>")
|
||||||
|
self.model.eval_float(embd_image.T)
|
||||||
|
self.model.eval_string("</Img> ")
|
||||||
|
self.model.eval_string(question)
|
||||||
|
self.model.eval_string("\n### Assistant:")
|
||||||
|
return self.model.generate_with_print(end="###")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__=="__main__":
|
||||||
|
a = MiniGPT4(["--model", "./models/ggml-vicuna-13b-v0-q4_1.bin", "-c", "2048"])
|
||||||
|
a.load_projection(os.path.join(
|
||||||
|
os.path.dirname(__file__) ,
|
||||||
|
"pretrained_minigpt4.pth"))
|
||||||
|
respose = a.chat_with_image(
|
||||||
|
Image.open("./media/llama1-logo.png").convert('RGB'),
|
||||||
|
"what is the text in the picture?")
|
||||||
|
a.chat("what is the color of it?")
|
98
examples/embd-input/panda_gpt.py
Normal file
98
examples/embd-input/panda_gpt.py
Normal file
@ -0,0 +1,98 @@
|
|||||||
|
import sys
|
||||||
|
import os
|
||||||
|
sys.path.insert(0, os.path.dirname(__file__))
|
||||||
|
from embd_input import MyModel
|
||||||
|
import numpy as np
|
||||||
|
from torch import nn
|
||||||
|
import torch
|
||||||
|
|
||||||
|
# use PandaGPT path
|
||||||
|
panda_gpt_path = os.path.join(os.path.dirname(__file__), "PandaGPT")
|
||||||
|
imagebind_ckpt_path = "./models/panda_gpt/"
|
||||||
|
|
||||||
|
sys.path.insert(0, os.path.join(panda_gpt_path,"code","model"))
|
||||||
|
from ImageBind.models import imagebind_model
|
||||||
|
from ImageBind import data
|
||||||
|
|
||||||
|
ModalityType = imagebind_model.ModalityType
|
||||||
|
max_tgt_len = 400
|
||||||
|
|
||||||
|
class PandaGPT:
|
||||||
|
def __init__(self, args):
|
||||||
|
self.visual_encoder,_ = imagebind_model.imagebind_huge(pretrained=True, store_path=imagebind_ckpt_path)
|
||||||
|
self.visual_encoder.eval()
|
||||||
|
self.llama_proj = nn.Linear(1024, 5120) # self.visual_hidden_size, 5120)
|
||||||
|
self.max_tgt_len = max_tgt_len
|
||||||
|
self.model = MyModel(["main", *args])
|
||||||
|
self.generated_text = ""
|
||||||
|
self.device = "cpu"
|
||||||
|
|
||||||
|
def load_projection(self, path):
|
||||||
|
state = torch.load(path, map_location="cpu")
|
||||||
|
self.llama_proj.load_state_dict({
|
||||||
|
"weight": state["llama_proj.weight"],
|
||||||
|
"bias": state["llama_proj.bias"]})
|
||||||
|
|
||||||
|
def eval_inputs(self, inputs):
|
||||||
|
self.model.eval_string("<Img>")
|
||||||
|
embds = self.extract_multimoal_feature(inputs)
|
||||||
|
for i in embds:
|
||||||
|
self.model.eval_float(i.T)
|
||||||
|
self.model.eval_string("</Img> ")
|
||||||
|
|
||||||
|
def chat(self, question):
|
||||||
|
return self.chat_with_image(None, question)
|
||||||
|
|
||||||
|
def chat_with_image(self, inputs, question):
|
||||||
|
if self.generated_text == "":
|
||||||
|
self.model.eval_string("###")
|
||||||
|
self.model.eval_string(" Human: ")
|
||||||
|
if inputs:
|
||||||
|
self.eval_inputs(inputs)
|
||||||
|
self.model.eval_string(question)
|
||||||
|
self.model.eval_string("\n### Assistant:")
|
||||||
|
ret = self.model.generate_with_print(end="###")
|
||||||
|
self.generated_text += ret
|
||||||
|
return ret
|
||||||
|
|
||||||
|
def extract_multimoal_feature(self, inputs):
|
||||||
|
features = []
|
||||||
|
for key in ["image", "audio", "video", "thermal"]:
|
||||||
|
if key + "_paths" in inputs:
|
||||||
|
embeds = self.encode_data(key, inputs[key+"_paths"])
|
||||||
|
features.append(embeds)
|
||||||
|
return features
|
||||||
|
|
||||||
|
def encode_data(self, data_type, data_paths):
|
||||||
|
|
||||||
|
type_map = {
|
||||||
|
"image": ModalityType.VISION,
|
||||||
|
"audio": ModalityType.AUDIO,
|
||||||
|
"video": ModalityType.VISION,
|
||||||
|
"thermal": ModalityType.THERMAL,
|
||||||
|
}
|
||||||
|
load_map = {
|
||||||
|
"image": data.load_and_transform_vision_data,
|
||||||
|
"audio": data.load_and_transform_audio_data,
|
||||||
|
"video": data.load_and_transform_video_data,
|
||||||
|
"thermal": data.load_and_transform_thermal_data
|
||||||
|
}
|
||||||
|
|
||||||
|
load_function = load_map[data_type]
|
||||||
|
key = type_map[data_type]
|
||||||
|
|
||||||
|
inputs = {key: load_function(data_paths, self.device)}
|
||||||
|
with torch.no_grad():
|
||||||
|
embeddings = self.visual_encoder(inputs)
|
||||||
|
embeds = embeddings[key]
|
||||||
|
embeds = self.llama_proj(embeds).cpu().numpy()
|
||||||
|
return embeds
|
||||||
|
|
||||||
|
|
||||||
|
if __name__=="__main__":
|
||||||
|
a = PandaGPT(["--model", "./models/ggml-vicuna-13b-v0-q4_1.bin", "-c", "2048", "--lora", "./models/panda_gpt/ggml-adapter-model.bin","--temp", "0"])
|
||||||
|
a.load_projection("./models/panda_gpt/adapter_model.bin")
|
||||||
|
a.chat_with_image(
|
||||||
|
{"image_paths": ["./media/llama1-logo.png"]},
|
||||||
|
"what is the text in the picture? 'llama' or 'lambda'?")
|
||||||
|
a.chat("what is the color of it?")
|
70
llama.cpp
70
llama.cpp
@ -1369,22 +1369,26 @@ static bool llama_model_load(
|
|||||||
|
|
||||||
// evaluate the transformer
|
// evaluate the transformer
|
||||||
//
|
//
|
||||||
// - lctx: llama context
|
// - lctx: llama context
|
||||||
// - tokens: new batch of tokens to process
|
// - tokens: new batch of tokens to process
|
||||||
// - n_past: the context size so far
|
// - embd embeddings input
|
||||||
// - n_threads: number of threads to use
|
// - n_tokens number of tokens
|
||||||
// - cgraph_fname: filename of the exported computation graph
|
// - n_past: the context size so far
|
||||||
|
// - n_threads: number of threads to use
|
||||||
//
|
//
|
||||||
static bool llama_eval_internal(
|
static bool llama_eval_internal(
|
||||||
llama_context & lctx,
|
llama_context & lctx,
|
||||||
const llama_token * tokens,
|
const llama_token * tokens,
|
||||||
const int n_tokens,
|
const float * embd,
|
||||||
const int n_past,
|
const int n_tokens,
|
||||||
const int n_threads,
|
const int n_past,
|
||||||
|
const int n_threads,
|
||||||
const char * cgraph_fname) {
|
const char * cgraph_fname) {
|
||||||
|
|
||||||
|
LLAMA_ASSERT((!tokens && embd) || (tokens && !embd));
|
||||||
|
|
||||||
// enforce that the first token is BOS
|
// enforce that the first token is BOS
|
||||||
if (n_past == 0 && tokens[0] != llama_token_bos()) {
|
if (tokens && n_past == 0 && tokens[0] != llama_token_bos()) {
|
||||||
fprintf(stderr, "%s: first token must be BOS\n", __func__);
|
fprintf(stderr, "%s: first token must be BOS\n", __func__);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
@ -1424,12 +1428,18 @@ static bool llama_eval_internal(
|
|||||||
ggml_cgraph gf = {};
|
ggml_cgraph gf = {};
|
||||||
gf.n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads;
|
gf.n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads;
|
||||||
|
|
||||||
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
|
||||||
ggml_set_name(embd, "embd");
|
|
||||||
memcpy(embd->data, tokens, N*ggml_element_size(embd));
|
|
||||||
|
|
||||||
struct ggml_tensor * cur;
|
struct ggml_tensor * cur;
|
||||||
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
|
struct ggml_tensor * inpL;
|
||||||
|
|
||||||
|
if (tokens) {
|
||||||
|
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||||
|
ggml_set_name(embd, "embd");
|
||||||
|
memcpy(embd->data, tokens, N*ggml_element_size(embd));
|
||||||
|
inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
|
||||||
|
} else {
|
||||||
|
inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N);
|
||||||
|
memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL));
|
||||||
|
}
|
||||||
|
|
||||||
const int i_gpu_start = n_layer - n_gpu_layers;
|
const int i_gpu_start = n_layer - n_gpu_layers;
|
||||||
(void) i_gpu_start;
|
(void) i_gpu_start;
|
||||||
@ -2654,6 +2664,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
//
|
//
|
||||||
// interface implementation
|
// interface implementation
|
||||||
//
|
//
|
||||||
@ -3421,7 +3433,29 @@ int llama_eval(
|
|||||||
int n_tokens,
|
int n_tokens,
|
||||||
int n_past,
|
int n_past,
|
||||||
int n_threads) {
|
int n_threads) {
|
||||||
if (!llama_eval_internal(*ctx, tokens, n_tokens, n_past, n_threads, nullptr)) {
|
if (!llama_eval_internal(*ctx, tokens, nullptr, n_tokens, n_past, n_threads, nullptr)) {
|
||||||
|
fprintf(stderr, "%s: failed to eval\n", __func__);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
// get a more accurate load time, upon first eval
|
||||||
|
// TODO: fix this
|
||||||
|
if (!ctx->has_evaluated_once) {
|
||||||
|
ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
|
||||||
|
ctx->has_evaluated_once = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
int llama_eval_embd(
|
||||||
|
struct llama_context * ctx,
|
||||||
|
const float * embd,
|
||||||
|
int n_tokens,
|
||||||
|
int n_past,
|
||||||
|
int n_threads) {
|
||||||
|
if (!llama_eval_internal(*ctx, nullptr, embd, n_tokens, n_past, n_threads, nullptr)) {
|
||||||
fprintf(stderr, "%s: failed to eval\n", __func__);
|
fprintf(stderr, "%s: failed to eval\n", __func__);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
@ -3442,7 +3476,7 @@ int llama_eval_export(struct llama_context * ctx, const char * fname) {
|
|||||||
|
|
||||||
const std::vector<llama_token> tmp(n_batch, llama_token_bos());
|
const std::vector<llama_token> tmp(n_batch, llama_token_bos());
|
||||||
|
|
||||||
if (!llama_eval_internal(*ctx, tmp.data(), tmp.size(), n_ctx, 1, fname)) {
|
if (!llama_eval_internal(*ctx, tmp.data(), nullptr, tmp.size(), n_ctx, 1, fname)) {
|
||||||
fprintf(stderr, "%s: failed to eval\n", __func__);
|
fprintf(stderr, "%s: failed to eval\n", __func__);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
8
llama.h
8
llama.h
@ -226,6 +226,14 @@ extern "C" {
|
|||||||
int n_past,
|
int n_past,
|
||||||
int n_threads);
|
int n_threads);
|
||||||
|
|
||||||
|
// Same as llama_eval, but use float matrix input directly.
|
||||||
|
LLAMA_API int llama_eval_embd(
|
||||||
|
struct llama_context * ctx,
|
||||||
|
const float * embd,
|
||||||
|
int n_tokens,
|
||||||
|
int n_past,
|
||||||
|
int n_threads);
|
||||||
|
|
||||||
// Export a static computation graph for context of 511 and batch size of 1
|
// Export a static computation graph for context of 511 and batch size of 1
|
||||||
// NOTE: since this functionality is mostly for debugging and demonstration purposes, we hardcode these
|
// NOTE: since this functionality is mostly for debugging and demonstration purposes, we hardcode these
|
||||||
// parameters here to keep things simple
|
// parameters here to keep things simple
|
||||||
|
Loading…
Reference in New Issue
Block a user