llama : initial ggml-backend integration (#4520)

* llama : initial ggml-backend integration

* add ggml-metal

* cuda backend can be used though ggml-backend with LLAMA_GGML_BACKEND_CUDA_TEST
access all tensor data with ggml_backend_tensor_get/set

* add ggml_backend_buffer_clear
zero-init KV cache buffer

* add ggml_backend_buffer_is_hos, used to avoid copies if possible when accesing tensor data

* disable gpu backends with ngl 0

* more accurate mlock

* unmap offloaded part of the model

* use posix_fadvise64(.., POSIX_FADV_SEQUENTIAL) to improve performance with mmap

* update quantize and lora

* update session copy/set to use ggml-backend

ggml-ci

* use posix_fadvise instead of posix_fadvise64

* ggml_backend_alloc_ctx_tensors_from_buft : remove old print

* llama_mmap::align_offset : use pointers instead of references for out parameters

* restore progress_callback behavior

* move final progress_callback call to load_all_data

* cuda : fix fprintf format string (minor)

* do not offload scales

* llama_mmap : avoid unmapping the same fragments again in the destructor

* remove unnecessary unmap

* metal : add default log function that prints to stderr, cleanup code

ggml-ci

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
slaren 2023-12-21 21:07:46 +01:00 committed by GitHub
parent 31f27758fa
commit d232aca5a7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 926 additions and 752 deletions

View File

@ -65,7 +65,7 @@ test: $(TEST_TARGETS)
./$$test_target; \ ./$$test_target; \
fi; \ fi; \
if [ $$? -ne 0 ]; then \ if [ $$? -ne 0 ]; then \
printf 'Test $$test_target FAILED!\n\n' $$test_target; \ printf 'Test %s FAILED!\n\n' $$test_target; \
failures=$$(( failures + 1 )); \ failures=$$(( failures + 1 )); \
else \ else \
printf 'Test %s passed.\n\n' $$test_target; \ printf 'Test %s passed.\n\n' $$test_target; \

View File

@ -449,11 +449,10 @@ static void init_view(ggml_gallocr_t galloc, struct ggml_tensor * view, bool upd
if (update_backend) { if (update_backend) {
view->backend = view->view_src->backend; view->backend = view->view_src->backend;
} }
view->buffer = view->view_src->buffer; // views are initialized in the alloc buffer rather than the view_src buffer
view->buffer = alloc->buffer;
view->data = (char *)view->view_src->data + view->view_offs; view->data = (char *)view->view_src->data + view->view_offs;
// FIXME: the view should be initialized by the owning buffer, but currently this breaks the CUDA backend
// due to the ggml_tensor_extra_gpu ring buffer overwriting the KV cache extras
assert(ggml_tallocr_is_measure(alloc) || !view->buffer || view->buffer->buft == alloc->buffer->buft); assert(ggml_tallocr_is_measure(alloc) || !view->buffer || view->buffer->buft == alloc->buffer->buft);
if (!alloc->measure) { if (!alloc->measure) {
@ -736,6 +735,10 @@ void ggml_allocr_set_parse_seq(ggml_allocr_t alloc, const int * list, int n) {
} }
void ggml_allocr_free(ggml_allocr_t alloc) { void ggml_allocr_free(ggml_allocr_t alloc) {
if (alloc == NULL) {
return;
}
ggml_gallocr_free(alloc->galloc); ggml_gallocr_free(alloc->galloc);
ggml_tallocr_free(alloc->talloc); ggml_tallocr_free(alloc->talloc);
free(alloc); free(alloc);
@ -775,7 +778,7 @@ ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_conte
} }
if (nbytes == 0) { if (nbytes == 0) {
fprintf(stderr, "%s: no tensors to allocate\n", __func__); // all the tensors in the context are already allocated
return NULL; return NULL;
} }
@ -789,6 +792,11 @@ ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_conte
} else { } else {
ggml_backend_view_init(buffer, t); ggml_backend_view_init(buffer, t);
} }
} else {
if (t->view_src != NULL) {
// view of a pre-allocated tensor
ggml_backend_view_init(buffer, t);
}
} }
} }

View File

@ -20,6 +20,9 @@ extern "C" {
size_t (*get_alignment) (ggml_backend_buffer_type_t buft); // tensor alignment size_t (*get_alignment) (ggml_backend_buffer_type_t buft); // tensor alignment
size_t (*get_alloc_size) (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding size_t (*get_alloc_size) (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding
bool (*supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend bool (*supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend
// check if tensor data is in host memory
// should be equivalent to supports_backend(buft, ggml_backend_cpu_init())
bool (*is_host) (ggml_backend_buffer_type_t buft);
}; };
struct ggml_backend_buffer_type { struct ggml_backend_buffer_type {
@ -31,15 +34,16 @@ extern "C" {
typedef void * ggml_backend_buffer_context_t; typedef void * ggml_backend_buffer_context_t;
struct ggml_backend_buffer_i { struct ggml_backend_buffer_i {
void (*free_buffer)(ggml_backend_buffer_t buffer); void (*free_buffer) (ggml_backend_buffer_t buffer);
//void (*reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras //void (*reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
void * (*get_base) (ggml_backend_buffer_t buffer); void * (*get_base) (ggml_backend_buffer_t buffer);
void (*init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
void (*set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); void (*set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); void (*get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
// (optional) copy tensor between different buffer-type, allow for single-copy tranfers // (optional) copy tensor between different buffer-type, allow for single-copy tranfers
void (*cpy_tensor_from)(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst); void (*cpy_tensor_from)(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst);
void (*cpy_tensor_to) (ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst); void (*cpy_tensor_to) (ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst);
void (*clear) (ggml_backend_buffer_t buffer, uint8_t value);
}; };
struct ggml_backend_buffer { struct ggml_backend_buffer {
@ -78,7 +82,7 @@ extern "C" {
void (*cpy_tensor_from_async)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst); void (*cpy_tensor_from_async)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
void (*cpy_tensor_to_async) (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst); void (*cpy_tensor_to_async) (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
void (*synchronize) (ggml_backend_t backend); void (*synchronize)(ggml_backend_t backend);
// compute graph with a plan // compute graph with a plan
ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, struct ggml_cgraph * cgraph); ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, struct ggml_cgraph * cgraph);

View File

@ -35,6 +35,13 @@ bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_ba
return buft->iface.supports_backend(buft, backend); return buft->iface.supports_backend(buft, backend);
} }
bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
if (buft->iface.is_host) {
return buft->iface.is_host(buft);
}
return false;
}
// backend buffer // backend buffer
ggml_backend_buffer_t ggml_backend_buffer_init( ggml_backend_buffer_t ggml_backend_buffer_init(
@ -94,6 +101,14 @@ size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct g
return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type(buffer), tensor); return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type(buffer), tensor);
} }
void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
buffer->iface.clear(buffer, value);
}
bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
return ggml_backend_buft_is_host(ggml_backend_buffer_type(buffer));
}
ggml_backend_buffer_type_t ggml_backend_buffer_type(ggml_backend_buffer_t buffer) { ggml_backend_buffer_type_t ggml_backend_buffer_type(ggml_backend_buffer_t buffer) {
return buffer->buft; return buffer->buft;
} }
@ -378,7 +393,6 @@ static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) { static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
free(buffer->context); free(buffer->context);
GGML_UNUSED(buffer);
} }
static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
@ -411,6 +425,10 @@ static void ggml_backend_cpu_buffer_cpy_tensor_to(ggml_backend_buffer_t buffer,
GGML_UNUSED(buffer); GGML_UNUSED(buffer);
} }
static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
memset(buffer->context, value, buffer->size);
}
static struct ggml_backend_buffer_i cpu_backend_buffer_i = { static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
/* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer, /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
/* .get_base = */ ggml_backend_cpu_buffer_get_base, /* .get_base = */ ggml_backend_cpu_buffer_get_base,
@ -419,6 +437,7 @@ static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
/* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor, /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
/* .cpy_tensor_from = */ ggml_backend_cpu_buffer_cpy_tensor_from, /* .cpy_tensor_from = */ ggml_backend_cpu_buffer_cpy_tensor_from,
/* .cpy_tensor_to = */ ggml_backend_cpu_buffer_cpy_tensor_to, /* .cpy_tensor_to = */ ggml_backend_cpu_buffer_cpy_tensor_to,
/* .clear = */ ggml_backend_cpu_buffer_clear,
}; };
// for buffers from ptr, free is not called // for buffers from ptr, free is not called
@ -430,6 +449,7 @@ static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
/* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor, /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
/* .cpy_tensor_from = */ ggml_backend_cpu_buffer_cpy_tensor_from, /* .cpy_tensor_from = */ ggml_backend_cpu_buffer_cpy_tensor_from,
/* .cpy_tensor_to = */ ggml_backend_cpu_buffer_cpy_tensor_to, /* .cpy_tensor_to = */ ggml_backend_cpu_buffer_cpy_tensor_to,
/* .clear = */ ggml_backend_cpu_buffer_clear,
}; };
static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512 static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512
@ -455,20 +475,70 @@ static bool ggml_backend_cpu_buffer_type_supports_backend(ggml_backend_buffer_ty
GGML_UNUSED(buft); GGML_UNUSED(buft);
} }
static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
return true;
GGML_UNUSED(buft);
}
ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) { ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
static struct ggml_backend_buffer_type ggml_backend_buffer_type_cpu = { static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
/* .iface = */ { /* .iface = */ {
/* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer, /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment, /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend, /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
/* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
}, },
/* .context = */ NULL, /* .context = */ NULL,
}; };
return &ggml_backend_buffer_type_cpu; return &ggml_backend_cpu_buffer_type;
} }
#ifdef GGML_USE_CPU_HBM
// buffer type HBM
#include <hbwmalloc.h>
static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
hbw_free(buffer->context);
}
static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
//void * ptr = hbw_malloc(size);
void * ptr;
int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
if (result != 0) {
fprintf(stderr, "failed to allocate HBM buffer of size %zu\n", size);
return NULL;
}
// FIXME: this is a hack to avoid having to implement a new buffer type
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
buffer->buft = buft;
buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
return buffer;
}
ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type() {
static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
/* .iface = */ {
/* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
/* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
},
/* .context = */ NULL,
};
return &ggml_backend_cpu_buffer_type_hbm;
}
#endif
struct ggml_backend_cpu_context { struct ggml_backend_cpu_context {
int n_threads; int n_threads;
void * work_data; void * work_data;
@ -505,7 +575,7 @@ static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend
struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu)); struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads); cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
cpu_plan->cgraph = *cgraph; cpu_plan->cgraph = *cgraph; // FIXME: deep copy
if (cpu_plan->cplan.work_size > 0) { if (cpu_plan->cplan.work_size > 0) {
cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size); cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
@ -1180,7 +1250,7 @@ void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml
// utils // utils
void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
GGML_ASSERT(tensor->buffer == NULL); GGML_ASSERT(tensor->buffer == NULL);
GGML_ASSERT(tensor->data == NULL); //GGML_ASSERT(tensor->data == NULL); // views of pre-allocted tensors may have the data set, but still need to be initialized
GGML_ASSERT(tensor->view_src != NULL); GGML_ASSERT(tensor->view_src != NULL);
GGML_ASSERT(tensor->view_src->buffer != NULL); GGML_ASSERT(tensor->view_src->buffer != NULL);
GGML_ASSERT(tensor->view_src->data != NULL); GGML_ASSERT(tensor->view_src->data != NULL);

View File

@ -21,6 +21,7 @@ extern "C" {
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft); GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
GGML_API size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor); GGML_API size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
GGML_API bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend); GGML_API bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend);
GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
// buffer // buffer
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer); GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
@ -29,6 +30,8 @@ extern "C" {
GGML_API void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); GGML_API void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer); GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_type(ggml_backend_buffer_t buffer); GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_type(ggml_backend_buffer_t buffer);
// //
@ -76,6 +79,10 @@ extern "C" {
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void); GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void);
#ifdef GGML_USE_CPU_HBM
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
#endif
// //
// Backend registry // Backend registry
// //

View File

@ -9081,7 +9081,7 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
char * buf; char * buf;
CUDA_CHECK(cudaMalloc(&buf, size)); CUDA_CHECK(cudaMalloc(&buf, size));
char * buf_host = (char*)data + offset_split; char * buf_host = (char *)data + offset_split;
// set padding to 0 to avoid possible NaN values // set padding to 0 to avoid possible NaN values
if (size > original_size) { if (size > original_size) {
@ -9226,11 +9226,10 @@ void ggml_cuda_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset)
ggml_tensor_extra_gpu * extra = ggml_cuda_alloc_temp_tensor_extra(); ggml_tensor_extra_gpu * extra = ggml_cuda_alloc_temp_tensor_extra();
const bool inplace = (tensor->src[0] != nullptr && tensor->src[0]->data == tensor->data) || const bool inplace = tensor->view_src != nullptr;
tensor->op == GGML_OP_VIEW;
if (inplace && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) { if (inplace && (tensor->view_src->backend == GGML_BACKEND_GPU || tensor->view_src->backend == GGML_BACKEND_GPU_SPLIT)) {
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra; ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->view_src->extra;
char * src0_ddc = (char *) src0_extra->data_device[g_main_device]; char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
size_t view_offset = 0; size_t view_offset = 0;
if (tensor->op == GGML_OP_VIEW) { if (tensor->op == GGML_OP_VIEW) {
@ -9317,7 +9316,7 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
if (tensor->op == GGML_OP_MUL_MAT) { if (tensor->op == GGML_OP_MUL_MAT) {
if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) { if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
#ifndef NDEBUG #ifndef NDEBUG
fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = " PRId64 ", src1->ne[3] = " PRId64 " - fallback to CPU\n", __func__, tensor->name, tensor->src[0]->ne[3], tensor->src[1]->ne[3]); fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, tensor->name, tensor->src[0]->ne[3], tensor->src[1]->ne[3]);
#endif #endif
return false; return false;
} }
@ -9523,7 +9522,7 @@ static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, g
ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context; ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context;
if (tensor->view_src != NULL && tensor->view_offs == 0) { if (tensor->view_src != NULL && tensor->view_offs == 0) {
assert(tensor->view_src->buffer->buft == buffer->buft); // TODO assert(tensor->view_src->buffer->buft == buffer->buft);
tensor->backend = tensor->view_src->backend; tensor->backend = tensor->view_src->backend;
tensor->extra = tensor->view_src->extra; tensor->extra = tensor->view_src->extra;
return; return;
@ -9554,23 +9553,34 @@ static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, g
} }
static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
CUDA_CHECK(cudaMemcpy((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice)); ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context;
UNUSED(buffer); ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaDeviceSynchronize());
CUDA_CHECK(cudaMemcpy((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice));
} }
static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
CUDA_CHECK(cudaMemcpy(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost)); ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context;
UNUSED(buffer); ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaDeviceSynchronize());
CUDA_CHECK(cudaMemcpy(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost));
}
static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context;
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaDeviceSynchronize());
CUDA_CHECK(cudaMemset(ctx->dev_ptr, value, buffer->size));
} }
static struct ggml_backend_buffer_i cuda_backend_buffer_interface = { static struct ggml_backend_buffer_i cuda_backend_buffer_interface = {
@ -9581,6 +9591,7 @@ static struct ggml_backend_buffer_i cuda_backend_buffer_interface = {
/* .get_tensor = */ ggml_backend_cuda_buffer_get_tensor, /* .get_tensor = */ ggml_backend_cuda_buffer_get_tensor,
/* .cpy_tensor_from = */ NULL, /* .cpy_tensor_from = */ NULL,
/* .cpy_tensor_to = */ NULL, /* .cpy_tensor_to = */ NULL,
/* .clear = */ ggml_backend_cuda_buffer_clear,
}; };
// cuda buffer type // cuda buffer type
@ -9632,35 +9643,36 @@ static bool ggml_backend_cuda_buffer_type_supports_backend(ggml_backend_buffer_t
UNUSED(buft); UNUSED(buft);
} }
static ggml_backend_buffer_type_i cuda_backend_buffer_type_interface = { static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
/* .alloc_buffer = */ ggml_backend_cuda_buffer_type_alloc_buffer, /* .alloc_buffer = */ ggml_backend_cuda_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cuda_buffer_type_get_alignment, /* .get_alignment = */ ggml_backend_cuda_buffer_type_get_alignment,
/* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size, /* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size,
/* .supports_backend = */ ggml_backend_cuda_buffer_type_supports_backend, /* .supports_backend = */ ggml_backend_cuda_buffer_type_supports_backend,
/* .is_host = */ nullptr,
}; };
ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) { ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
static struct ggml_backend_buffer_type ggml_backend_buffer_type_cuda[GGML_CUDA_MAX_DEVICES]; static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_types[GGML_CUDA_MAX_DEVICES];
static bool ggml_backend_buffer_type_cuda_initialized = false;
if (!ggml_backend_buffer_type_cuda_initialized) { static bool ggml_backend_cuda_buffer_type_initialized = false;
if (!ggml_backend_cuda_buffer_type_initialized) {
for (int i = 0; i < GGML_CUDA_MAX_DEVICES; i++) { for (int i = 0; i < GGML_CUDA_MAX_DEVICES; i++) {
ggml_backend_buffer_type_cuda[i] = { ggml_backend_cuda_buffer_types[i] = {
/* .iface = */ cuda_backend_buffer_type_interface, /* .iface = */ ggml_backend_cuda_buffer_type_interface,
/* .context = */ (ggml_backend_buffer_type_context_t) (intptr_t) i, /* .context = */ (ggml_backend_buffer_type_context_t) (intptr_t) i,
}; };
} }
ggml_backend_buffer_type_cuda_initialized = true; ggml_backend_cuda_buffer_type_initialized = true;
} }
return &ggml_backend_buffer_type_cuda[device]; return &ggml_backend_cuda_buffer_types[device];
} }
// host buffer type // host buffer type
static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) { static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context; CUDA_CHECK(cudaFreeHost(buffer->context));
CUDA_CHECK(cudaFreeHost(ctx->dev_ptr));
delete ctx;
} }
static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
@ -9673,24 +9685,21 @@ static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggm
buffer->iface.free_buffer = ggml_backend_cuda_host_buffer_free_buffer; buffer->iface.free_buffer = ggml_backend_cuda_host_buffer_free_buffer;
return buffer; return buffer;
UNUSED(buft);
} }
struct ggml_backend_buffer_type_i cuda_backend_host_buffer_type_interface = {
/* .alloc_buffer = */ ggml_backend_cuda_host_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
/* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
};
ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() { ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
static struct ggml_backend_buffer_type ggml_backend_buffer_type_cuda_host = { static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = {
/* .iface = */ cuda_backend_host_buffer_type_interface, /* .iface = */ {
/* .alloc_buffer = */ ggml_backend_cuda_host_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
/* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
},
/* .context = */ nullptr, /* .context = */ nullptr,
}; };
return &ggml_backend_buffer_type_cuda_host; return &ggml_backend_cuda_buffer_type_host;
} }
// backend // backend
@ -9722,8 +9731,6 @@ static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tens
ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context; ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context;
GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type"); GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, g_cudaStreams[cuda_ctx->device][0])); CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, g_cudaStreams[cuda_ctx->device][0]));
@ -9733,8 +9740,6 @@ static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggm
ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context; ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context;
GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type"); GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, g_cudaStreams[cuda_ctx->device][0])); CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, g_cudaStreams[cuda_ctx->device][0]));

View File

@ -98,7 +98,10 @@ GGML_API ggml_backend_t ggml_backend_metal_init(void);
GGML_API bool ggml_backend_is_metal(ggml_backend_t backend); GGML_API bool ggml_backend_is_metal(ggml_backend_t backend);
GGML_API ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size);
GGML_API void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb); GGML_API void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb);
GGML_API ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void); GGML_API ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
// helper to check if the device supports a specific family // helper to check if the device supports a specific family

View File

@ -180,7 +180,15 @@ struct ggml_metal_context {
@implementation GGMLMetalClass @implementation GGMLMetalClass
@end @end
ggml_log_callback ggml_metal_log_callback = NULL;
static void ggml_metal_default_log_callback(enum ggml_log_level level, const char * msg, void * user_data) {
fprintf(stderr, "%s", msg);
UNUSED(level);
UNUSED(user_data);
}
ggml_log_callback ggml_metal_log_callback = ggml_metal_default_log_callback;
void * ggml_metal_log_user_data = NULL; void * ggml_metal_log_user_data = NULL;
void ggml_metal_log_set_callback(ggml_log_callback log_callback, void * user_data) { void ggml_metal_log_set_callback(ggml_log_callback log_callback, void * user_data) {
@ -607,12 +615,24 @@ int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx) {
} }
// temporarily defined here for compatibility between ggml-backend and the old API // temporarily defined here for compatibility between ggml-backend and the old API
struct ggml_backend_metal_buffer_context {
void * data; struct ggml_backend_metal_buffer {
void * data;
size_t size;
id<MTLBuffer> metal; id<MTLBuffer> metal;
}; };
struct ggml_backend_metal_buffer_context {
void * all_data;
size_t all_size;
bool owned;
// multiple buffers are used only to avoid the maximum buffer size limitation when using mmap
int n_buffers;
struct ggml_backend_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
};
// finds the Metal buffer that contains the tensor data on the GPU device // finds the Metal buffer that contains the tensor data on the GPU device
// the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the // the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
// Metal buffer based on the host memory pointer // Metal buffer based on the host memory pointer
@ -622,17 +642,29 @@ static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, stru
const int64_t tsize = ggml_nbytes(t); const int64_t tsize = ggml_nbytes(t);
ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer;
// compatibility with ggml-backend // compatibility with ggml-backend
if (t->buffer && t->buffer->buft == ggml_backend_metal_buffer_type()) { if (buffer && buffer->buft == ggml_backend_metal_buffer_type()) {
struct ggml_backend_metal_buffer_context * buf_ctx = (struct ggml_backend_metal_buffer_context *) t->buffer->context; struct ggml_backend_metal_buffer_context * buf_ctx = (struct ggml_backend_metal_buffer_context *) buffer->context;
const int64_t ioffs = (int64_t) t->data - (int64_t) buf_ctx->data; // find the view that contains the tensor fully
for (int i = 0; i < buf_ctx->n_buffers; ++i) {
const int64_t ioffs = (int64_t) t->data - (int64_t) buf_ctx->buffers[i].data;
GGML_ASSERT(ioffs >= 0 && ioffs + tsize <= (int64_t) t->buffer->size); //GGML_METAL_LOG_INFO("ioffs = %10ld, tsize = %10ld, sum = %10ld, buf_ctx->buffers[%d].size = %10ld\n", ioffs, tsize, ioffs + tsize, i, buf_ctx->buffers[i].size);
if (ioffs >= 0 && ioffs + tsize <= (int64_t) buf_ctx->buffers[i].size) {
*offs = (size_t) ioffs;
*offs = (size_t) ioffs; //GGML_METAL_LOG_INFO("%s: tensor '%16s', offs = %8ld\n", __func__, t->name, *offs);
return buf_ctx->metal; return buf_ctx->buffers[i].metal;
}
}
GGML_METAL_LOG_ERROR("%s: error: tensor '%s' buffer is nil\n", __func__, t->name);
return nil;
} }
// find the view that contains the tensor fully // find the view that contains the tensor fully
@ -2361,6 +2393,7 @@ void ggml_metal_graph_compute(
// backend interface // backend interface
// default buffer
static id<MTLDevice> g_backend_device = nil; static id<MTLDevice> g_backend_device = nil;
static int g_backend_device_ref_count = 0; static int g_backend_device_ref_count = 0;
@ -2388,34 +2421,31 @@ static void ggml_backend_metal_free_device(void) {
static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) { static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context; struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
return ctx->data; return ctx->all_data;
} }
static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) { static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) {
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context; struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
[ctx->metal release]; for (int i = 0; i < ctx->n_buffers; i++) {
[ctx->buffers[i].metal release];
}
ggml_backend_metal_free_device(); ggml_backend_metal_free_device();
free(ctx->data); if (ctx->owned) {
free(ctx); free(ctx->all_data);
}
UNUSED(buffer); free(ctx);
} }
static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
memcpy((char *)tensor->data + offset, data, size); memcpy((char *)tensor->data + offset, data, size);
UNUSED(buffer); UNUSED(buffer);
} }
static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
memcpy(data, (const char *)tensor->data + offset, size); memcpy(data, (const char *)tensor->data + offset, size);
UNUSED(buffer); UNUSED(buffer);
@ -2433,7 +2463,13 @@ static void ggml_backend_metal_buffer_cpy_tensor_to(ggml_backend_buffer_t buffer
UNUSED(buffer); UNUSED(buffer);
} }
static struct ggml_backend_buffer_i metal_backend_buffer_i = { static void ggml_backend_metal_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
memset(ctx->all_data, value, ctx->all_size);
}
static struct ggml_backend_buffer_i ggml_backend_metal_buffer_i = {
/* .free_buffer = */ ggml_backend_metal_buffer_free_buffer, /* .free_buffer = */ ggml_backend_metal_buffer_free_buffer,
/* .get_base = */ ggml_backend_metal_buffer_get_base, /* .get_base = */ ggml_backend_metal_buffer_get_base,
/* .init_tensor = */ NULL, /* .init_tensor = */ NULL,
@ -2441,8 +2477,11 @@ static struct ggml_backend_buffer_i metal_backend_buffer_i = {
/* .get_tensor = */ ggml_backend_metal_buffer_get_tensor, /* .get_tensor = */ ggml_backend_metal_buffer_get_tensor,
/* .cpy_tensor_from = */ ggml_backend_metal_buffer_cpy_tensor_from, /* .cpy_tensor_from = */ ggml_backend_metal_buffer_cpy_tensor_from,
/* .cpy_tensor_to = */ ggml_backend_metal_buffer_cpy_tensor_to, /* .cpy_tensor_to = */ ggml_backend_metal_buffer_cpy_tensor_to,
/* .clear = */ ggml_backend_metal_buffer_clear,
}; };
// default buffer type
static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context)); struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context));
@ -2453,13 +2492,46 @@ static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_ba
size_aligned += (size_page - (size_aligned % size_page)); size_aligned += (size_page - (size_aligned % size_page));
} }
ctx->data = ggml_metal_host_malloc(size); id<MTLDevice> device = ggml_backend_metal_get_device();
ctx->metal = [ggml_backend_metal_get_device() newBufferWithBytesNoCopy:ctx->data
ctx->all_data = ggml_metal_host_malloc(size_aligned);
ctx->all_size = size_aligned;
ctx->owned = true;
ctx->n_buffers = 1;
ctx->buffers[0].data = ctx->all_data;
ctx->buffers[0].size = size;
ctx->buffers[0].metal = [device newBufferWithBytesNoCopy:ctx->all_data
length:size_aligned length:size_aligned
options:MTLResourceStorageModeShared options:MTLResourceStorageModeShared
deallocator:nil]; deallocator:nil];
return ggml_backend_buffer_init(buft, metal_backend_buffer_i, ctx, size); if (ctx->buffers[0].metal == nil) {
GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0);
free(ctx);
ggml_backend_metal_free_device();
return NULL;
}
GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB", __func__, size_aligned / 1024.0 / 1024.0);
#if TARGET_OS_OSX
GGML_METAL_LOG_INFO(", (%8.2f / %8.2f)",
device.currentAllocatedSize / 1024.0 / 1024.0,
device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
if (device.currentAllocatedSize > device.recommendedMaxWorkingSetSize) {
GGML_METAL_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__);
} else {
GGML_METAL_LOG_INFO("\n");
}
#else
GGML_METAL_LOG_INFO(", (%8.2f)\n", device.currentAllocatedSize / 1024.0 / 1024.0);
#endif
return ggml_backend_buffer_init(buft, ggml_backend_metal_buffer_i, ctx, size);
} }
static size_t ggml_backend_metal_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { static size_t ggml_backend_metal_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
@ -2470,7 +2542,13 @@ static size_t ggml_backend_metal_buffer_type_get_alignment(ggml_backend_buffer_t
static bool ggml_backend_metal_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { static bool ggml_backend_metal_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
return ggml_backend_is_metal(backend) || ggml_backend_is_cpu(backend); return ggml_backend_is_metal(backend) || ggml_backend_is_cpu(backend);
GGML_UNUSED(buft); UNUSED(buft);
}
static bool ggml_backend_metal_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
return true;
UNUSED(buft);
} }
ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) { ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
@ -2480,6 +2558,7 @@ ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
/* .get_alignment = */ ggml_backend_metal_buffer_type_get_alignment, /* .get_alignment = */ ggml_backend_metal_buffer_type_get_alignment,
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .supports_backend = */ ggml_backend_metal_buffer_type_supports_backend, /* .supports_backend = */ ggml_backend_metal_buffer_type_supports_backend,
/* .is_host = */ ggml_backend_metal_buffer_type_is_host,
}, },
/* .context = */ NULL, /* .context = */ NULL,
}; };
@ -2487,6 +2566,87 @@ ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
return &ggml_backend_buffer_type_metal; return &ggml_backend_buffer_type_metal;
} }
// buffer from ptr
ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size) {
struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context));
ctx->all_data = data;
ctx->all_size = size;
ctx->owned = false;
ctx->n_buffers = 0;
const size_t size_page = sysconf(_SC_PAGESIZE);
size_t size_aligned = size;
if ((size_aligned % size_page) != 0) {
size_aligned += (size_page - (size_aligned % size_page));
}
id<MTLDevice> device = ggml_backend_metal_get_device();
// the buffer fits into the max buffer size allowed by the device
if (size_aligned <= device.maxBufferLength) {
ctx->buffers[ctx->n_buffers].data = data;
ctx->buffers[ctx->n_buffers].size = size;
ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
if (ctx->buffers[ctx->n_buffers].metal == nil) {
GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0);
return false;
}
GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB", __func__, size_aligned / 1024.0 / 1024.0);
++ctx->n_buffers;
} else {
// this overlap between the views will guarantee that the tensor with the maximum size will fully fit into
// one of the views
const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case
const size_t size_step = device.maxBufferLength - size_ovlp;
const size_t size_view = device.maxBufferLength;
for (size_t i = 0; i < size; i += size_step) {
const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i);
ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i);
ctx->buffers[ctx->n_buffers].size = size_step_aligned;
ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
if (ctx->buffers[ctx->n_buffers].metal == nil) {
GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_step_aligned / 1024.0 / 1024.0);
return false;
}
GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB, offs = %12ld", __func__, size_step_aligned / 1024.0 / 1024.0, i);
if (i + size_step < size) {
GGML_METAL_LOG_INFO("\n");
}
++ctx->n_buffers;
}
}
#if TARGET_OS_OSX
GGML_METAL_LOG_INFO(", (%8.2f / %8.2f)",
device.currentAllocatedSize / 1024.0 / 1024.0,
device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
if (device.currentAllocatedSize > device.recommendedMaxWorkingSetSize) {
GGML_METAL_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__);
} else {
GGML_METAL_LOG_INFO("\n");
}
#else
GGML_METAL_LOG_INFO(", (%8.2f)\n", device.currentAllocatedSize / 1024.0 / 1024.0);
#endif
return ggml_backend_buffer_init(ggml_backend_metal_buffer_type(), ggml_backend_metal_buffer_i, ctx, size);
}
// backend
static const char * ggml_backend_metal_name(ggml_backend_t backend) { static const char * ggml_backend_metal_name(ggml_backend_t backend) {
return "Metal"; return "Metal";
@ -2499,10 +2659,6 @@ static void ggml_backend_metal_free(ggml_backend_t backend) {
free(backend); free(backend);
} }
static void ggml_backend_metal_synchronize(ggml_backend_t backend) {
UNUSED(backend);
}
static ggml_backend_buffer_type_t ggml_backend_metal_get_default_buffer_type(ggml_backend_t backend) { static ggml_backend_buffer_type_t ggml_backend_metal_get_default_buffer_type(ggml_backend_t backend) {
return ggml_backend_metal_buffer_type(); return ggml_backend_metal_buffer_type();
@ -2529,25 +2685,15 @@ static struct ggml_backend_i metal_backend_i = {
/* .get_tensor_async = */ NULL, /* .get_tensor_async = */ NULL,
/* .cpy_tensor_from_async = */ NULL, /* .cpy_tensor_from_async = */ NULL,
/* .cpy_tensor_to_async = */ NULL, /* .cpy_tensor_to_async = */ NULL,
/* .synchronize = */ ggml_backend_metal_synchronize, /* .synchronize = */ NULL,
/* .graph_plan_create = */ NULL, // the metal implementation does not require creating graph plans atm /* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL, /* .graph_plan_free = */ NULL,
/* .graph_plan_compute = */ NULL, /* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_metal_graph_compute, /* .graph_compute = */ ggml_backend_metal_graph_compute,
/* .supports_op = */ ggml_backend_metal_supports_op, /* .supports_op = */ ggml_backend_metal_supports_op,
}; };
// TODO: make a common log callback for all backends in ggml-backend
static void ggml_backend_log_callback(enum ggml_log_level level, const char * msg, void * user_data) {
fprintf(stderr, "%s", msg);
UNUSED(level);
UNUSED(user_data);
}
ggml_backend_t ggml_backend_metal_init(void) { ggml_backend_t ggml_backend_metal_init(void) {
ggml_metal_log_set_callback(ggml_backend_log_callback, NULL);
struct ggml_metal_context * ctx = ggml_metal_init(GGML_DEFAULT_N_THREADS); struct ggml_metal_context * ctx = ggml_metal_init(GGML_DEFAULT_N_THREADS);
if (ctx == NULL) { if (ctx == NULL) {

24
ggml.c
View File

@ -2383,20 +2383,8 @@ size_t ggml_get_mem_size(const struct ggml_context * ctx) {
size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) { size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
size_t max_size = 0; size_t max_size = 0;
struct ggml_object * obj = ctx->objects_begin; for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
max_size = MAX(max_size, ggml_nbytes(tensor));
while (obj != NULL) {
if (obj->type == GGML_OBJECT_TENSOR) {
struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
const size_t size = ggml_nbytes(tensor);
if (max_size < size) {
max_size = size;
}
}
obj = obj->next;
} }
return max_size; return max_size;
@ -3093,7 +3081,7 @@ struct ggml_tensor * ggml_view_tensor(
return result; return result;
} }
struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx) { struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
struct ggml_object * obj = ctx->objects_begin; struct ggml_object * obj = ctx->objects_begin;
char * const mem_buffer = ctx->mem_buffer; char * const mem_buffer = ctx->mem_buffer;
@ -3109,7 +3097,7 @@ struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx) {
return NULL; return NULL;
} }
struct ggml_tensor * ggml_get_next_tensor(struct ggml_context * ctx, struct ggml_tensor * tensor) { struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE); struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
obj = obj->next; obj = obj->next;
@ -19213,6 +19201,10 @@ char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
return ctx->infos[i].name.data; return ctx->infos[i].name.data;
} }
enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
return ctx->infos[i].type;
}
// returns the index // returns the index
static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) { static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
const int idx = gguf_find_key(ctx, key); const int idx = gguf_find_key(ctx, key);

13
ggml.h
View File

@ -735,8 +735,8 @@ extern "C" {
GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src); GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
// Context tensor enumeration and lookup // Context tensor enumeration and lookup
GGML_API struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx); GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
GGML_API struct ggml_tensor * ggml_get_next_tensor (struct ggml_context * ctx, struct ggml_tensor * tensor); GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name); GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor); GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
@ -2135,10 +2135,11 @@ extern "C" {
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id); GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i); GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx); GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name); GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i); GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i); GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
// overrides existing values or adds a new one // overrides existing values or adds a new one
GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val); GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);

1196
llama.cpp

File diff suppressed because it is too large Load Diff