ggml : remove ggml_flash_attn and ggml_flash_ff (#7463)

ggml-ci
This commit is contained in:
Georgi Gerganov 2024-05-23 10:00:44 +03:00 committed by GitHub
parent e84b71c2c6
commit d48c88cbd5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 47 additions and 769 deletions

View File

@ -643,7 +643,8 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd_head, n_head_kv, n_batch); struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd_head, n_head_kv, n_batch);
struct ggml_tensor * t16; struct ggml_tensor * t16;
if (enable_flash_attn) { if (enable_flash_attn) {
t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd_head, N, n_head, n_batch); GGML_ASSERT(false && "TODO: ggml_flash_attn_ext() not yet supported");
//t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd_head, N, n_head, n_batch);
} else { } else {
struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch); struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch);
struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch); struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch);

View File

@ -341,7 +341,8 @@ static struct ggml_tensor * llama_build_train_graphs(
struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd/n_head, n_head, n_batch); struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd/n_head, n_head, n_batch);
struct ggml_tensor * t16; struct ggml_tensor * t16;
if (enable_flash_attn) { if (enable_flash_attn) {
t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch); GGML_ASSERT(false && "TODO: ggml_flash_attn_ext() not yet supported");
//t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch);
} else { } else {
struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch); struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch);
struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch); struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch);

676
ggml.c
View File

@ -2670,9 +2670,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"ARGSORT", "ARGSORT",
"LEAKY_RELU", "LEAKY_RELU",
"FLASH_ATTN",
"FLASH_ATTN_EXT", "FLASH_ATTN_EXT",
"FLASH_FF",
"FLASH_ATTN_BACK", "FLASH_ATTN_BACK",
"SSM_CONV", "SSM_CONV",
"SSM_SCAN", "SSM_SCAN",
@ -2698,7 +2696,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"CROSS_ENTROPY_LOSS_BACK", "CROSS_ENTROPY_LOSS_BACK",
}; };
static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76"); static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none", "none",
@ -2760,9 +2758,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"argsort(x)", "argsort(x)",
"leaky_relu(x)", "leaky_relu(x)",
"flash_attn(x)",
"flash_attn_ext(x)", "flash_attn_ext(x)",
"flash_ff(x)",
"flash_attn_back(x)", "flash_attn_back(x)",
"ssm_conv(x)", "ssm_conv(x)",
"ssm_scan(x)", "ssm_scan(x)",
@ -2788,7 +2784,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"cross_entropy_loss_back(x,y)", "cross_entropy_loss_back(x,y)",
}; };
static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76"); static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2"); static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
@ -6948,38 +6944,6 @@ struct ggml_tensor * ggml_top_k(
return result; return result;
} }
// ggml_flash_attn
struct ggml_tensor * ggml_flash_attn(
struct ggml_context * ctx,
struct ggml_tensor * q,
struct ggml_tensor * k,
struct ggml_tensor * v,
bool masked) {
GGML_ASSERT(ggml_can_mul_mat(k, q));
// TODO: check if vT can be multiplied by (k*qT)
bool is_node = false;
if (q->grad || k->grad || v->grad) {
is_node = true;
}
//struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
int32_t t = masked ? 1 : 0;
ggml_set_op_params(result, &t, sizeof(t));
result->op = GGML_OP_FLASH_ATTN;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = q;
result->src[1] = k;
result->src[2] = v;
return result;
}
// ggml_flash_attn_ext // ggml_flash_attn_ext
struct ggml_tensor * ggml_flash_attn_ext( struct ggml_tensor * ggml_flash_attn_ext(
@ -7039,38 +7003,6 @@ void ggml_flash_attn_ext_set_prec(
ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
} }
// ggml_flash_ff
struct ggml_tensor * ggml_flash_ff(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b0,
struct ggml_tensor * b1,
struct ggml_tensor * c0,
struct ggml_tensor * c1) {
GGML_ASSERT(ggml_can_mul_mat(b0, a));
// TODO: more checks
bool is_node = false;
if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
is_node = true;
}
//struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
result->op = GGML_OP_FLASH_FF;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b0;
result->src[2] = b1;
result->src[3] = c0;
result->src[4] = c1;
return result;
}
// ggml_flash_attn_back // ggml_flash_attn_back
struct ggml_tensor * ggml_flash_attn_back( struct ggml_tensor * ggml_flash_attn_back(
@ -7080,6 +7012,8 @@ struct ggml_tensor * ggml_flash_attn_back(
struct ggml_tensor * v, struct ggml_tensor * v,
struct ggml_tensor * d, struct ggml_tensor * d,
bool masked) { bool masked) {
GGML_ASSERT(false && "TODO: adapt to ggml_flash_attn_ext() changes");
GGML_ASSERT(ggml_can_mul_mat(k, q)); GGML_ASSERT(ggml_can_mul_mat(k, q));
// TODO: check if vT can be multiplied by (k*qT) // TODO: check if vT can be multiplied by (k*qT)
@ -15709,400 +15643,6 @@ static void ggml_compute_forward_argsort(
} }
} }
// ggml_compute_forward_flash_attn
static void ggml_compute_forward_flash_attn_f32(
const struct ggml_compute_params * params,
const bool masked,
struct ggml_tensor * dst) {
const struct ggml_tensor * q = dst->src[0];
const struct ggml_tensor * k = dst->src[1];
const struct ggml_tensor * v = dst->src[2];
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
const int ith = params->ith;
const int nth = params->nth;
const int64_t D = neq0;
const int64_t N = neq1;
const int64_t P = nek1 - N;
const int64_t M = P + N;
const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
GGML_ASSERT(ne0 == D);
GGML_ASSERT(ne1 == N);
GGML_ASSERT(P >= 0);
GGML_ASSERT(nbq0 == sizeof(float));
GGML_ASSERT(nbk0 == sizeof(float));
GGML_ASSERT(nbv0 == sizeof(float));
GGML_ASSERT(neq0 == D);
GGML_ASSERT(nek0 == D);
GGML_ASSERT(nev1 == D);
GGML_ASSERT(neq1 == N);
GGML_ASSERT(nek1 == N + P);
GGML_ASSERT(nev1 == D);
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
if (params->type == GGML_TASK_TYPE_INIT) {
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// parallelize by q rows using ggml_vec_dot_f32
// total rows in q
const int nr = neq1*neq2*neq3;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
const float scale = 1.0f/sqrtf(D);
//printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
for (int ir = ir0; ir < ir1; ++ir) {
// q indices
const int iq3 = ir/(neq2*neq1);
const int iq2 = (ir - iq3*neq2*neq1)/neq1;
const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
for (int i = M; i < Mup; ++i) {
S[i] = -INFINITY;
}
const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
for (int64_t ic = 0; ic < masked_begin; ++ic) {
// k indices
const int ik3 = iq3;
const int ik2 = iq2 % nek2;
const int ik1 = ic;
// S indices
const int i1 = ik1;
ggml_vec_dot_f32(neq0,
S + i1, 0,
(float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
(float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
}
// scale
ggml_vec_scale_f32(masked_begin, S, scale);
for (int64_t i = masked_begin; i < M; i++) {
S[i] = -INFINITY;
}
// softmax
// exclude known -INF S[..] values from max and loop
// dont forget to set their SW values to zero
{
float max = -INFINITY;
ggml_vec_max_f32(masked_begin, &max, S);
ggml_float sum = 0.0;
{
#ifdef GGML_SOFT_MAX_ACCELERATE
max = -max;
vDSP_vsadd(S, 1, &max, S, 1, Mup);
vvexpf(S, S, &Mup);
ggml_vec_sum_f32(Mup, &sum, S);
#else
sum = ggml_vec_soft_max_f32(Mup, S, S, max);
#endif
}
assert(sum > 0.0);
sum = 1.0/sum;
ggml_vec_scale_f32(masked_begin, S, sum);
#ifndef NDEBUG
for (int i = 0; i < masked_begin; ++i) {
assert(!isnan(S[i]));
assert(!isinf(S[i]));
}
#endif
}
for (int64_t ic = 0; ic < nev1; ++ic) {
// dst indices
const int i1 = iq1;
const int i2 = iq2;
const int i3 = iq3;
// v indices
const int iv2 = iq2 % nev2;
const int iv3 = iq3;
ggml_vec_dot_f32(masked_begin,
(float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
(float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
S, 0, 1);
}
}
}
static void ggml_compute_forward_flash_attn_f16(
const struct ggml_compute_params * params,
const bool masked,
struct ggml_tensor * dst) {
const struct ggml_tensor * q = dst->src[0];
const struct ggml_tensor * k = dst->src[1];
const struct ggml_tensor * v = dst->src[2];
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
const int ith = params->ith;
const int nth = params->nth;
const int64_t D = neq0;
const int64_t N = neq1;
const int64_t P = nek1 - N;
const int64_t M = P + N;
const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
GGML_ASSERT(ne0 == D);
GGML_ASSERT(ne1 == N);
GGML_ASSERT(P >= 0);
GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
GGML_ASSERT(neq0 == D);
GGML_ASSERT(nek0 == D);
GGML_ASSERT(nev1 == D);
GGML_ASSERT(neq1 == N);
GGML_ASSERT(nek1 == N + P);
GGML_ASSERT(nev1 == D);
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
if (params->type == GGML_TASK_TYPE_INIT) {
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// parallelize by q rows using ggml_vec_dot_f32
// total rows in q
const int nr = neq1*neq2*neq3;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
const float scale = 1.0f/sqrtf(D);
//printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
for (int ir = ir0; ir < ir1; ++ir) {
// q indices
const int iq3 = ir/(neq2*neq1);
const int iq2 = (ir - iq3*neq2*neq1)/neq1;
const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
for (int i = M; i < Mup; ++i) {
S[i] = -INFINITY;
}
if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
for (int64_t ic = 0; ic < nek1; ++ic) {
// k indices
const int ik3 = iq3;
const int ik2 = iq2 % nek2;
const int ik1 = ic;
// S indices
const int i1 = ik1;
ggml_vec_dot_f16(neq0,
S + i1, 0,
(ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
(ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
}
} else {
for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
// k indices
const int ik3 = iq3;
const int ik2 = iq2 % nek2;
const int ik1 = ic;
// S indices
const int i1 = ik1;
ggml_vec_dot_f16_unroll(neq0, nbk1,
S + i1,
((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
(ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
}
}
// scale
ggml_vec_scale_f32(nek1, S, scale);
if (masked) {
for (int64_t i = P; i < M; i++) {
if (i > P + iq1) {
S[i] = -INFINITY;
}
}
}
// softmax
// todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
// dont forget to set their S values to zero
{
float max = -INFINITY;
ggml_vec_max_f32(M, &max, S);
ggml_float sum = 0.0;
{
#ifdef GGML_SOFT_MAX_ACCELERATE
max = -max;
vDSP_vsadd(S, 1, &max, S, 1, Mup);
vvexpf(S, S, &Mup);
ggml_vec_sum_f32(Mup, &sum, S);
#else
sum = ggml_vec_soft_max_f32(Mup, S, S, max);
#endif
}
assert(sum > 0.0);
sum = 1.0/sum;
ggml_vec_scale_f32(M, S, sum);
#ifndef NDEBUG
for (int i = 0; i < M; ++i) {
assert(!isnan(S[i]));
assert(!isinf(S[i]));
}
#endif
}
ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
for (int64_t i = 0; i < M; i++) {
S16[i] = GGML_FP32_TO_FP16(S[i]);
}
// todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
for (int64_t ic = 0; ic < nev1; ++ic) {
// dst indices
const int i1 = iq1;
const int i2 = iq2;
const int i3 = iq3;
// v indices
const int iv2 = iq2 % nev2;
const int iv3 = iq3;
ggml_vec_dot_f16(nev0,
(float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
(ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
S16, 0, 1);
}
} else {
for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
// dst indices
const int i1 = iq1;
const int i2 = iq2;
const int i3 = iq3;
// v indices
const int iv2 = iq2 % nev2;
const int iv3 = iq3;
ggml_vec_dot_f16_unroll(nev0, nbv1,
(float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
S16);
}
}
}
}
static void ggml_compute_forward_flash_attn(
const struct ggml_compute_params * params,
const bool masked,
struct ggml_tensor * dst) {
const struct ggml_tensor * q = dst->src[0];
switch (q->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_flash_attn_f16(params, masked, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_flash_attn_f32(params, masked, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_flash_attn_ext // ggml_compute_forward_flash_attn_ext
static void ggml_compute_forward_flash_attn_ext_f16( static void ggml_compute_forward_flash_attn_ext_f16(
@ -16336,165 +15876,6 @@ static void ggml_compute_forward_flash_attn_ext(
} }
} }
// ggml_compute_forward_flash_ff
static void ggml_compute_forward_flash_ff_f16(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * a = dst->src[0]; // F16
const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
GGML_TENSOR_LOCALS(size_t, nba, a, nb)
GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
const int ith = params->ith;
const int nth = params->nth;
const int64_t D = nea0;
//const int64_t N = nea1;
const int64_t M = neb01;
GGML_ASSERT(ne0 == nea0);
GGML_ASSERT(ne1 == nea1);
GGML_ASSERT(ne2 == nea2);
GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nbb10 == sizeof(float));
GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nbc10 == sizeof(float));
GGML_ASSERT(neb00 == D);
GGML_ASSERT(neb01 == M);
GGML_ASSERT(neb10 == M);
GGML_ASSERT(neb11 == 1);
GGML_ASSERT(nec00 == M);
GGML_ASSERT(nec01 == D);
GGML_ASSERT(nec10 == D);
GGML_ASSERT(nec11 == 1);
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
if (params->type == GGML_TASK_TYPE_INIT) {
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// parallelize by a rows using ggml_vec_dot_f32
// total rows in a
const int nr = nea1*nea2*nea3;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// a indices
const int ia3 = ir/(nea2*nea1);
const int ia2 = (ir - ia3*nea2*nea1)/nea1;
const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
for (int64_t ic = 0; ic < neb01; ++ic) {
// b0 indices
const int ib03 = ia3;
const int ib02 = ia2;
const int ib01 = ic;
// S indices
const int i1 = ib01;
ggml_vec_dot_f16(nea0,
S + i1, 0,
(ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
(ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
}
ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
//ggml_vec_gelu_f32(neb01, S, S);
ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
for (int64_t i = 0; i < M; i++) {
S16[i] = GGML_FP32_TO_FP16(S[i]);
}
ggml_vec_gelu_f16(neb01, S16, S16);
{
// dst indices
const int i1 = ia1;
const int i2 = ia2;
const int i3 = ia3;
for (int64_t ic = 0; ic < nec01; ++ic) {
ggml_vec_dot_f16(neb01,
(float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
(ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
S16, 0, 1);
}
ggml_vec_add_f32(nec01,
(float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
(float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
(float *) c1->data);
}
}
}
static void ggml_compute_forward_flash_ff(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * b0 = dst->src[1];
switch (b0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_flash_ff_f16(params, dst);
} break;
case GGML_TYPE_F32:
{
GGML_ASSERT(false); // TODO
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_flash_attn_back // ggml_compute_forward_flash_attn_back
static void ggml_compute_forward_flash_attn_back_f32( static void ggml_compute_forward_flash_attn_back_f32(
@ -18065,21 +17446,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{ {
ggml_compute_forward_leaky_relu(params, tensor); ggml_compute_forward_leaky_relu(params, tensor);
} break; } break;
case GGML_OP_FLASH_ATTN:
{
const int32_t t = ggml_get_op_params_i32(tensor, 0);
GGML_ASSERT(t == 0 || t == 1);
const bool masked = t != 0;
ggml_compute_forward_flash_attn(params, masked, tensor);
} break;
case GGML_OP_FLASH_ATTN_EXT: case GGML_OP_FLASH_ATTN_EXT:
{ {
ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor); ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
} break; } break;
case GGML_OP_FLASH_FF:
{
ggml_compute_forward_flash_ff(params, tensor);
} break;
case GGML_OP_FLASH_ATTN_BACK: case GGML_OP_FLASH_ATTN_BACK:
{ {
int32_t t = ggml_get_op_params_i32(tensor, 0); int32_t t = ggml_get_op_params_i32(tensor, 0);
@ -19086,7 +18456,6 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
{ {
GGML_ASSERT(false); // TODO: not implemented GGML_ASSERT(false); // TODO: not implemented
} break; } break;
case GGML_OP_FLASH_ATTN:
case GGML_OP_FLASH_ATTN_EXT: case GGML_OP_FLASH_ATTN_EXT:
{ {
struct ggml_tensor * flash_grad = NULL; struct ggml_tensor * flash_grad = NULL;
@ -19140,10 +18509,6 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
zero_table); zero_table);
} }
} break; } break;
case GGML_OP_FLASH_FF:
{
GGML_ASSERT(false); // not supported
} break;
case GGML_OP_FLASH_ATTN_BACK: case GGML_OP_FLASH_ATTN_BACK:
{ {
GGML_ASSERT(false); // not supported GGML_ASSERT(false); // not supported
@ -19830,15 +19195,10 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_
{ {
n_tasks = n_threads; n_tasks = n_threads;
} break; } break;
case GGML_OP_FLASH_ATTN:
case GGML_OP_FLASH_ATTN_EXT: case GGML_OP_FLASH_ATTN_EXT:
{ {
n_tasks = n_threads; n_tasks = n_threads;
} break; } break;
case GGML_OP_FLASH_FF:
{
n_tasks = n_threads;
} break;
case GGML_OP_FLASH_ATTN_BACK: case GGML_OP_FLASH_ATTN_BACK:
{ {
n_tasks = n_threads; n_tasks = n_threads;
@ -20235,40 +19595,12 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa
cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03; cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12; cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
} break; } break;
case GGML_OP_FLASH_ATTN:
{
const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
if (node->src[1]->type == GGML_TYPE_F32) {
cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
} else if (node->src[1]->type == GGML_TYPE_F16) {
cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
} else if (node->src[1]->type == GGML_TYPE_BF16) {
cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
}
} break;
case GGML_OP_FLASH_ATTN_EXT: case GGML_OP_FLASH_ATTN_EXT:
{ {
const int64_t ne00 = node->src[0]->ne[0]; // D const int64_t ne00 = node->src[0]->ne[0]; // D
cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
} break; } break;
case GGML_OP_FLASH_FF:
{
if (node->src[1]->type == GGML_TYPE_F32) {
cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
} else if (node->src[1]->type == GGML_TYPE_F16) {
cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
} else if (node->src[1]->type == GGML_TYPE_BF16) {
cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
}
} break;
case GGML_OP_FLASH_ATTN_BACK: case GGML_OP_FLASH_ATTN_BACK:
{ {
const int64_t D = node->src[0]->ne[0]; const int64_t D = node->src[0]->ne[0];

18
ggml.h
View File

@ -481,9 +481,7 @@ extern "C" {
GGML_OP_ARGSORT, GGML_OP_ARGSORT,
GGML_OP_LEAKY_RELU, GGML_OP_LEAKY_RELU,
GGML_OP_FLASH_ATTN,
GGML_OP_FLASH_ATTN_EXT, GGML_OP_FLASH_ATTN_EXT,
GGML_OP_FLASH_FF,
GGML_OP_FLASH_ATTN_BACK, GGML_OP_FLASH_ATTN_BACK,
GGML_OP_SSM_CONV, GGML_OP_SSM_CONV,
GGML_OP_SSM_SCAN, GGML_OP_SSM_SCAN,
@ -1761,13 +1759,6 @@ extern "C" {
struct ggml_tensor * a, struct ggml_tensor * a,
int k); int k);
GGML_API struct ggml_tensor * ggml_flash_attn(
struct ggml_context * ctx,
struct ggml_tensor * q,
struct ggml_tensor * k,
struct ggml_tensor * v,
bool masked);
#define GGML_KQ_MASK_PAD 32 #define GGML_KQ_MASK_PAD 32
// q: [n_embd, n_batch, n_head, 1] // q: [n_embd, n_batch, n_head, 1]
@ -1788,6 +1779,7 @@ extern "C" {
struct ggml_tensor * a, struct ggml_tensor * a,
enum ggml_prec prec); enum ggml_prec prec);
// TODO: needs to be adapted to ggml_flash_attn_ext
GGML_API struct ggml_tensor * ggml_flash_attn_back( GGML_API struct ggml_tensor * ggml_flash_attn_back(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * q, struct ggml_tensor * q,
@ -1796,14 +1788,6 @@ extern "C" {
struct ggml_tensor * d, struct ggml_tensor * d,
bool masked); bool masked);
GGML_API struct ggml_tensor * ggml_flash_ff(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b0,
struct ggml_tensor * b1,
struct ggml_tensor * c0,
struct ggml_tensor * c1);
GGML_API struct ggml_tensor * ggml_ssm_conv( GGML_API struct ggml_tensor * ggml_ssm_conv(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * s, struct ggml_tensor * s,

View File

@ -1515,90 +1515,50 @@ int main(int argc, const char ** argv) {
} }
// flash_attn f32 // flash_attn f32
{ // TODO: adapt to ggml_flash_attn_ext() changes
srand(seed); //{
const int nargs = 3; // srand(seed);
// const int nargs = 3;
int64_t ne2[4]; // int64_t ne2[4];
get_random_dims(ne2, 4); // get_random_dims(ne2, 4);
int64_t D = ne2[0]; // int64_t D = ne2[0];
int64_t N = ne2[1]; // int64_t N = ne2[1];
int64_t M = ne2[2] + N; // int64_t M = ne2[2] + N;
int64_t B = ne2[3]; // int64_t B = ne2[3];
for (int masked = 0; masked <= 1; ++masked) { // for (int masked = 0; masked <= 1; ++masked) {
for (int ndims = 2; ndims <= 4; ++ndims) { // for (int ndims = 2; ndims <= 4; ++ndims) {
int max_nrep = (ndims >= 3) ? 2 : 1; // int max_nrep = (ndims >= 3) ? 2 : 1;
for (int nrep = 1; nrep < max_nrep; ++nrep) { // for (int nrep = 1; nrep < max_nrep; ++nrep) {
int64_t neq[4] = { D, N, B*nrep, ne[3] }; // int64_t neq[4] = { D, N, B*nrep, ne[3] };
int64_t nek[4] = { D, M, B, ne[3] }; // int64_t nek[4] = { D, M, B, ne[3] };
int64_t nev[4] = { M, D, B, ne[3] }; // int64_t nev[4] = { M, D, B, ne[3] };
if (ndims == 2) { // if (ndims == 2) {
neq[2] = 1; neq[3] = 1; // neq[2] = 1; neq[3] = 1;
nek[2] = 1; nek[3] = 1; // nek[2] = 1; nek[3] = 1;
nev[2] = 1; nev[3] = 1; // nev[2] = 1; nev[3] = 1;
} else if (ndims == 3) { // } else if (ndims == 3) {
neq[3] = 1; // neq[3] = 1;
nek[3] = 1; // nek[3] = 1;
nev[3] = 1; // nev[3] = 1;
} // }
x[0] = get_random_tensor_f32(ctx0, ndims, neq, -0.1250f, 0.1250f); // x[0] = get_random_tensor_f32(ctx0, ndims, neq, -0.1250f, 0.1250f);
x[1] = get_random_tensor_f32(ctx0, ndims, nek, -0.1250f, 0.1250f); // x[1] = get_random_tensor_f32(ctx0, ndims, nek, -0.1250f, 0.1250f);
x[2] = get_random_tensor_f32(ctx0, ndims, nev, -0.1250f, 0.1250f); // x[2] = get_random_tensor_f32(ctx0, ndims, nev, -0.1250f, 0.1250f);
ggml_set_param(ctx0, x[0]); // ggml_set_param(ctx0, x[0]);
ggml_set_param(ctx0, x[1]); // ggml_set_param(ctx0, x[1]);
ggml_set_param(ctx0, x[2]); // ggml_set_param(ctx0, x[2]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0))); // struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0)));
check_gradient("flash_attn f32", ctx0, x, f, ndims, nargs, 1.5e-4f, 1e-3f, INFINITY); // check_gradient("flash_attn f32", ctx0, x, f, ndims, nargs, 1.5e-4f, 1e-3f, INFINITY);
} // }
} // }
} // }
} //}
// flash_attn f16, not yet fully implemented
if(0)
{
srand(seed);
const int nargs = 3;
int64_t ne2[4];
get_random_dims(ne2, 4);
int64_t D = ne2[0];
int64_t N = ne2[1];
int64_t M = ne2[2] + N;
int64_t B = ne2[3];
for (int masked = 0; masked <= 1; ++masked) {
for (int ndims = 2; ndims <= 4; ++ndims) {
int64_t neq[4] = { D, N, B, ne[3] };
int64_t nek[4] = { D, M, B, ne[3] };
int64_t nev[4] = { M, D, B, ne[3] };
if (ndims == 2) {
neq[2] = 1; neq[3] = 1;
nek[2] = 1; nek[3] = 1;
nev[2] = 1; nev[3] = 1;
} else if (ndims == 3) {
neq[3] = 1;
nek[3] = 1;
nev[3] = 1;
}
x[0] = get_random_tensor_f16(ctx0, ndims, neq, -0.1250f, 0.1250f);
x[1] = get_random_tensor_f16(ctx0, ndims, nek, -0.1250f, 0.1250f);
x[2] = get_random_tensor_f16(ctx0, ndims, nev, -0.1250f, 0.1250f);
ggml_set_param(ctx0, x[0]);
ggml_set_param(ctx0, x[1]);
ggml_set_param(ctx0, x[2]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0)));
check_gradient("flash_attn f16", ctx0, x, f, ndims, nargs, 1.5e-4f, 1e-3f, INFINITY);
}
}
}
ggml_free(ctx0); ggml_free(ctx0);
} }