diff --git a/ggml-backend.c b/ggml-backend.c index 8e95247a3..76f5a3571 100644 --- a/ggml-backend.c +++ b/ggml-backend.c @@ -94,7 +94,6 @@ struct ggml_backend_buffer * ggml_allocator_simple_init(void * data, size_t size *allocator = (struct ggml_backend_buffer){ /* .interface = */ ggml_allocator_simple_interface, /* .context = */ ctx, - /* .backend_size = */ 0, /* .backend_data = */ NULL, }; return allocator; @@ -146,6 +145,9 @@ void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst return; } + //printf("src->data = %p, src->extra = %p\n", src->data, src->extra); + //printf("dst->data = %p, dst->extra = %p\n", dst->data, dst->extra); + if (dst->backend->interface.cpy_tensor_from != NULL) { dst->backend->interface.cpy_tensor_from(dst->backend->context, src, dst); } else if (src->backend->interface.cpy_tensor_to != NULL) { @@ -193,7 +195,6 @@ static struct ggml_backend_buffer * ggml_backend_cpu_alloc_buffer(struct ggml_ba struct ggml_backend_buffer * buffer = ggml_allocator_simple_init(data, size, TENSOR_ALIGNMENT); buffer->interface.free_data = ggml_backend_cpu_free_buffer; - buffer->backend_size = size; buffer->backend_data = data; return buffer; diff --git a/ggml-backend.h b/ggml-backend.h index 37a6addb4..f29b55591 100644 --- a/ggml-backend.h +++ b/ggml-backend.h @@ -27,7 +27,6 @@ extern "C" { struct ggml_backend_buffer { struct ggml_backend_buffer_interface interface; ggml_buffer_context_t context; - size_t backend_size; void * backend_data; }; diff --git a/ggml-metal.h b/ggml-metal.h index efde14544..e6dd8b900 100644 --- a/ggml-metal.h +++ b/ggml-metal.h @@ -19,14 +19,9 @@ #pragma once -#include "ggml.h" - #include #include -// max memory buffers that can be mapped to the device -#define GGML_METAL_MAX_BUFFERS 16 - //struct ggml_tensor; //struct ggml_cgraph; @@ -34,16 +29,9 @@ extern "C" { #endif -struct ggml_backend * ggml_backend_metal_init(struct ggml_backend * backend_cpu); - -// TODO: temporary - move to backend interface -bool ggml_backend_metal_map_buffer( - struct ggml_backend * backend, - const char * name, - void * data, - size_t size, - size_t max_size); +struct ggml_backend; +struct ggml_backend * ggml_backend_metal_init(void); //struct ggml_metal_context; // diff --git a/ggml-metal.m b/ggml-metal.m index 0bc825277..573a9e767 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -12,18 +12,16 @@ #else #define metal_printf(...) fprintf(stderr, __VA_ARGS__) #endif +//#define metal_printf(...) fprintf(stderr, __VA_ARGS__) #define UNUSED(x) (void)(x) -struct ggml_metal_buffer { - const char * name; - - void * data; - size_t size; - - id metal; +struct ggml_metal_buffer_wrapper { + id buffer; }; +static void * g_ptr_base = (void *)0x1000; + struct ggml_metal_context { int n_cb; @@ -33,9 +31,6 @@ struct ggml_metal_context { id queue; id library; - int n_buffers; - struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS]; - // custom kernels #define GGML_METAL_DECL_KERNEL(name) \ id function_##name; \ @@ -96,7 +91,6 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) { ctx->n_cb = n_cb; ctx->device = MTLCreateSystemDefaultDevice(); ctx->queue = [ctx->device newCommandQueue]; - ctx->n_buffers = 0; // determine if we can use MPS if (MPSSupportsMTLDevice(ctx->device)) { @@ -205,9 +199,6 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) { void ggml_metal_free(struct ggml_metal_context * ctx) { fprintf(stderr, "%s: deallocating\n", __func__); - for (int i = 0; i < ctx->n_buffers; ++i) { - [ctx->buffers[i].metal release]; - } free(ctx); } @@ -215,143 +206,29 @@ void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb) { ctx->n_cb = n_cb; } -// finds the Metal buffer that contains the tensor data on the GPU device -// the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the -// Metal buffer based on the host memory pointer -// -static id ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) { - //fprintf(stderr, "%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach); - - const int64_t tsize = ggml_nbytes(t); - - // find the view that contains the tensor fully - for (int i = 0; i < ctx->n_buffers; ++i) { - const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data; - - if (ioffs >= 0 && ioffs + tsize <= (int64_t) ctx->buffers[i].size) { - *offs = (size_t) ioffs; - - //fprintf(stderr, "%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs); - - return ctx->buffers[i].metal; - } +static id ggml_metal_get_buffer(struct ggml_tensor * tensor, size_t * offs) { + if (tensor == nil) { + return nil; } - fprintf(stderr, "%s: error: buffer is nil for tensor '%s'\n", __func__, t->name); - - return nil; -} - -// TODO: rename to ggml_metal_map_buffer -bool ggml_metal_add_buffer( - struct ggml_metal_context * ctx, - const char * name, - void * data, - size_t size, - size_t max_size) { - if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) { - fprintf(stderr, "%s: too many buffers\n", __func__); - return false; - } - - if (data) { - // verify that the buffer does not overlap with any of the existing buffers - for (int i = 0; i < ctx->n_buffers; ++i) { - const int64_t ioffs = (int64_t) data - (int64_t) ctx->buffers[i].data; - - if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) { - fprintf(stderr, "%s: error: buffer '%s' overlaps with '%s'\n", __func__, name, ctx->buffers[i].name); - return false; - } - } - - const size_t size_page = getpagesize(); - - size_t size_aligned = size; - if ((size_aligned % size_page) != 0) { - size_aligned += (size_page - (size_aligned % size_page)); - } - - // the buffer fits into the max buffer size allowed by the device - if (size_aligned <= ctx->device.maxBufferLength) { - ctx->buffers[ctx->n_buffers].name = name; - ctx->buffers[ctx->n_buffers].data = data; - ctx->buffers[ctx->n_buffers].size = size; - - ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil]; - - if (ctx->buffers[ctx->n_buffers].metal == nil) { - fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0); - return false; - } - - fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0); - - ++ctx->n_buffers; - } else { - // this overlap between the views will guarantee that the tensor with the maximum size will fully fit into - // one of the views - const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case - const size_t size_step = ctx->device.maxBufferLength - size_ovlp; - const size_t size_view = ctx->device.maxBufferLength; - - for (size_t i = 0; i < size; i += size_step) { - const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i); - - ctx->buffers[ctx->n_buffers].name = name; - ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i); - ctx->buffers[ctx->n_buffers].size = size_step_aligned; - - ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil]; - - if (ctx->buffers[ctx->n_buffers].metal == nil) { - fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0); - return false; + switch (tensor->op) { + case GGML_OP_RESHAPE: + case GGML_OP_VIEW: + case GGML_OP_TRANSPOSE: + case GGML_OP_PERMUTE: + { + if (tensor->op == GGML_OP_VIEW) { + //printf("view offs = %zu\n", *(size_t *)tensor->op_params); } - - fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i); - if (i + size_step < size) { - fprintf(stderr, "\n"); - } - - ++ctx->n_buffers; + return ggml_metal_get_buffer(tensor->src[0], offs); } - } - fprintf(stderr, ", (%8.2f / %8.2f)", - ctx->device.currentAllocatedSize / 1024.0 / 1024.0, - ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); - - if (ctx->device.currentAllocatedSize > ctx->device.recommendedMaxWorkingSetSize) { - fprintf(stderr, ", warning: current allocated size is greater than the recommended max working set size\n"); - } else { - fprintf(stderr, "\n"); - } + default: {} } - return true; -} - -void ggml_metal_set_tensor( - struct ggml_metal_context * ctx, - struct ggml_tensor * t) { - metal_printf("%s: set input for tensor '%s'\n", __func__, t->name); - - size_t offs; - id id_dst = ggml_metal_get_buffer(ctx, t, &offs); - - memcpy((void *) ((uint8_t *) id_dst.contents + offs), t->data, ggml_nbytes(t)); -} - -void ggml_metal_get_tensor( - struct ggml_metal_context * ctx, - struct ggml_tensor * t) { - metal_printf("%s: extract results for tensor '%s'\n", __func__, t->name); - - size_t offs; - id id_src = ggml_metal_get_buffer(ctx, t, &offs); - - memcpy(t->data, (void *) ((uint8_t *) id_src.contents + offs), ggml_nbytes(t)); + *offs = (size_t) tensor->data - (size_t) g_ptr_base; + //printf("%s: offs = %zu, %p, op = %s\n", __func__, *offs, tensor->extra, ggml_op_name(tensor->op)); + return ((struct ggml_metal_buffer_wrapper *) tensor->extra)->buffer; } void ggml_metal_graph_compute( @@ -432,23 +309,35 @@ void ggml_metal_graph_compute( const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT; const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT; - id id_src0 = src0 ? ggml_metal_get_buffer(ctx, src0, &offs_src0) : nil; - id id_src1 = src1 ? ggml_metal_get_buffer(ctx, src1, &offs_src1) : nil; - id id_dst = dst ? ggml_metal_get_buffer(ctx, dst, &offs_dst) : nil; + switch (dst->op) { + case GGML_OP_NONE: + case GGML_OP_RESHAPE: + case GGML_OP_VIEW: + case GGML_OP_TRANSPOSE: + case GGML_OP_PERMUTE: + { + continue; + } break; + default: break; + } - //metal_printf("%s: op - %s\n", __func__, ggml_op_name(dst->op)); - //if (src0) { - // metal_printf("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02, - // ggml_is_contiguous(src0), src0->name); - //} - //if (src1) { - // metal_printf("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12, - // ggml_is_contiguous(src1), src1->name); - //} - //if (dst) { - // metal_printf("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2, - // dst->name); - //} + id id_src0 = ggml_metal_get_buffer(src0, &offs_src0); + id id_src1 = ggml_metal_get_buffer(src1, &offs_src1); + id id_dst = ggml_metal_get_buffer(dst, &offs_dst); + + metal_printf("%s: op - %s\n", __func__, ggml_op_name(dst->op)); + if (src0) { + metal_printf("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02, + ggml_is_contiguous(src0), src0->name); + } + if (src1) { + metal_printf("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12, + ggml_is_contiguous(src1), src1->name); + } + if (dst) { + metal_printf("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2, + dst->name); + } switch (dst->op) { case GGML_OP_NONE: @@ -501,7 +390,9 @@ void ggml_metal_graph_compute( encoder = [command_buffer computeCommandEncoder]; } - const float scale = *(const float *) src1->data; + //const float scale = *(const float *) src1->data; + const float scale = ((float *)((char *)[((struct ggml_metal_buffer_wrapper *)(src1->extra))->buffer contents] + (size_t) src1->data - (size_t)g_ptr_base))[0]; + //printf("scale: %f, src1->data: %p, src1->extra: %p, src1->extra->buffer: %p\n", scale, src1->data, src1->extra, ((struct ggml_metal_buffer_wrapper *)(src1->extra))->buffer); [encoder setComputePipelineState:ctx->pipeline_scale]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; @@ -578,7 +469,8 @@ void ggml_metal_graph_compute( encoder = [command_buffer computeCommandEncoder]; } - const int n_past = ((int32_t *)(src1->data))[0]; + //const int n_past = ((int32_t *)(src1->data))[0]; + const int n_past = ((int32_t *)(dst->op_params))[0]; [encoder setComputePipelineState:ctx->pipeline_diag_mask_inf]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; @@ -740,6 +632,10 @@ void ggml_metal_graph_compute( [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13]; [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14]; + //printf("id_src0 %p, offs_src0 %zu\n", id_src0, offs_src0); + //printf("id_src1 %p, offs_src1 %zu\n", id_src1, offs_src1); + //printf("id_dst %p, offs_dst %zu\n", id_dst, offs_dst); + if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1) { [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7) / 8, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } @@ -877,11 +773,10 @@ void ggml_metal_graph_compute( encoder = [command_buffer computeCommandEncoder]; } + const int n_past = ((int32_t *) dst->op_params)[0]; const int n_dims = ((int32_t *) dst->op_params)[1]; const int mode = ((int32_t *) dst->op_params)[2]; - const int n_past = ((int32_t *)(dst->op_params))[0]; - float freq_base; float freq_scale; memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float)); @@ -994,61 +889,140 @@ void ggml_metal_graph_compute( } } -bool ggml_backend_metal_map_buffer( - struct ggml_backend * backend, - const char * name, - void * data, - size_t size, - size_t max_size) { - return ggml_metal_add_buffer(backend->context, name, data, size, max_size); -} - static const char * ggml_backend_metal_name(struct ggml_backend * ctx) { return "Metal"; UNUSED(ctx); } +static void ggml_backend_metal_free(struct ggml_backend * backend) { + struct ggml_metal_context * ctx_metal = (struct ggml_metal_context *)backend->context; + ggml_metal_free(ctx_metal); + free(backend); +} + +static const size_t TENSOR_ALIGNMENT = 128; + +static void ggml_backend_metal_init_tensor(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) { + tensor->extra = alloc->backend_data; +} + +static void ggml_backend_metal_free_data(struct ggml_backend_buffer * alloc) { + struct ggml_metal_buffer_wrapper * wrapper = (struct ggml_metal_buffer_wrapper *)alloc->backend_data; + [wrapper->buffer release]; + free(wrapper); +} + +static struct ggml_backend_buffer * ggml_backend_metal_alloc_buffer(struct ggml_backend * backend, size_t size) { + struct ggml_metal_context * ctx_metal = (struct ggml_metal_context *)backend->context; + + struct ggml_metal_buffer_wrapper * wrapper = malloc(sizeof(struct ggml_metal_buffer_wrapper)); + wrapper->buffer = [ctx_metal->device newBufferWithLength:size options:MTLResourceStorageModeShared]; + if (wrapper->buffer == nil) { + fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size); + GGML_ASSERT(false); + } + + //printf("XXXXXXXXXXXXXXX ALOC: %p %p %p size = %zu\n", (void * )wrapper, (void *)&wrapper->buffer, (void *)[wrapper->buffer contents], size); + + struct ggml_backend_buffer * buffer = ggml_allocator_simple_init(g_ptr_base, size, TENSOR_ALIGNMENT); + buffer->interface.init_tensor = ggml_backend_metal_init_tensor; + buffer->interface.free_data = ggml_backend_metal_free_data; + buffer->backend_data = wrapper; + + return buffer; +} + +static void ggml_backend_metal_set_tensor_async(struct ggml_backend * backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds"); + GGML_ASSERT(tensor->extra != nil && "tensor not allocated"); + + struct ggml_metal_buffer_wrapper * wrapper = (struct ggml_metal_buffer_wrapper *)tensor->extra; + char * contents = (char *)[wrapper->buffer contents]; + + const size_t t_data = (size_t) tensor->data - (size_t) g_ptr_base; + + //printf("XXXXXXXXXXXXXXX SET : %p %p %p offset = %zu\n", (void *)(tensor->data), (void *)&wrapper->buffer, (void *)contents, offset); + + memcpy((char *)contents + t_data + offset, data, size); + + //memcpy((char *)tensor->data, data, size); + + UNUSED(backend); +} + +static void ggml_backend_metal_get_tensor_async(struct ggml_backend * backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { + GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds"); + //printf("XXXXXXXXXXXXXXX GET : %d %p, backend = %s\n", (void *)(tensor->data), (void *)tensor->extra, tensor->backend->interface.get_name(tensor->backend)); + GGML_ASSERT(tensor->extra != nil && "tensor not allocated"); + + struct ggml_metal_buffer_wrapper * wrapper = (struct ggml_metal_buffer_wrapper *)tensor->extra; + const char * contents = (const char *)[wrapper->buffer contents]; + + const size_t t_data = (size_t) tensor->data - (size_t) g_ptr_base; + + //printf("XXXXXXXXXXXXXXX GET : %p %p %p offset = %zu\n", (void *)(tensor->data), (void *)&wrapper->buffer, (void *)contents, offset); + + memcpy(data, (const char *)contents + t_data + offset, size); + + UNUSED(backend); +} + +static void ggml_backend_metal_synchronize(struct ggml_backend * backend) { + UNUSED(backend); +} + +static ggml_graph_plan_t ggml_backend_metal_graph_plan_create(struct ggml_backend * backend, struct ggml_cgraph * cgraph) { + GGML_ASSERT(false); + + return nil; + + UNUSED(backend); + UNUSED(cgraph); +} + +static void ggml_backend_metal_graph_plan_free(struct ggml_backend * backend, ggml_graph_plan_t plan) { + GGML_ASSERT(false); + + UNUSED(backend); + UNUSED(plan); +} + +static void ggml_backend_metal_graph_plan_compute(struct ggml_backend * backend, ggml_graph_plan_t plan) { + GGML_ASSERT(false); + + UNUSED(backend); + UNUSED(plan); +} + static void ggml_backend_metal_graph_compute(struct ggml_backend * backend, struct ggml_cgraph * cgraph) { ggml_metal_graph_compute(backend->context, cgraph); } static struct ggml_backend_interface metal_backend_interface = { /* .get_name = */ ggml_backend_metal_name, - /* .free = */ NULL, //ggml_backend_metal_alloc_buffer, - /* .alloc_buffer = */ NULL, //ggml_backend_metal_free_buffer, - /* .set_tensor_async = */ NULL, //ggml_backend_metal_reset_buffer, - /* .get_tensor_async = */ NULL, //ggml_backend_metal_alloc_tensor, - /* .synchronize = */ NULL, //ggml_backend_metal_set_tensor_async, - /* .cpy_tensor_from = */ NULL, //ggml_backend_metal_get_tensor_async, - /* .cpy_tensor_to = */ NULL, //ggml_backend_metal_synchronize, - /* .graph_plan_create = */ NULL, //nullptr, - /* .graph_plan_free = */ NULL, //nullptr, - /* .graph_plan_compute = */ NULL, //ggml_backend_metal_graph_plan_create, + /* .free = */ ggml_backend_metal_free, + /* .alloc_buffer = */ ggml_backend_metal_alloc_buffer, + /* .set_tensor_async = */ ggml_backend_metal_set_tensor_async, + /* .get_tensor_async = */ ggml_backend_metal_get_tensor_async, + /* .synchronize = */ ggml_backend_metal_synchronize, + /* .cpy_tensor_from = */ nil, //ggml_backend_metal_get_tensor_async, + /* .cpy_tensor_to = */ nil, //ggml_backend_metal_synchronize, + /* .graph_plan_create = */ ggml_backend_metal_graph_plan_create, + /* .graph_plan_free = */ ggml_backend_metal_graph_plan_free, + /* .graph_plan_compute = */ ggml_backend_metal_graph_plan_compute, /* .graph_compute = */ ggml_backend_metal_graph_compute, }; -struct ggml_backend * ggml_backend_metal_init(struct ggml_backend * backend_cpu) { - struct ggml_metal_context * ctx = ggml_metal_init(8); +struct ggml_backend * ggml_backend_metal_init(void) { + struct ggml_metal_context * ctx = ggml_metal_init(1); struct ggml_backend * backend_metal = malloc(sizeof(struct ggml_backend)); *backend_metal = (struct ggml_backend){ /* .interface = */ metal_backend_interface, /* .context = */ ctx, - /* .is_ram_shared = */ true, + /* .is_ram_shared = */ false, }; - // reuses CPU calls for now - backend_metal->interface.free = backend_cpu->interface.free; - backend_metal->interface.alloc_buffer = backend_cpu->interface.alloc_buffer; - backend_metal->interface.set_tensor_async = backend_cpu->interface.set_tensor_async; - backend_metal->interface.get_tensor_async = backend_cpu->interface.get_tensor_async; - backend_metal->interface.synchronize = backend_cpu->interface.synchronize; - backend_metal->interface.cpy_tensor_from = backend_cpu->interface.cpy_tensor_from; - backend_metal->interface.cpy_tensor_to = backend_cpu->interface.cpy_tensor_to; - backend_metal->interface.graph_plan_create = backend_cpu->interface.graph_plan_create; - backend_metal->interface.graph_plan_free = backend_cpu->interface.graph_plan_free; - backend_metal->interface.graph_plan_compute = backend_cpu->interface.graph_plan_compute; - return backend_metal; } diff --git a/ggml.c b/ggml.c index 19db8241f..1308fe244 100644 --- a/ggml.c +++ b/ggml.c @@ -4927,6 +4927,7 @@ struct ggml_tensor * ggml_view_tensor( result->nb[1] = src->nb[1]; result->nb[2] = src->nb[2]; result->nb[3] = src->nb[3]; + result->extra = src->extra; return result; } @@ -6262,6 +6263,7 @@ struct ggml_tensor * ggml_reshape( result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; result->src[1] = NULL; + result->extra = a->extra; return result; } @@ -6287,6 +6289,7 @@ struct ggml_tensor * ggml_reshape_1d( result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; result->src[1] = NULL; + result->extra = a->extra; return result; } @@ -6313,6 +6316,7 @@ struct ggml_tensor * ggml_reshape_2d( result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; result->src[1] = NULL; + result->extra = a->extra; return result; } @@ -6340,6 +6344,7 @@ struct ggml_tensor * ggml_reshape_3d( result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; result->src[1] = NULL; + result->extra = a->extra; return result; } @@ -6369,6 +6374,7 @@ struct ggml_tensor * ggml_reshape_4d( result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; result->src[1] = NULL; + result->extra = a->extra; return result; } @@ -6396,6 +6402,7 @@ struct ggml_tensor * ggml_view_1d( result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; result->src[1] = NULL; + result->extra = a->extra; return result; } @@ -6431,6 +6438,7 @@ struct ggml_tensor * ggml_view_2d( result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; result->src[1] = NULL; + result->extra = a->extra; return result; } @@ -6468,6 +6476,7 @@ struct ggml_tensor * ggml_view_3d( result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; result->src[1] = NULL; + result->extra = a->extra; return result; } @@ -6507,6 +6516,7 @@ struct ggml_tensor * ggml_view_4d( result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; result->src[1] = NULL; + result->extra = a->extra; return result; } @@ -6568,6 +6578,7 @@ struct ggml_tensor * ggml_permute( result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; result->src[1] = NULL; + result->extra = a->extra; int32_t params[] = { axis0, axis1, axis2, axis3 }; ggml_set_op_params(result, ¶ms, sizeof(params)); @@ -6599,6 +6610,7 @@ struct ggml_tensor * ggml_transpose( result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; result->src[1] = NULL; + result->extra = a->extra; return result; } diff --git a/llama.cpp b/llama.cpp index ffc4676f3..a215ab300 100644 --- a/llama.cpp +++ b/llama.cpp @@ -226,7 +226,7 @@ struct llama_model { // backends ggml_backend * backend_cpu = NULL; - ggml_buffer * buf_cpu = NULL; + ggml_buffer * buf_cpu = NULL; ggml_context * ctx_cpu = NULL; #ifdef GGML_USE_CUDA ggml_backend * backend_cuda = NULL; @@ -234,8 +234,8 @@ struct llama_model { ggml_context * ctx_cuda = NULL; #endif #ifdef GGML_USE_METAL - ggml_backend * backend_metal; - ggml_buffer * buf_metal; + ggml_backend * backend_metal = NULL; + ggml_buffer * buf_metal = NULL; ggml_context * ctx_metal = NULL; #endif @@ -991,7 +991,7 @@ static void llama_model_load_internal( #endif #ifdef GGML_USE_METAL if (n_gpu_layers > 0) { - model.backend_metal = ggml_backend_metal_init(backend_cpu); + model.backend_metal = ggml_backend_metal_init(); backend_gpu = model.backend_metal; } #endif @@ -1081,15 +1081,13 @@ static void llama_model_load_internal( #ifdef GGML_USE_METAL if (n_gpu_layers > 0) { - // the metal context is actually a CPU context because we have unified memory const size_t ctx_size = ctx_sizes[model.backend_metal]; const size_t n_tensors = ml->tensors_map.tensors.size(); model.buf_metal = ggml_buffer_alloc(model.backend_metal, ctx_size, n_tensors); struct ggml_init_params params = ggml_init_params_default(); - params.buffer = model.buf_metal; - params.no_alloc = ml->use_mmap; + params.buffer = model.buf_metal; model.ctx_metal = ggml_init(params); if (!model.ctx_metal) { @@ -1372,10 +1370,10 @@ static ggml_graph_splits llama_build_graph( struct ggml_tensor * tmpv = ggml_mul_mat(ctx_l, model.layers[il].wv, cur); ggml_set_name(tmpv, "tmpv"); - struct ggml_tensor * Kcur = ggml_rope_custom_inplace(ctx_l, ggml_reshape_3d(ctx_l, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0, freq_base, freq_scale, 0); + struct ggml_tensor * Kcur = ggml_rope(ctx_l, ggml_reshape_3d(ctx_l, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0, 0); ggml_set_name(Kcur, "Kcur"); - struct ggml_tensor * Qcur = ggml_rope_custom_inplace(ctx_l, ggml_reshape_3d(ctx_l, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0, freq_base, freq_scale, 0); + struct ggml_tensor * Qcur = ggml_rope(ctx_l, ggml_reshape_3d(ctx_l, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0, 0); ggml_set_name(Qcur, "Qcur"); struct ggml_tensor * Vcur = ggml_transpose(ctx_l, ggml_reshape_2d(ctx_l, tmpv, n_embd, N)); @@ -1428,15 +1426,15 @@ static ggml_graph_splits llama_build_graph( // KQ_scaled = KQ / sqrt(n_embd/n_head) // KQ_scaled shape [n_past + N, N, n_head, 1] - struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx_kv, KQ, KQ_scale); + struct ggml_tensor * KQ_scaled = ggml_scale(ctx_kv, KQ, KQ_scale); ggml_set_name(KQ_scaled, "KQ_scaled"); // KQ_masked = mask_past(KQ_scaled) - struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx_kv, KQ_scaled, n_past); + struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx_kv, KQ_scaled, n_past); ggml_set_name(KQ_masked, "KQ_masked"); // KQ = soft_max(KQ_masked) - struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx_kv, KQ_masked); + struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx_kv, KQ_masked); ggml_set_name(KQ_soft_max, "KQ_soft_max"); // split cached V into n_head heads @@ -2717,6 +2715,12 @@ struct llama_context * llama_new_context_with_model( } else { ctx->backend_kv = model->backend_cpu; } +#elif GGML_USE_METAL + if ((uint32_t)params.n_gpu_layers >= model->hparams.n_layer/2 && !params.low_vram) { + ctx->backend_kv = model->backend_metal; + } else { + ctx->backend_kv = model->backend_cpu; + } #else ctx->backend_kv = model->backend_cpu; #endif @@ -2817,49 +2821,6 @@ struct llama_context * llama_new_context_with_model( } } -#ifdef GGML_USE_METAL - if (params.n_gpu_layers > 0) { - void * data_ptr = NULL; - size_t data_size = 0; - - if (params.use_mmap) { - data_ptr = ctx->model.mapping->addr; - data_size = ctx->model.mapping->size; - } else { - data_ptr = ggml_get_mem_buffer(ctx->model.ctx_metal); - data_size = ggml_get_mem_size (ctx->model.ctx_metal); - } - - const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx_metal); - - printf("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0); - -#define LLAMA_METAL_CHECK_BUF(result) \ - if (!(result)) { \ - fprintf(stderr, "%s: failed to add buffer\n", __func__); \ - llama_free(ctx); \ - return NULL; \ - } - - LLAMA_METAL_CHECK_BUF(ggml_backend_metal_map_buffer(ctx->model.backend_metal, "data", data_ptr, data_size, max_size)); - - struct ggml_backend_buffer * buf_compute = ctx->buf_compute_metal->backend_buffer; - struct ggml_backend_buffer * buf_kv = ctx->kv_self.buf->backend_buffer; - struct ggml_backend_buffer * buf_input = ctx->buf_input->backend_buffer; - struct ggml_backend_buffer * buf_output = ctx->buf_output->backend_buffer; - - LLAMA_METAL_CHECK_BUF(ggml_backend_metal_map_buffer(ctx->model.backend_metal, "eval", buf_compute->backend_data, buf_compute->backend_size, 0)); - LLAMA_METAL_CHECK_BUF(ggml_backend_metal_map_buffer(ctx->model.backend_metal, "kv", buf_kv->backend_data, buf_kv->backend_size, 0)); - - LLAMA_METAL_CHECK_BUF(ggml_backend_metal_map_buffer(ctx->model.backend_metal, "inp", buf_input->backend_data, buf_input->backend_size, 0)); - LLAMA_METAL_CHECK_BUF(ggml_backend_metal_map_buffer(ctx->model.backend_metal, "inp", buf_output->backend_data, buf_output->backend_size, 0)); - - //LLAMA_METAL_CHECK_BUF(ggml_backend_metal_map_buffer(ctx->model.backend_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size, 0)); - //LLAMA_METAL_CHECK_BUF(ggml_backend_metal_map_buffer(ctx->model.backend_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size, 0)); -#undef LLAMA_METAL_CHECK_BUF - } -#endif - fprintf(stderr, "%s: layer backends: ", __func__); fprintf(stderr, "input: %s, ", ggml_backend_name(ctx->model.backend_inp)); @@ -3150,14 +3111,14 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling); ggml_set_name(scale_tensor, "scale_tensor"); - BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor); + BA = ggml_scale(lora_ctx, BA, scale_tensor); ggml_set_name(BA, "BA_scaled"); } ggml_tensor * r; if (base_t == dest_t) { - r = ggml_add_inplace(lora_ctx, dest_t, BA); - ggml_set_name(r, "r_add_inplace"); + r = ggml_add(lora_ctx, dest_t, BA); + ggml_set_name(r, "r_add"); } else { r = ggml_add(lora_ctx, base_t, BA);