py : convert-hf-to-gguf-update improvements (#7340)

* convert-hf-to-gguf-update: automate updating

* convert-hf-to-gguf-update: improve download

* share requests session for performance
* create directories only when needed, don't skip downloads when empty directory encountered
* be more graceful about errors
This commit is contained in:
Aarni Koskela 2024-05-17 15:11:45 +03:00 committed by GitHub
parent 27b040691c
commit d273c1402b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 41 additions and 48 deletions

View File

@ -20,11 +20,13 @@
# - Update llama.cpp with the new pre-tokenizer if necessary # - Update llama.cpp with the new pre-tokenizer if necessary
# #
# TODO: generate tokenizer tests for llama.cpp # TODO: generate tokenizer tests for llama.cpp
# TODO: automate the update of convert-hf-to-gguf.py
# #
import logging import logging
import os import os
import pathlib
import re
import requests import requests
import sys import sys
import json import json
@ -35,6 +37,7 @@ from transformers import AutoTokenizer
logging.basicConfig(level=logging.DEBUG) logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger("convert-hf-to-gguf-update") logger = logging.getLogger("convert-hf-to-gguf-update")
sess = requests.Session()
class TOKENIZER_TYPE(IntEnum): class TOKENIZER_TYPE(IntEnum):
@ -79,63 +82,44 @@ models = [
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", }, {"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
] ]
# make directory "models/tokenizers" if it doesn't exist
if not os.path.exists("models/tokenizers"):
os.makedirs("models/tokenizers")
def download_file_with_auth(url, token, save_path): def download_file_with_auth(url, token, save_path):
headers = {"Authorization": f"Bearer {token}"} headers = {"Authorization": f"Bearer {token}"}
response = requests.get(url, headers=headers) response = sess.get(url, headers=headers)
if response.status_code == 200: response.raise_for_status()
os.makedirs(os.path.dirname(save_path), exist_ok=True)
with open(save_path, 'wb') as f: with open(save_path, 'wb') as f:
f.write(response.content) f.write(response.content)
logger.info(f"File {save_path} downloaded successfully") logger.info(f"File {save_path} downloaded successfully")
else:
logger.info(f"Failed to download file. Status code: {response.status_code}")
# download the tokenizer models def download_model(model):
for model in models:
name = model["name"] name = model["name"]
repo = model["repo"] repo = model["repo"]
tokt = model["tokt"] tokt = model["tokt"]
if not os.path.exists(f"models/tokenizers/{name}"): os.makedirs(f"models/tokenizers/{name}", exist_ok=True)
os.makedirs(f"models/tokenizers/{name}")
else:
logger.info(f"Directory models/tokenizers/{name} already exists - skipping")
continue
logger.info(f"Downloading {name} to models/tokenizers/{name}")
url = f"{repo}/raw/main/config.json"
save_path = f"models/tokenizers/{name}/config.json"
download_file_with_auth(url, token, save_path)
url = f"{repo}/raw/main/tokenizer.json"
save_path = f"models/tokenizers/{name}/tokenizer.json"
download_file_with_auth(url, token, save_path)
# if downloaded file is less than 1KB, we likely need to download an LFS instead
if os.path.getsize(save_path) < 1024:
# remove the file
os.remove(save_path)
url = f"{repo}/resolve/main/tokenizer.json"
save_path = f"models/tokenizers/{name}/tokenizer.json"
download_file_with_auth(url, token, save_path)
files = ["config.json", "tokenizer.json", "tokenizer_config.json"]
if tokt == TOKENIZER_TYPE.SPM: if tokt == TOKENIZER_TYPE.SPM:
url = f"{repo}/resolve/main/tokenizer.model" files.append("tokenizer.model")
save_path = f"models/tokenizers/{name}/tokenizer.model"
download_file_with_auth(url, token, save_path) for file in files:
save_path = f"models/tokenizers/{name}/{file}"
if os.path.isfile(save_path):
logger.info(f"{name}: File {save_path} already exists - skipping")
continue
download_file_with_auth(f"{repo}/resolve/main/{file}", token, save_path)
for model in models:
try:
download_model(model)
except Exception as e:
logger.error(f"Failed to download model {model['name']}. Error: {e}")
url = f"{repo}/raw/main/tokenizer_config.json"
save_path = f"models/tokenizers/{name}/tokenizer_config.json"
download_file_with_auth(url, token, save_path)
# generate the source code for the convert-hf-to-gguf.py:get_vocab_base_pre() function: # generate the source code for the convert-hf-to-gguf.py:get_vocab_base_pre() function:
# TODO: auto-update convert-hf-to-gguf.py with the generated function
src_ifs = "" src_ifs = ""
for model in models: for model in models:
@ -224,11 +208,18 @@ src_func = f"""
return res return res
""" """
print(src_func) # noqa: NP100 convert_py_pth = pathlib.Path("convert-hf-to-gguf.py")
convert_py = convert_py_pth.read_text()
convert_py = re.sub(
r"(# Marker: Start get_vocab_base_pre)(.+?)( +# Marker: End get_vocab_base_pre)",
lambda m: m.group(1) + src_func + m.group(3),
convert_py,
flags=re.DOTALL | re.MULTILINE,
)
logger.info("\n") convert_py_pth.write_text(convert_py)
logger.info("!!! Copy-paste the function above into convert-hf-to-gguf.py !!!")
logger.info("\n") logger.info("+++ convert-hf-to-gguf.py was updated")
# generate tests for each tokenizer model # generate tests for each tokenizer model

View File

@ -402,6 +402,7 @@ class Model:
# NOTE: this function is generated by convert-hf-to-gguf-update.py # NOTE: this function is generated by convert-hf-to-gguf-update.py
# do not modify it manually! # do not modify it manually!
# ref: https://github.com/ggerganov/llama.cpp/pull/6920 # ref: https://github.com/ggerganov/llama.cpp/pull/6920
# Marker: Start get_vocab_base_pre
def get_vocab_base_pre(self, tokenizer) -> str: def get_vocab_base_pre(self, tokenizer) -> str:
# encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
# is specific for the BPE pre-tokenizer used by the model # is specific for the BPE pre-tokenizer used by the model
@ -489,6 +490,7 @@ class Model:
logger.debug(f"chkhsh: {chkhsh}") logger.debug(f"chkhsh: {chkhsh}")
return res return res
# Marker: End get_vocab_base_pre
def _set_vocab_gpt2(self) -> None: def _set_vocab_gpt2(self) -> None:
tokens, toktypes, tokpre = self.get_vocab_base() tokens, toktypes, tokpre = self.get_vocab_base()