mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-26 03:14:35 +00:00
examples : make pydantic scripts pass mypy and support py3.8 (#5099)
This commit is contained in:
parent
256d1bb0dd
commit
d292f4f204
@ -1,14 +1,14 @@
|
|||||||
# Function calling example using pydantic models.
|
# Function calling example using pydantic models.
|
||||||
import datetime
|
import datetime
|
||||||
|
import importlib
|
||||||
import json
|
import json
|
||||||
from enum import Enum
|
from enum import Enum
|
||||||
from typing import Union, Optional
|
from typing import Optional, Union
|
||||||
|
|
||||||
import requests
|
import requests
|
||||||
from pydantic import BaseModel, Field
|
from pydantic import BaseModel, Field
|
||||||
|
from pydantic_models_to_grammar import (add_run_method_to_dynamic_model, convert_dictionary_to_pydantic_model,
|
||||||
import importlib
|
create_dynamic_model_from_function, generate_gbnf_grammar_and_documentation)
|
||||||
from pydantic_models_to_grammar import generate_gbnf_grammar_and_documentation, convert_dictionary_to_pydantic_model, add_run_method_to_dynamic_model, create_dynamic_model_from_function
|
|
||||||
|
|
||||||
|
|
||||||
# Function to get completion on the llama.cpp server with grammar.
|
# Function to get completion on the llama.cpp server with grammar.
|
||||||
@ -35,7 +35,7 @@ class SendMessageToUser(BaseModel):
|
|||||||
print(self.message)
|
print(self.message)
|
||||||
|
|
||||||
|
|
||||||
# Enum for the calculator function.
|
# Enum for the calculator tool.
|
||||||
class MathOperation(Enum):
|
class MathOperation(Enum):
|
||||||
ADD = "add"
|
ADD = "add"
|
||||||
SUBTRACT = "subtract"
|
SUBTRACT = "subtract"
|
||||||
@ -43,7 +43,7 @@ class MathOperation(Enum):
|
|||||||
DIVIDE = "divide"
|
DIVIDE = "divide"
|
||||||
|
|
||||||
|
|
||||||
# Very simple calculator tool for the agent.
|
# Simple pydantic calculator tool for the agent that can add, subtract, multiply, and divide. Docstring and description of fields will be used in system prompt.
|
||||||
class Calculator(BaseModel):
|
class Calculator(BaseModel):
|
||||||
"""
|
"""
|
||||||
Perform a math operation on two numbers.
|
Perform a math operation on two numbers.
|
||||||
@ -148,37 +148,6 @@ def get_current_datetime(output_format: Optional[str] = None):
|
|||||||
return datetime.datetime.now().strftime(output_format)
|
return datetime.datetime.now().strftime(output_format)
|
||||||
|
|
||||||
|
|
||||||
# Enum for the calculator tool.
|
|
||||||
class MathOperation(Enum):
|
|
||||||
ADD = "add"
|
|
||||||
SUBTRACT = "subtract"
|
|
||||||
MULTIPLY = "multiply"
|
|
||||||
DIVIDE = "divide"
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# Simple pydantic calculator tool for the agent that can add, subtract, multiply, and divide. Docstring and description of fields will be used in system prompt.
|
|
||||||
class Calculator(BaseModel):
|
|
||||||
"""
|
|
||||||
Perform a math operation on two numbers.
|
|
||||||
"""
|
|
||||||
number_one: Union[int, float] = Field(..., description="First number.")
|
|
||||||
operation: MathOperation = Field(..., description="Math operation to perform.")
|
|
||||||
number_two: Union[int, float] = Field(..., description="Second number.")
|
|
||||||
|
|
||||||
def run(self):
|
|
||||||
if self.operation == MathOperation.ADD:
|
|
||||||
return self.number_one + self.number_two
|
|
||||||
elif self.operation == MathOperation.SUBTRACT:
|
|
||||||
return self.number_one - self.number_two
|
|
||||||
elif self.operation == MathOperation.MULTIPLY:
|
|
||||||
return self.number_one * self.number_two
|
|
||||||
elif self.operation == MathOperation.DIVIDE:
|
|
||||||
return self.number_one / self.number_two
|
|
||||||
else:
|
|
||||||
raise ValueError("Unknown operation.")
|
|
||||||
|
|
||||||
|
|
||||||
# Example function to get the weather
|
# Example function to get the weather
|
||||||
def get_current_weather(location, unit):
|
def get_current_weather(location, unit):
|
||||||
"""Get the current weather in a given location"""
|
"""Get the current weather in a given location"""
|
||||||
|
@ -1,15 +1,21 @@
|
|||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
import inspect
|
import inspect
|
||||||
import json
|
import json
|
||||||
|
import re
|
||||||
from copy import copy
|
from copy import copy
|
||||||
from inspect import isclass, getdoc
|
from enum import Enum
|
||||||
from types import NoneType
|
from inspect import getdoc, isclass
|
||||||
|
from typing import TYPE_CHECKING, Any, Callable, List, Optional, Union, get_args, get_origin, get_type_hints
|
||||||
|
|
||||||
from docstring_parser import parse
|
from docstring_parser import parse
|
||||||
from pydantic import BaseModel, create_model, Field
|
from pydantic import BaseModel, Field, create_model
|
||||||
from typing import Any, Type, List, get_args, get_origin, Tuple, Union, Optional, _GenericAlias
|
|
||||||
from enum import Enum
|
if TYPE_CHECKING:
|
||||||
from typing import get_type_hints, Callable
|
from types import GenericAlias
|
||||||
import re
|
else:
|
||||||
|
# python 3.8 compat
|
||||||
|
from typing import _GenericAlias as GenericAlias
|
||||||
|
|
||||||
|
|
||||||
class PydanticDataType(Enum):
|
class PydanticDataType(Enum):
|
||||||
@ -43,7 +49,7 @@ class PydanticDataType(Enum):
|
|||||||
SET = "set"
|
SET = "set"
|
||||||
|
|
||||||
|
|
||||||
def map_pydantic_type_to_gbnf(pydantic_type: Type[Any]) -> str:
|
def map_pydantic_type_to_gbnf(pydantic_type: type[Any]) -> str:
|
||||||
if isclass(pydantic_type) and issubclass(pydantic_type, str):
|
if isclass(pydantic_type) and issubclass(pydantic_type, str):
|
||||||
return PydanticDataType.STRING.value
|
return PydanticDataType.STRING.value
|
||||||
elif isclass(pydantic_type) and issubclass(pydantic_type, bool):
|
elif isclass(pydantic_type) and issubclass(pydantic_type, bool):
|
||||||
@ -57,22 +63,22 @@ def map_pydantic_type_to_gbnf(pydantic_type: Type[Any]) -> str:
|
|||||||
|
|
||||||
elif isclass(pydantic_type) and issubclass(pydantic_type, BaseModel):
|
elif isclass(pydantic_type) and issubclass(pydantic_type, BaseModel):
|
||||||
return format_model_and_field_name(pydantic_type.__name__)
|
return format_model_and_field_name(pydantic_type.__name__)
|
||||||
elif get_origin(pydantic_type) == list:
|
elif get_origin(pydantic_type) is list:
|
||||||
element_type = get_args(pydantic_type)[0]
|
element_type = get_args(pydantic_type)[0]
|
||||||
return f"{map_pydantic_type_to_gbnf(element_type)}-list"
|
return f"{map_pydantic_type_to_gbnf(element_type)}-list"
|
||||||
elif get_origin(pydantic_type) == set:
|
elif get_origin(pydantic_type) is set:
|
||||||
element_type = get_args(pydantic_type)[0]
|
element_type = get_args(pydantic_type)[0]
|
||||||
return f"{map_pydantic_type_to_gbnf(element_type)}-set"
|
return f"{map_pydantic_type_to_gbnf(element_type)}-set"
|
||||||
elif get_origin(pydantic_type) == Union:
|
elif get_origin(pydantic_type) is Union:
|
||||||
union_types = get_args(pydantic_type)
|
union_types = get_args(pydantic_type)
|
||||||
union_rules = [map_pydantic_type_to_gbnf(ut) for ut in union_types]
|
union_rules = [map_pydantic_type_to_gbnf(ut) for ut in union_types]
|
||||||
return f"union-{'-or-'.join(union_rules)}"
|
return f"union-{'-or-'.join(union_rules)}"
|
||||||
elif get_origin(pydantic_type) == Optional:
|
elif get_origin(pydantic_type) is Optional:
|
||||||
element_type = get_args(pydantic_type)[0]
|
element_type = get_args(pydantic_type)[0]
|
||||||
return f"optional-{map_pydantic_type_to_gbnf(element_type)}"
|
return f"optional-{map_pydantic_type_to_gbnf(element_type)}"
|
||||||
elif isclass(pydantic_type):
|
elif isclass(pydantic_type):
|
||||||
return f"{PydanticDataType.CUSTOM_CLASS.value}-{format_model_and_field_name(pydantic_type.__name__)}"
|
return f"{PydanticDataType.CUSTOM_CLASS.value}-{format_model_and_field_name(pydantic_type.__name__)}"
|
||||||
elif get_origin(pydantic_type) == dict:
|
elif get_origin(pydantic_type) is dict:
|
||||||
key_type, value_type = get_args(pydantic_type)
|
key_type, value_type = get_args(pydantic_type)
|
||||||
return f"custom-dict-key-type-{format_model_and_field_name(map_pydantic_type_to_gbnf(key_type))}-value-type-{format_model_and_field_name(map_pydantic_type_to_gbnf(value_type))}"
|
return f"custom-dict-key-type-{format_model_and_field_name(map_pydantic_type_to_gbnf(key_type))}-value-type-{format_model_and_field_name(map_pydantic_type_to_gbnf(value_type))}"
|
||||||
else:
|
else:
|
||||||
@ -106,7 +112,6 @@ def get_members_structure(cls, rule_name):
|
|||||||
return f"{cls.__name__.lower()} ::= " + " | ".join(members)
|
return f"{cls.__name__.lower()} ::= " + " | ".join(members)
|
||||||
if cls.__annotations__ and cls.__annotations__ != {}:
|
if cls.__annotations__ and cls.__annotations__ != {}:
|
||||||
result = f'{rule_name} ::= "{{"'
|
result = f'{rule_name} ::= "{{"'
|
||||||
type_list_rules = []
|
|
||||||
# Modify this comprehension
|
# Modify this comprehension
|
||||||
members = [
|
members = [
|
||||||
f' "\\"{name}\\"" ":" {map_pydantic_type_to_gbnf(param_type)}'
|
f' "\\"{name}\\"" ":" {map_pydantic_type_to_gbnf(param_type)}'
|
||||||
@ -116,27 +121,25 @@ def get_members_structure(cls, rule_name):
|
|||||||
|
|
||||||
result += '"," '.join(members)
|
result += '"," '.join(members)
|
||||||
result += ' "}"'
|
result += ' "}"'
|
||||||
return result, type_list_rules
|
return result
|
||||||
elif rule_name == "custom-class-any":
|
if rule_name == "custom-class-any":
|
||||||
result = f"{rule_name} ::= "
|
result = f"{rule_name} ::= "
|
||||||
result += "value"
|
result += "value"
|
||||||
type_list_rules = []
|
return result
|
||||||
return result, type_list_rules
|
|
||||||
else:
|
|
||||||
init_signature = inspect.signature(cls.__init__)
|
|
||||||
parameters = init_signature.parameters
|
|
||||||
result = f'{rule_name} ::= "{{"'
|
|
||||||
type_list_rules = []
|
|
||||||
# Modify this comprehension too
|
|
||||||
members = [
|
|
||||||
f' "\\"{name}\\"" ":" {map_pydantic_type_to_gbnf(param.annotation)}'
|
|
||||||
for name, param in parameters.items()
|
|
||||||
if name != "self" and param.annotation != inspect.Parameter.empty
|
|
||||||
]
|
|
||||||
|
|
||||||
result += '", "'.join(members)
|
init_signature = inspect.signature(cls.__init__)
|
||||||
result += ' "}"'
|
parameters = init_signature.parameters
|
||||||
return result, type_list_rules
|
result = f'{rule_name} ::= "{{"'
|
||||||
|
# Modify this comprehension too
|
||||||
|
members = [
|
||||||
|
f' "\\"{name}\\"" ":" {map_pydantic_type_to_gbnf(param.annotation)}'
|
||||||
|
for name, param in parameters.items()
|
||||||
|
if name != "self" and param.annotation != inspect.Parameter.empty
|
||||||
|
]
|
||||||
|
|
||||||
|
result += '", "'.join(members)
|
||||||
|
result += ' "}"'
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
def regex_to_gbnf(regex_pattern: str) -> str:
|
def regex_to_gbnf(regex_pattern: str) -> str:
|
||||||
@ -269,7 +272,7 @@ def generate_gbnf_float_rules(max_digit=None, min_digit=None, max_precision=None
|
|||||||
|
|
||||||
def generate_gbnf_rule_for_type(
|
def generate_gbnf_rule_for_type(
|
||||||
model_name, field_name, field_type, is_optional, processed_models, created_rules, field_info=None
|
model_name, field_name, field_type, is_optional, processed_models, created_rules, field_info=None
|
||||||
) -> Tuple[str, list]:
|
) -> tuple[str, list[str]]:
|
||||||
"""
|
"""
|
||||||
Generate GBNF rule for a given field type.
|
Generate GBNF rule for a given field type.
|
||||||
|
|
||||||
@ -283,7 +286,7 @@ def generate_gbnf_rule_for_type(
|
|||||||
:param field_info: Additional information about the field (optional).
|
:param field_info: Additional information about the field (optional).
|
||||||
|
|
||||||
:return: Tuple containing the GBNF type and a list of additional rules.
|
:return: Tuple containing the GBNF type and a list of additional rules.
|
||||||
:rtype: Tuple[str, list]
|
:rtype: tuple[str, list]
|
||||||
"""
|
"""
|
||||||
rules = []
|
rules = []
|
||||||
|
|
||||||
@ -321,8 +324,7 @@ def generate_gbnf_rule_for_type(
|
|||||||
gbnf_type, rules = model_name + "-" + field_name, rules
|
gbnf_type, rules = model_name + "-" + field_name, rules
|
||||||
|
|
||||||
elif gbnf_type.startswith("custom-class-"):
|
elif gbnf_type.startswith("custom-class-"):
|
||||||
nested_model_rules, field_types = get_members_structure(field_type, gbnf_type)
|
rules.append(get_members_structure(field_type, gbnf_type))
|
||||||
rules.append(nested_model_rules)
|
|
||||||
elif gbnf_type.startswith("custom-dict-"):
|
elif gbnf_type.startswith("custom-dict-"):
|
||||||
key_type, value_type = get_args(field_type)
|
key_type, value_type = get_args(field_type)
|
||||||
|
|
||||||
@ -341,14 +343,14 @@ def generate_gbnf_rule_for_type(
|
|||||||
union_rules = []
|
union_rules = []
|
||||||
|
|
||||||
for union_type in union_types:
|
for union_type in union_types:
|
||||||
if isinstance(union_type, _GenericAlias):
|
if isinstance(union_type, GenericAlias):
|
||||||
union_gbnf_type, union_rules_list = generate_gbnf_rule_for_type(
|
union_gbnf_type, union_rules_list = generate_gbnf_rule_for_type(
|
||||||
model_name, field_name, union_type, False, processed_models, created_rules
|
model_name, field_name, union_type, False, processed_models, created_rules
|
||||||
)
|
)
|
||||||
union_rules.append(union_gbnf_type)
|
union_rules.append(union_gbnf_type)
|
||||||
rules.extend(union_rules_list)
|
rules.extend(union_rules_list)
|
||||||
|
|
||||||
elif not issubclass(union_type, NoneType):
|
elif not issubclass(union_type, type(None)):
|
||||||
union_gbnf_type, union_rules_list = generate_gbnf_rule_for_type(
|
union_gbnf_type, union_rules_list = generate_gbnf_rule_for_type(
|
||||||
model_name, field_name, union_type, False, processed_models, created_rules
|
model_name, field_name, union_type, False, processed_models, created_rules
|
||||||
)
|
)
|
||||||
@ -424,14 +426,10 @@ def generate_gbnf_rule_for_type(
|
|||||||
else:
|
else:
|
||||||
gbnf_type, rules = gbnf_type, []
|
gbnf_type, rules = gbnf_type, []
|
||||||
|
|
||||||
if gbnf_type not in created_rules:
|
return gbnf_type, rules
|
||||||
return gbnf_type, rules
|
|
||||||
else:
|
|
||||||
if gbnf_type in created_rules:
|
|
||||||
return gbnf_type, rules
|
|
||||||
|
|
||||||
|
|
||||||
def generate_gbnf_grammar(model: Type[BaseModel], processed_models: set, created_rules: dict) -> (list, bool, bool):
|
def generate_gbnf_grammar(model: type[BaseModel], processed_models: set[type[BaseModel]], created_rules: dict[str, list[str]]) -> tuple[list[str], bool]:
|
||||||
"""
|
"""
|
||||||
|
|
||||||
Generate GBnF Grammar
|
Generate GBnF Grammar
|
||||||
@ -452,7 +450,7 @@ def generate_gbnf_grammar(model: Type[BaseModel], processed_models: set, created
|
|||||||
```
|
```
|
||||||
"""
|
"""
|
||||||
if model in processed_models:
|
if model in processed_models:
|
||||||
return []
|
return [], False
|
||||||
|
|
||||||
processed_models.add(model)
|
processed_models.add(model)
|
||||||
model_name = format_model_and_field_name(model.__name__)
|
model_name = format_model_and_field_name(model.__name__)
|
||||||
@ -518,7 +516,7 @@ def generate_gbnf_grammar(model: Type[BaseModel], processed_models: set, created
|
|||||||
|
|
||||||
|
|
||||||
def generate_gbnf_grammar_from_pydantic_models(
|
def generate_gbnf_grammar_from_pydantic_models(
|
||||||
models: List[Type[BaseModel]], outer_object_name: str = None, outer_object_content: str = None,
|
models: list[type[BaseModel]], outer_object_name: str | None = None, outer_object_content: str | None = None,
|
||||||
list_of_outputs: bool = False
|
list_of_outputs: bool = False
|
||||||
) -> str:
|
) -> str:
|
||||||
"""
|
"""
|
||||||
@ -528,7 +526,7 @@ def generate_gbnf_grammar_from_pydantic_models(
|
|||||||
* grammar.
|
* grammar.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
models (List[Type[BaseModel]]): A list of Pydantic models to generate the grammar from.
|
models (list[type[BaseModel]]): A list of Pydantic models to generate the grammar from.
|
||||||
outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling.
|
outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling.
|
||||||
outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling.
|
outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling.
|
||||||
list_of_outputs (str, optional): Allows a list of output objects
|
list_of_outputs (str, optional): Allows a list of output objects
|
||||||
@ -543,9 +541,9 @@ def generate_gbnf_grammar_from_pydantic_models(
|
|||||||
# root ::= UserModel | PostModel
|
# root ::= UserModel | PostModel
|
||||||
# ...
|
# ...
|
||||||
"""
|
"""
|
||||||
processed_models = set()
|
processed_models: set[type[BaseModel]] = set()
|
||||||
all_rules = []
|
all_rules = []
|
||||||
created_rules = {}
|
created_rules: dict[str, list[str]] = {}
|
||||||
if outer_object_name is None:
|
if outer_object_name is None:
|
||||||
for model in models:
|
for model in models:
|
||||||
model_rules, _ = generate_gbnf_grammar(model, processed_models, created_rules)
|
model_rules, _ = generate_gbnf_grammar(model, processed_models, created_rules)
|
||||||
@ -608,7 +606,7 @@ def get_primitive_grammar(grammar):
|
|||||||
Returns:
|
Returns:
|
||||||
str: GBNF primitive grammar string.
|
str: GBNF primitive grammar string.
|
||||||
"""
|
"""
|
||||||
type_list = []
|
type_list: list[type[object]] = []
|
||||||
if "string-list" in grammar:
|
if "string-list" in grammar:
|
||||||
type_list.append(str)
|
type_list.append(str)
|
||||||
if "boolean-list" in grammar:
|
if "boolean-list" in grammar:
|
||||||
@ -666,14 +664,14 @@ triple-quotes ::= "'''" """
|
|||||||
|
|
||||||
|
|
||||||
def generate_markdown_documentation(
|
def generate_markdown_documentation(
|
||||||
pydantic_models: List[Type[BaseModel]], model_prefix="Model", fields_prefix="Fields",
|
pydantic_models: list[type[BaseModel]], model_prefix="Model", fields_prefix="Fields",
|
||||||
documentation_with_field_description=True
|
documentation_with_field_description=True
|
||||||
) -> str:
|
) -> str:
|
||||||
"""
|
"""
|
||||||
Generate markdown documentation for a list of Pydantic models.
|
Generate markdown documentation for a list of Pydantic models.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
pydantic_models (List[Type[BaseModel]]): List of Pydantic model classes.
|
pydantic_models (list[type[BaseModel]]): list of Pydantic model classes.
|
||||||
model_prefix (str): Prefix for the model section.
|
model_prefix (str): Prefix for the model section.
|
||||||
fields_prefix (str): Prefix for the fields section.
|
fields_prefix (str): Prefix for the fields section.
|
||||||
documentation_with_field_description (bool): Include field descriptions in the documentation.
|
documentation_with_field_description (bool): Include field descriptions in the documentation.
|
||||||
@ -731,7 +729,7 @@ def generate_markdown_documentation(
|
|||||||
|
|
||||||
|
|
||||||
def generate_field_markdown(
|
def generate_field_markdown(
|
||||||
field_name: str, field_type: Type[Any], model: Type[BaseModel], depth=1,
|
field_name: str, field_type: type[Any], model: type[BaseModel], depth=1,
|
||||||
documentation_with_field_description=True
|
documentation_with_field_description=True
|
||||||
) -> str:
|
) -> str:
|
||||||
"""
|
"""
|
||||||
@ -739,8 +737,8 @@ def generate_field_markdown(
|
|||||||
|
|
||||||
Args:
|
Args:
|
||||||
field_name (str): Name of the field.
|
field_name (str): Name of the field.
|
||||||
field_type (Type[Any]): Type of the field.
|
field_type (type[Any]): Type of the field.
|
||||||
model (Type[BaseModel]): Pydantic model class.
|
model (type[BaseModel]): Pydantic model class.
|
||||||
depth (int): Indentation depth in the documentation.
|
depth (int): Indentation depth in the documentation.
|
||||||
documentation_with_field_description (bool): Include field descriptions in the documentation.
|
documentation_with_field_description (bool): Include field descriptions in the documentation.
|
||||||
|
|
||||||
@ -798,7 +796,7 @@ def generate_field_markdown(
|
|||||||
return field_text
|
return field_text
|
||||||
|
|
||||||
|
|
||||||
def format_json_example(example: dict, depth: int) -> str:
|
def format_json_example(example: dict[str, Any], depth: int) -> str:
|
||||||
"""
|
"""
|
||||||
Format a JSON example into a readable string with indentation.
|
Format a JSON example into a readable string with indentation.
|
||||||
|
|
||||||
@ -819,14 +817,14 @@ def format_json_example(example: dict, depth: int) -> str:
|
|||||||
|
|
||||||
|
|
||||||
def generate_text_documentation(
|
def generate_text_documentation(
|
||||||
pydantic_models: List[Type[BaseModel]], model_prefix="Model", fields_prefix="Fields",
|
pydantic_models: list[type[BaseModel]], model_prefix="Model", fields_prefix="Fields",
|
||||||
documentation_with_field_description=True
|
documentation_with_field_description=True
|
||||||
) -> str:
|
) -> str:
|
||||||
"""
|
"""
|
||||||
Generate text documentation for a list of Pydantic models.
|
Generate text documentation for a list of Pydantic models.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
pydantic_models (List[Type[BaseModel]]): List of Pydantic model classes.
|
pydantic_models (list[type[BaseModel]]): List of Pydantic model classes.
|
||||||
model_prefix (str): Prefix for the model section.
|
model_prefix (str): Prefix for the model section.
|
||||||
fields_prefix (str): Prefix for the fields section.
|
fields_prefix (str): Prefix for the fields section.
|
||||||
documentation_with_field_description (bool): Include field descriptions in the documentation.
|
documentation_with_field_description (bool): Include field descriptions in the documentation.
|
||||||
@ -885,7 +883,7 @@ def generate_text_documentation(
|
|||||||
|
|
||||||
|
|
||||||
def generate_field_text(
|
def generate_field_text(
|
||||||
field_name: str, field_type: Type[Any], model: Type[BaseModel], depth=1,
|
field_name: str, field_type: type[Any], model: type[BaseModel], depth=1,
|
||||||
documentation_with_field_description=True
|
documentation_with_field_description=True
|
||||||
) -> str:
|
) -> str:
|
||||||
"""
|
"""
|
||||||
@ -893,8 +891,8 @@ def generate_field_text(
|
|||||||
|
|
||||||
Args:
|
Args:
|
||||||
field_name (str): Name of the field.
|
field_name (str): Name of the field.
|
||||||
field_type (Type[Any]): Type of the field.
|
field_type (type[Any]): Type of the field.
|
||||||
model (Type[BaseModel]): Pydantic model class.
|
model (type[BaseModel]): Pydantic model class.
|
||||||
depth (int): Indentation depth in the documentation.
|
depth (int): Indentation depth in the documentation.
|
||||||
documentation_with_field_description (bool): Include field descriptions in the documentation.
|
documentation_with_field_description (bool): Include field descriptions in the documentation.
|
||||||
|
|
||||||
@ -1017,8 +1015,8 @@ def generate_and_save_gbnf_grammar_and_documentation(
|
|||||||
pydantic_model_list,
|
pydantic_model_list,
|
||||||
grammar_file_path="./generated_grammar.gbnf",
|
grammar_file_path="./generated_grammar.gbnf",
|
||||||
documentation_file_path="./generated_grammar_documentation.md",
|
documentation_file_path="./generated_grammar_documentation.md",
|
||||||
outer_object_name: str = None,
|
outer_object_name: str | None = None,
|
||||||
outer_object_content: str = None,
|
outer_object_content: str | None = None,
|
||||||
model_prefix: str = "Output Model",
|
model_prefix: str = "Output Model",
|
||||||
fields_prefix: str = "Output Fields",
|
fields_prefix: str = "Output Fields",
|
||||||
list_of_outputs: bool = False,
|
list_of_outputs: bool = False,
|
||||||
@ -1053,8 +1051,8 @@ def generate_and_save_gbnf_grammar_and_documentation(
|
|||||||
|
|
||||||
def generate_gbnf_grammar_and_documentation(
|
def generate_gbnf_grammar_and_documentation(
|
||||||
pydantic_model_list,
|
pydantic_model_list,
|
||||||
outer_object_name: str = None,
|
outer_object_name: str | None = None,
|
||||||
outer_object_content: str = None,
|
outer_object_content: str | None = None,
|
||||||
model_prefix: str = "Output Model",
|
model_prefix: str = "Output Model",
|
||||||
fields_prefix: str = "Output Fields",
|
fields_prefix: str = "Output Fields",
|
||||||
list_of_outputs: bool = False,
|
list_of_outputs: bool = False,
|
||||||
@ -1086,9 +1084,9 @@ def generate_gbnf_grammar_and_documentation(
|
|||||||
|
|
||||||
|
|
||||||
def generate_gbnf_grammar_and_documentation_from_dictionaries(
|
def generate_gbnf_grammar_and_documentation_from_dictionaries(
|
||||||
dictionaries: List[dict],
|
dictionaries: list[dict[str, Any]],
|
||||||
outer_object_name: str = None,
|
outer_object_name: str | None = None,
|
||||||
outer_object_content: str = None,
|
outer_object_content: str | None = None,
|
||||||
model_prefix: str = "Output Model",
|
model_prefix: str = "Output Model",
|
||||||
fields_prefix: str = "Output Fields",
|
fields_prefix: str = "Output Fields",
|
||||||
list_of_outputs: bool = False,
|
list_of_outputs: bool = False,
|
||||||
@ -1098,7 +1096,7 @@ def generate_gbnf_grammar_and_documentation_from_dictionaries(
|
|||||||
Generate GBNF grammar and documentation from a list of dictionaries.
|
Generate GBNF grammar and documentation from a list of dictionaries.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
dictionaries (List[dict]): List of dictionaries representing Pydantic models.
|
dictionaries (list[dict]): List of dictionaries representing Pydantic models.
|
||||||
outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling.
|
outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling.
|
||||||
outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling.
|
outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling.
|
||||||
model_prefix (str): Prefix for the model section in the documentation.
|
model_prefix (str): Prefix for the model section in the documentation.
|
||||||
@ -1120,7 +1118,7 @@ def generate_gbnf_grammar_and_documentation_from_dictionaries(
|
|||||||
return grammar, documentation
|
return grammar, documentation
|
||||||
|
|
||||||
|
|
||||||
def create_dynamic_model_from_function(func: Callable):
|
def create_dynamic_model_from_function(func: Callable[..., Any]):
|
||||||
"""
|
"""
|
||||||
Creates a dynamic Pydantic model from a given function's type hints and adds the function as a 'run' method.
|
Creates a dynamic Pydantic model from a given function's type hints and adds the function as a 'run' method.
|
||||||
|
|
||||||
@ -1135,6 +1133,7 @@ def create_dynamic_model_from_function(func: Callable):
|
|||||||
sig = inspect.signature(func)
|
sig = inspect.signature(func)
|
||||||
|
|
||||||
# Parse the docstring
|
# Parse the docstring
|
||||||
|
assert func.__doc__ is not None
|
||||||
docstring = parse(func.__doc__)
|
docstring = parse(func.__doc__)
|
||||||
|
|
||||||
dynamic_fields = {}
|
dynamic_fields = {}
|
||||||
@ -1157,7 +1156,6 @@ def create_dynamic_model_from_function(func: Callable):
|
|||||||
f"Parameter '{param.name}' in function '{func.__name__}' lacks a description in the docstring")
|
f"Parameter '{param.name}' in function '{func.__name__}' lacks a description in the docstring")
|
||||||
|
|
||||||
# Add parameter details to the schema
|
# Add parameter details to the schema
|
||||||
param_doc = next((d for d in docstring.params if d.arg_name == param.name), None)
|
|
||||||
param_docs.append((param.name, param_doc))
|
param_docs.append((param.name, param_doc))
|
||||||
if param.default == inspect.Parameter.empty:
|
if param.default == inspect.Parameter.empty:
|
||||||
default_value = ...
|
default_value = ...
|
||||||
@ -1166,10 +1164,10 @@ def create_dynamic_model_from_function(func: Callable):
|
|||||||
dynamic_fields[param.name] = (
|
dynamic_fields[param.name] = (
|
||||||
param.annotation if param.annotation != inspect.Parameter.empty else str, default_value)
|
param.annotation if param.annotation != inspect.Parameter.empty else str, default_value)
|
||||||
# Creating the dynamic model
|
# Creating the dynamic model
|
||||||
dynamic_model = create_model(f"{func.__name__}", **dynamic_fields)
|
dynamic_model = create_model(f"{func.__name__}", **dynamic_fields) # type: ignore[call-overload]
|
||||||
|
|
||||||
for param_doc in param_docs:
|
for name, param_doc in param_docs:
|
||||||
dynamic_model.model_fields[param_doc[0]].description = param_doc[1].description
|
dynamic_model.model_fields[name].description = param_doc.description
|
||||||
|
|
||||||
dynamic_model.__doc__ = docstring.short_description
|
dynamic_model.__doc__ = docstring.short_description
|
||||||
|
|
||||||
@ -1182,16 +1180,16 @@ def create_dynamic_model_from_function(func: Callable):
|
|||||||
return dynamic_model
|
return dynamic_model
|
||||||
|
|
||||||
|
|
||||||
def add_run_method_to_dynamic_model(model: Type[BaseModel], func: Callable):
|
def add_run_method_to_dynamic_model(model: type[BaseModel], func: Callable[..., Any]):
|
||||||
"""
|
"""
|
||||||
Add a 'run' method to a dynamic Pydantic model, using the provided function.
|
Add a 'run' method to a dynamic Pydantic model, using the provided function.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
model (Type[BaseModel]): Dynamic Pydantic model class.
|
model (type[BaseModel]): Dynamic Pydantic model class.
|
||||||
func (Callable): Function to be added as a 'run' method to the model.
|
func (Callable): Function to be added as a 'run' method to the model.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Type[BaseModel]: Pydantic model class with the added 'run' method.
|
type[BaseModel]: Pydantic model class with the added 'run' method.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def run_method_wrapper(self):
|
def run_method_wrapper(self):
|
||||||
@ -1204,15 +1202,15 @@ def add_run_method_to_dynamic_model(model: Type[BaseModel], func: Callable):
|
|||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
def create_dynamic_models_from_dictionaries(dictionaries: List[dict]):
|
def create_dynamic_models_from_dictionaries(dictionaries: list[dict[str, Any]]):
|
||||||
"""
|
"""
|
||||||
Create a list of dynamic Pydantic model classes from a list of dictionaries.
|
Create a list of dynamic Pydantic model classes from a list of dictionaries.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
dictionaries (List[dict]): List of dictionaries representing model structures.
|
dictionaries (list[dict]): List of dictionaries representing model structures.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
List[Type[BaseModel]]: List of generated dynamic Pydantic model classes.
|
list[type[BaseModel]]: List of generated dynamic Pydantic model classes.
|
||||||
"""
|
"""
|
||||||
dynamic_models = []
|
dynamic_models = []
|
||||||
for func in dictionaries:
|
for func in dictionaries:
|
||||||
@ -1249,7 +1247,7 @@ def list_to_enum(enum_name, values):
|
|||||||
return Enum(enum_name, {value: value for value in values})
|
return Enum(enum_name, {value: value for value in values})
|
||||||
|
|
||||||
|
|
||||||
def convert_dictionary_to_pydantic_model(dictionary: dict, model_name: str = "CustomModel") -> Type[BaseModel]:
|
def convert_dictionary_to_pydantic_model(dictionary: dict[str, Any], model_name: str = "CustomModel") -> type[Any]:
|
||||||
"""
|
"""
|
||||||
Convert a dictionary to a Pydantic model class.
|
Convert a dictionary to a Pydantic model class.
|
||||||
|
|
||||||
@ -1258,9 +1256,9 @@ def convert_dictionary_to_pydantic_model(dictionary: dict, model_name: str = "Cu
|
|||||||
model_name (str): Name of the generated Pydantic model.
|
model_name (str): Name of the generated Pydantic model.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Type[BaseModel]: Generated Pydantic model class.
|
type[BaseModel]: Generated Pydantic model class.
|
||||||
"""
|
"""
|
||||||
fields = {}
|
fields: dict[str, Any] = {}
|
||||||
|
|
||||||
if "properties" in dictionary:
|
if "properties" in dictionary:
|
||||||
for field_name, field_data in dictionary.get("properties", {}).items():
|
for field_name, field_data in dictionary.get("properties", {}).items():
|
||||||
@ -1277,7 +1275,7 @@ def convert_dictionary_to_pydantic_model(dictionary: dict, model_name: str = "Cu
|
|||||||
if items != {}:
|
if items != {}:
|
||||||
array = {"properties": items}
|
array = {"properties": items}
|
||||||
array_type = convert_dictionary_to_pydantic_model(array, f"{model_name}_{field_name}_items")
|
array_type = convert_dictionary_to_pydantic_model(array, f"{model_name}_{field_name}_items")
|
||||||
fields[field_name] = (List[array_type], ...)
|
fields[field_name] = (List[array_type], ...) # type: ignore[valid-type]
|
||||||
else:
|
else:
|
||||||
fields[field_name] = (list, ...)
|
fields[field_name] = (list, ...)
|
||||||
elif field_type == "object":
|
elif field_type == "object":
|
||||||
|
Loading…
Reference in New Issue
Block a user