Faster perplexity computation (#2786)

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
Kawrakow 2023-08-25 19:05:02 +03:00 committed by GitHub
parent c82742ac9c
commit d046dcee08
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -6,6 +6,8 @@
#include <ctime> #include <ctime>
#include <sstream> #include <sstream>
#include <cstring> #include <cstring>
#include <thread>
#include <mutex>
#if defined(_MSC_VER) #if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data #pragma warning(disable: 4244 4267) // possible loss of data
@ -27,6 +29,40 @@ std::vector<float> softmax(const std::vector<float>& logits) {
return probs; return probs;
} }
float log_softmax(int n_vocab, const float * logits, int tok) {
float max_logit = logits[0];
for (int i = 1; i < n_vocab; ++i) max_logit = std::max(max_logit, logits[i]);
double sum_exp = 0.0;
for (int i = 0; i < n_vocab; ++i) sum_exp += expf(logits[i] - max_logit);
return logits[tok] - max_logit - log(sum_exp);
}
void process_logits(int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread>& workers,
double& nll, double& nll2) {
std::mutex mutex;
int counter = 0;
auto compute = [&mutex, &counter, &nll, &nll2, n_vocab, logits, tokens, n_token] () {
double local_nll = 0, local_nll2 = 0;
while (true) {
std::unique_lock<std::mutex> lock(mutex);
int i = counter++;
if (i >= n_token) {
nll += local_nll; nll2 += local_nll2;
break;
}
lock.unlock();
double v = -log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
local_nll += v;
local_nll2 += v*v;
}
};
for (auto& w : workers) w = std::thread(compute);
compute();
for (auto& w : workers) w.join();
}
void perplexity_v2(llama_context * ctx, const gpt_params & params) { void perplexity_v2(llama_context * ctx, const gpt_params & params) {
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
@ -166,9 +202,12 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
int count = 0; int count = 0;
double nll = 0.0; double nll = 0.0;
double nll2 = 0.0;
fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch); fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
for (int i = 0; i < n_chunk; ++i) { for (int i = 0; i < n_chunk; ++i) {
const int start = i * params.n_ctx; const int start = i * params.n_ctx;
const int end = start + params.n_ctx; const int end = start + params.n_ctx;
@ -228,26 +267,32 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
// Example, we have a context window of 512, we will compute perplexity for each of the // Example, we have a context window of 512, we will compute perplexity for each of the
// last 256 tokens. Then, we split the input up into context window size chunks to // last 256 tokens. Then, we split the input up into context window size chunks to
// process the entire prompt. // process the entire prompt.
for (int j = std::min(512, params.n_ctx / 2); j < params.n_ctx - 1; ++j) { const int first = std::min(512, params.n_ctx/2);
// Calculate probability of next token, given the previous ones. process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, params.n_ctx - 1 - first, workers, nll, nll2);
const std::vector<float> tok_logits( count += params.n_ctx - first - 1;
logits.begin() + (j + 0) * n_vocab,
logits.begin() + (j + 1) * n_vocab);
const float prob = softmax(tok_logits)[tokens[start + j + 1]];
nll += -std::log(prob);
++count;
}
// perplexity is e^(average negative log-likelihood) // perplexity is e^(average negative log-likelihood)
if (params.ppl_output_type == 0) { if (params.ppl_output_type == 0) {
printf("[%d]%.4lf,", i + 1, std::exp(nll / count)); printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
} else { } else {
printf("%8d %.4lf\n", i*params.n_ctx, std::exp(nll / count)); double av = nll/count;
double av2 = nll2/count - av*av;
if (av2 > 0) av2 = sqrt(av2/(count-1));
printf("%8d %.4lf %4lf %4lf\n", i*params.n_ctx, std::exp(nll / count), av, av2);
} }
fflush(stdout); fflush(stdout);
} }
printf("\n"); printf("\n");
nll2 /= count;
nll /= count;
nll2 -= nll * nll;
if (nll2 > 0) {
nll2 = sqrt(nll2/(count-1));
double ppl = exp(nll);
printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
} else {
printf("Unexpected negative standard deviation of log(prob)\n");
}
} }
std::vector<float> hellaswag_evaluate_tokens(llama_context * ctx, const std::vector<int>& tokens, int n_past, int n_batch, std::vector<float> hellaswag_evaluate_tokens(llama_context * ctx, const std::vector<int>& tokens, int n_past, int n_batch,