mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 19:50:17 +00:00
ggml-cuda : compute ptrs for cublasGemmBatchedEx in a kernel (#3891)
* ggml-cuda : compute ptrs for cublasGemmBatchedEx in a kernel * fix warnings
This commit is contained in:
parent
898aeca90a
commit
d02e98cde0
78
ggml-cuda.cu
78
ggml-cuda.cu
@ -6696,8 +6696,10 @@ inline void ggml_cuda_op_clamp(
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
const float min = ((float *) dst->op_params)[0];
|
||||
const float max = ((float *) dst->op_params)[1];
|
||||
float min;
|
||||
float max;
|
||||
memcpy(&min, dst->op_params, sizeof(float));
|
||||
memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
|
||||
|
||||
clamp_f32_cuda(src0_dd, dst_dd, min, max, ggml_nelements(src0), main_stream);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
@ -7221,6 +7223,30 @@ static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor
|
||||
ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
|
||||
}
|
||||
|
||||
__global__ void k_compute_batched_ptrs(
|
||||
const half * src0_as_f16, const half * src1_as_f16, half * dst_f16,
|
||||
void ** ptrs,
|
||||
int ne12, int ne13,
|
||||
int ne23,
|
||||
int nb02, int nb03,
|
||||
int nb12, int nb13,
|
||||
int nb2, int nb3,
|
||||
int r2, int r3) {
|
||||
int i13 = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int i12 = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (i13 >= ne13 || i12 >= ne12) {
|
||||
return;
|
||||
}
|
||||
|
||||
int i03 = i13 / r3;
|
||||
int i02 = i12 / r2;
|
||||
|
||||
ptrs[0*ne23 + i12 + i13*ne12] = (char *) src0_as_f16 + i02*nb02 + i03*nb03;
|
||||
ptrs[1*ne23 + i12 + i13*ne12] = (char *) src1_as_f16 + i12*nb12/2 + i13*nb13/2;
|
||||
ptrs[2*ne23 + i12 + i13*ne12] = (char *) dst_f16 + i12* nb2/2 + i13* nb3/2;
|
||||
}
|
||||
|
||||
static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
GGML_ASSERT(!ggml_is_transposed(src0));
|
||||
GGML_ASSERT(!ggml_is_transposed(src1));
|
||||
@ -7322,49 +7348,35 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
|
||||
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
||||
} else {
|
||||
// use cublasGemmBatchedEx
|
||||
// TODO: https://github.com/ggerganov/llama.cpp/pull/3749#discussion_r1369997000
|
||||
const int ne23 = ne12*ne13;
|
||||
|
||||
// TODO: avoid this alloc
|
||||
void ** ptrs = (void **) malloc(3*ne23*sizeof(void *));
|
||||
|
||||
for (int i13 = 0; i13 < ne13; ++i13) {
|
||||
for (int i12 = 0; i12 < ne12; ++i12) {
|
||||
int i03 = i13 / r3;
|
||||
int i02 = i12 / r2;
|
||||
|
||||
ptrs[0*ne23 + i12 + i13*ne12] = (char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3];
|
||||
ptrs[1*ne23 + i12 + i13*ne12] = (char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2;
|
||||
ptrs[2*ne23 + i12 + i13*ne12] = (char *) dst_f16 + i12* dst->nb[2]/2 + i13* dst->nb[3]/2;
|
||||
}
|
||||
}
|
||||
|
||||
// allocate device memory for pointers
|
||||
void ** ptrs_as = nullptr;
|
||||
CUDA_CHECK(cudaMalloc(&ptrs_as, 3*ne23*sizeof(void *)));
|
||||
size_t ptrs_s = 0;
|
||||
ptrs_as = (void **) ggml_cuda_pool_malloc(3*ne23*sizeof(void *), &ptrs_s);
|
||||
|
||||
// TODO: this does not work for some reason -- not sure why?
|
||||
//size_t ptrs_s = 0;
|
||||
//ptrs_as = (void **) ggml_cuda_pool_malloc(3*ne23*sizeof(void *), &ptrs_s);
|
||||
|
||||
// copy pointers to device
|
||||
CUDA_CHECK(cudaMemcpy(ptrs_as, ptrs, 3*ne23*sizeof(void *), cudaMemcpyHostToDevice));
|
||||
|
||||
free(ptrs);
|
||||
dim3 block_dims(ne13, ne12);
|
||||
k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
|
||||
src0_as_f16, src1_as_f16, dst_f16,
|
||||
ptrs_as,
|
||||
ne12, ne13,
|
||||
ne23,
|
||||
nb02, nb03,
|
||||
nb12, nb13,
|
||||
dst->nb[2], dst->nb[3],
|
||||
r2, r3);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
CUBLAS_CHECK(
|
||||
cublasGemmBatchedEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
ne01, ne11, ne10,
|
||||
&alpha_f16, (const void **) (ptrs_as + 0*ne23), CUDA_R_16F, nb01/sizeof(half),
|
||||
(const void **) (ptrs_as + 1*ne23), CUDA_R_16F, nb11/sizeof(float),
|
||||
&beta_f16, ( void **) (ptrs_as + 2*ne23), CUDA_R_16F, ne01,
|
||||
&alpha_f16, (const void * const *) (ptrs_as + 0*ne23), CUDA_R_16F, nb01/sizeof(half),
|
||||
(const void * const *) (ptrs_as + 1*ne23), CUDA_R_16F, nb11/sizeof(float),
|
||||
&beta_f16, ( void ** ) (ptrs_as + 2*ne23), CUDA_R_16F, ne01,
|
||||
ne23,
|
||||
CUBLAS_COMPUTE_16F,
|
||||
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
||||
|
||||
// free device memory for pointers
|
||||
CUDA_CHECK(cudaFree(ptrs_as));
|
||||
//ggml_cuda_pool_free(ptrs_as, ptrs_s);
|
||||
ggml_cuda_pool_free(ptrs_as, ptrs_s);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user