metal : some mul_mv experiments

This commit is contained in:
Georgi Gerganov 2024-11-11 13:16:12 +02:00
parent dc22344088
commit d04731f315
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735
3 changed files with 205 additions and 0 deletions

View File

@ -192,6 +192,29 @@ typedef struct {
int16_t r3;
} ggml_metal_kargs_mul_mv;
typedef struct {
int32_t ne00;
int32_t ne01;
int32_t ne02;
uint64_t nb00;
uint64_t nb01;
uint64_t nb02;
uint64_t nb03;
int32_t ne10;
int32_t ne11;
int32_t ne12;
uint64_t nb10;
uint64_t nb11;
uint64_t nb12;
uint64_t nb13;
int32_t ne0;
int32_t ne1;
int16_t r2;
int16_t r3;
int16_t nsg;
int16_t nxpsg;
} ggml_metal_kargs_mul_mv_ext;
typedef struct {
int32_t nei0;
int32_t nei1;

View File

@ -1,6 +1,8 @@
#import "ggml-metal.h"
#import "ggml-impl.h"
#define GGML_COMMON_DECL_C
#import "ggml-common.h"
#import "ggml-backend-impl.h"
#import "ggml-metal-impl.h"
@ -175,6 +177,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32,
@ -699,6 +702,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32, mul_mv_q5_0_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32, mul_mv_q5_1_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32, mul_mv_q8_0_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32, mul_mv_ext_q8_0_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32, mul_mv_q2_K_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32, mul_mv_q3_K_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32, mul_mv_q4_K_f32, has_simdgroup_reduction);
@ -1952,6 +1956,55 @@ static void ggml_metal_encode_node(
}
#endif
if (src0t == GGML_TYPE_Q8_0 && (ne00%16 == 0) && (ne11 >= 4 && ne11 < 32)) {
//if (false) {
id<MTLComputePipelineState> pipeline = nil;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32].pipeline;
const int nsg = 2;
const int r0pt = 2;
const int r1pt = 1;
const int nxpsg = ne11 > 1 ? 8 : 32;
const int nypsg = 32/nxpsg;
const int nr0ptg = nypsg*r0pt*nsg;
//GGML_ASSERT(ne00%1024 == 0);
//GGML_ASSERT(ne01%nr0ptg == 0);
//printf("ne01 = %lld, nr0ptg = %d, ne00 = %lld\n", ne01, nr0ptg, ne00);
ggml_metal_kargs_mul_mv_ext args = {
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
/*.ne02 =*/ ne02,
/*.nb00 =*/ nb00,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.nb03 =*/ nb03,
/*.ne10 =*/ ne10,
/*.ne11 =*/ ne11,
/*.ne12 =*/ ne12,
/*.nb10 =*/ nb10,
/*.nb11 =*/ nb11,
/*.nb12 =*/ nb12,
/*.nb13 =*/ nb13,
/*.ne0 =*/ ne0,
/*.ne1 =*/ ne1,
/*.r2 =*/ r2,
/*.r3 =*/ r3,
/*.nsg =*/ nsg,
/*.nxpsg =*/ nxpsg,
};
[encoder setComputePipelineState:pipeline];
[encoder setBytes:&args length:sizeof(args) atIndex:0];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
//printf("ne01 = %lld nr0ptg = %d\n", ne01, nr0ptg);
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + nr0ptg - 1)/nr0ptg, (ne11 + r1pt - 1)/r1pt, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)];
} else
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
if ([device supportsFamily:MTLGPUFamilyApple7] &&

View File

@ -1752,6 +1752,135 @@ kernel void kernel_mul_mv_q8_0_f32(
kernel_mul_mv_q8_0_f32_impl<constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, nullptr, tgpig, tiisg, sgitg);
}
template<short nsg, short nxpsg>
void kernel_mul_mv_ext_q8_0_f32_impl(
constant ggml_metal_kargs_mul_mv_ext & args,
device const char * src0,
device const char * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 ntg[[threads_per_threadgroup]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
const short chpt = 1;
const short r0pt = 2;
//const short nxpsg = (32);
const short nypsg = (32/nxpsg)*r0pt;
const short tx = tiisg%nxpsg;
const short ty = tiisg/nxpsg;
const int i01 = tgpig.x*(nypsg*nsg) + nypsg*sgitg + ty*r0pt;
const int i11 = tgpig.y;
const int i1m = tgpig.z;
const int i12 = i1m%args.ne12;
const int i13 = i1m/args.ne12;
const uint64_t offset0 = i01*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const uint64_t offset1 = i11*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13;
device const block_q8_0 * xq[r0pt];
for (short ir0 = 0; ir0 < r0pt; ++ir0) {
xq[ir0] = (i01 + ir0 < args.ne01) ? (device const block_q8_0 *) (src0 + offset0 + ir0*args.nb01) + (chpt*tx)/2 : (device const block_q8_0 *) src0;
}
device const float4x4 * y4x4 = (device const float4x4 *) (src1 + offset1) + chpt*tx;
float sumf[r0pt] = { [0 ... r0pt - 1] = 0.0f };
for (int iib = 0; (16*chpt)*(iib*nxpsg + tx) < args.ne00; ++iib) {
float4x4 lx;
#pragma unroll(2)
for (short ir0 = 0; ir0 < r0pt; ++ir0) {
#pragma unroll
for (short ch = 0; ch < chpt; ++ch) {
dequantize_q8_0(xq[ir0] + ch/2, (chpt*tx + ch)%2, lx);
const float4x4 ly = y4x4[ch];
sumf[ir0] +=
dot(lx[0], ly[0]) +
dot(lx[1], ly[1]) +
dot(lx[2], ly[2]) +
dot(lx[3], ly[3]);
}
}
y4x4 += ((16*chpt)*nxpsg)/16;
for (short ir0 = 0; ir0 < r0pt; ++ir0) {
xq[ir0] += ((16*chpt)*nxpsg)/32;
}
}
for (short ir0 = 0; ir0 < r0pt; ++ir0) {
if (nxpsg >= 32) {
sumf[ir0] += simd_shuffle_down(sumf[ir0], 16);
}
if (nxpsg >= 16) {
sumf[ir0] += simd_shuffle_down(sumf[ir0], 8);
}
if (nxpsg >= 8) {
sumf[ir0] += simd_shuffle_down(sumf[ir0], 4);
}
if (nxpsg >= 4) {
sumf[ir0] += simd_shuffle_down(sumf[ir0], 2);
}
if (nxpsg >= 2) {
sumf[ir0] += simd_shuffle_down(sumf[ir0], 1);
}
//sumf[ir0] = simd_sum(sumf[ir0]);
}
device float * dst_f32 = (device float *) dst + (uint64_t)i1m*args.ne0*args.ne1 + (uint64_t)i11*args.ne0;
if (tx == 0) {
for (short ir0 = 0; ir0 < r0pt && i01 + ir0 < args.ne01; ++ir0) {
dst_f32[i01 + ir0] = sumf[ir0];
}
}
}
[[host_name("kernel_mul_mv_ext_q8_0_f32")]]
kernel void kernel_mul_mv_ext_q8_0_f32(
constant ggml_metal_kargs_mul_mv_ext & args,
device const char * src0,
device const char * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 ntg[[threads_per_threadgroup]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
switch (args.nsg) {
case 1:
switch (args.nxpsg) {
case 4: kernel_mul_mv_ext_q8_0_f32_impl<1, 4> (args, src0, src1, dst, tgpig, ntg, tiisg, sgitg); break;
case 8: kernel_mul_mv_ext_q8_0_f32_impl<1, 8> (args, src0, src1, dst, tgpig, ntg, tiisg, sgitg); break;
case 16: kernel_mul_mv_ext_q8_0_f32_impl<1, 16>(args, src0, src1, dst, tgpig, ntg, tiisg, sgitg); break;
case 32: kernel_mul_mv_ext_q8_0_f32_impl<1, 32>(args, src0, src1, dst, tgpig, ntg, tiisg, sgitg); break;
} break;
case 2:
switch (args.nxpsg) {
case 4: kernel_mul_mv_ext_q8_0_f32_impl<2, 4> (args, src0, src1, dst, tgpig, ntg, tiisg, sgitg); break;
case 8: kernel_mul_mv_ext_q8_0_f32_impl<2, 8> (args, src0, src1, dst, tgpig, ntg, tiisg, sgitg); break;
case 16: kernel_mul_mv_ext_q8_0_f32_impl<2, 16>(args, src0, src1, dst, tgpig, ntg, tiisg, sgitg); break;
case 32: kernel_mul_mv_ext_q8_0_f32_impl<2, 32>(args, src0, src1, dst, tgpig, ntg, tiisg, sgitg); break;
} break;
case 4:
switch (args.nxpsg) {
case 4: kernel_mul_mv_ext_q8_0_f32_impl<4, 4> (args, src0, src1, dst, tgpig, ntg, tiisg, sgitg); break;
case 8: kernel_mul_mv_ext_q8_0_f32_impl<4, 8> (args, src0, src1, dst, tgpig, ntg, tiisg, sgitg); break;
case 16: kernel_mul_mv_ext_q8_0_f32_impl<4, 16>(args, src0, src1, dst, tgpig, ntg, tiisg, sgitg); break;
case 32: kernel_mul_mv_ext_q8_0_f32_impl<4, 32>(args, src0, src1, dst, tgpig, ntg, tiisg, sgitg); break;
} break;
}
}
#define N_MV_T_T 4
template<typename T0, typename T04, typename T1, typename T14, typename args_t>