quantize : be able to override metadata by key (#6321)

* quantize: be able to override metadata by key

* minor : spacing

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
Kawrakow 2024-03-26 13:09:30 +01:00 committed by GitHub
parent deb7240100
commit d25b1c31b0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 96 additions and 27 deletions

View File

@ -87,13 +87,17 @@ static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftyp
// //
[[noreturn]] [[noreturn]]
static void usage(const char * executable) { static void usage(const char * executable) {
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable); printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] [--output-tensor-type] [--token-embedding-type] [--override-kv] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n"); printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n"); printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n"); printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n");
printf(" --imatrix file_name: use data in file_name as importance matrix for quant optimizations\n"); printf(" --imatrix file_name: use data in file_name as importance matrix for quant optimizations\n");
printf(" --include-weights tensor_name: use importance matrix for this/these tensor(s)\n"); printf(" --include-weights tensor_name: use importance matrix for this/these tensor(s)\n");
printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n"); printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor\n");
printf(" --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n");
printf(" --override-kv KEY=TYPE:VALUE\n");
printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n");
printf("Note: --include-weights and --exclude-weights cannot be used together\n"); printf("Note: --include-weights and --exclude-weights cannot be used together\n");
printf("\nAllowed quantization types:\n"); printf("\nAllowed quantization types:\n");
for (auto & it : QUANT_OPTIONS) { for (auto & it : QUANT_OPTIONS) {
@ -201,6 +205,43 @@ static ggml_type parse_ggml_type(const char * arg) {
return result; return result;
} }
static bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
const char* sep = strchr(data, '=');
if (sep == nullptr || sep - data >= 128) {
fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data);
return false;
}
llama_model_kv_override kvo;
std::strncpy(kvo.key, data, sep - data);
kvo.key[sep - data] = 0;
sep++;
if (strncmp(sep, "int:", 4) == 0) {
sep += 4;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
kvo.int_value = std::atol(sep);
} else if (strncmp(sep, "float:", 6) == 0) {
sep += 6;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
kvo.float_value = std::atof(sep);
} else if (strncmp(sep, "bool:", 5) == 0) {
sep += 5;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
if (std::strcmp(sep, "true") == 0) {
kvo.bool_value = true;
} else if (std::strcmp(sep, "false") == 0) {
kvo.bool_value = false;
} else {
fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data);
return false;
}
} else {
fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data);
return false;
}
overrides.emplace_back(std::move(kvo));
return true;
}
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
if (argc < 3) { if (argc < 3) {
usage(argv[0]); usage(argv[0]);
@ -211,6 +252,7 @@ int main(int argc, char ** argv) {
int arg_idx = 1; int arg_idx = 1;
std::string imatrix_file; std::string imatrix_file;
std::vector<std::string> included_weights, excluded_weights; std::vector<std::string> included_weights, excluded_weights;
std::vector<llama_model_kv_override> kv_overrides;
for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) { for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) { if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
@ -227,6 +269,10 @@ int main(int argc, char ** argv) {
} else { } else {
usage(argv[0]); usage(argv[0]);
} }
} else if (strcmp(argv[arg_idx], "--override-kv") == 0) {
if (arg_idx == argc-1 || !parse_kv_override(argv[++arg_idx], kv_overrides)) {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) { } else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
params.allow_requantize = true; params.allow_requantize = true;
} else if (strcmp(argv[arg_idx], "--pure") == 0) { } else if (strcmp(argv[arg_idx], "--pure") == 0) {
@ -267,6 +313,11 @@ int main(int argc, char ** argv) {
if (!imatrix_data.empty()) { if (!imatrix_data.empty()) {
params.imatrix = &imatrix_data; params.imatrix = &imatrix_data;
} }
if (!kv_overrides.empty()) {
kv_overrides.emplace_back();
kv_overrides.back().key[0] = 0;
params.kv_overrides = &kv_overrides;
}
llama_backend_init(); llama_backend_init();
@ -288,8 +339,7 @@ int main(int argc, char ** argv) {
if (ftype_str == "COPY") { if (ftype_str == "COPY") {
params.only_copy = true; params.only_copy = true;
} }
} } else {
else {
fname_out = argv[arg_idx]; fname_out = argv[arg_idx];
arg_idx++; arg_idx++;

View File

@ -12776,7 +12776,12 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
constexpr bool use_mmap = false; constexpr bool use_mmap = false;
#endif #endif
llama_model_loader ml(fname_inp, use_mmap, NULL); llama_model_kv_override * kv_overrides = nullptr;
if (params->kv_overrides) {
auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
kv_overrides = v->data();
}
llama_model_loader ml(fname_inp, use_mmap, kv_overrides);
ml.init_mappings(false); // no prefetching? ml.init_mappings(false); // no prefetching?
llama_model model; llama_model model;
@ -12805,6 +12810,22 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION); gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
gguf_set_val_u32(ctx_out, "general.file_type", ftype); gguf_set_val_u32(ctx_out, "general.file_type", ftype);
if (params->kv_overrides) {
const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
for (auto & o : overrides) {
if (o.key[0] == 0) break;
if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
gguf_set_val_f32(ctx_out, o.key, o.float_value);
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
gguf_set_val_i32(ctx_out, o.key, o.int_value);
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
gguf_set_val_bool(ctx_out, o.key, o.bool_value);
} else {
LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
}
}
}
for (int i = 0; i < ml.n_tensors; ++i) { for (int i = 0; i < ml.n_tensors; ++i) {
const struct ggml_tensor * meta = ml.get_tensor_meta(i); const struct ggml_tensor * meta = ml.get_tensor_meta(i);
@ -12813,17 +12834,13 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
// TODO: avoid hardcoded tensor names - use the TN_* constants // TODO: avoid hardcoded tensor names - use the TN_* constants
if (name.find("attn_v.weight") != std::string::npos || name.find("attn_qkv.weight") != std::string::npos) { if (name.find("attn_v.weight") != std::string::npos || name.find("attn_qkv.weight") != std::string::npos) {
++qs.n_attention_wv; ++qs.n_attention_wv;
} } else if (name.find("ffn_down") != std::string::npos) {
else if (name.find("ffn_down") != std::string::npos) {
++qs.n_ffn_down; ++qs.n_ffn_down;
} } else if (name.find("ffn_gate") != std::string::npos) {
else if (name.find("ffn_gate") != std::string::npos) {
++qs.n_ffn_gate; ++qs.n_ffn_gate;
} } else if (name.find("ffn_up") != std::string::npos) {
else if (name.find("ffn_up") != std::string::npos) {
++qs.n_ffn_up; ++qs.n_ffn_up;
} } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
qs.has_output = true; qs.has_output = true;
} }
} }
@ -13363,6 +13380,7 @@ struct llama_model_quantize_params llama_model_quantize_default_params() {
/*.only_copy =*/ false, /*.only_copy =*/ false,
/*.pure =*/ false, /*.pure =*/ false,
/*.imatrix =*/ nullptr, /*.imatrix =*/ nullptr,
/*.kv_overrides =*/ nullptr,
}; };
return result; return result;

View File

@ -284,6 +284,7 @@ extern "C" {
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
bool pure; // quantize all tensors to the default type bool pure; // quantize all tensors to the default type
void * imatrix; // pointer to importance matrix data void * imatrix; // pointer to importance matrix data
void * kv_overrides; // pointer to vector containing overrides
} llama_model_quantize_params; } llama_model_quantize_params;
// grammar types // grammar types