mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-13 14:29:52 +00:00
test-backend-ops : use flops for some performance tests
- parallelize tensor quantization - use a different set of cases for performance and correctness tests ggml-ci
This commit is contained in:
parent
95bc82fbc0
commit
d4c57cd641
@ -32,63 +32,52 @@
|
||||
#include <stdlib.h>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <future>
|
||||
#include <vector>
|
||||
|
||||
static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
|
||||
// static RNG initialization (revisit if n_threads stops being constant)
|
||||
static const size_t n_threads = std::thread::hardware_concurrency();
|
||||
static std::vector<std::default_random_engine> generators = []() {
|
||||
std::random_device rd;
|
||||
std::vector<std::default_random_engine> vec;
|
||||
vec.reserve(n_threads);
|
||||
//for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
|
||||
for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
|
||||
return vec;
|
||||
}();
|
||||
size_t nels = ggml_nelements(tensor);
|
||||
std::vector<float> data(nels);
|
||||
{
|
||||
// parallel initialization
|
||||
static const size_t n_threads = std::thread::hardware_concurrency();
|
||||
// static RNG initialization (revisit if n_threads stops being constant)
|
||||
static std::vector<std::default_random_engine> generators = []() {
|
||||
std::random_device rd;
|
||||
std::vector<std::default_random_engine> vec;
|
||||
vec.reserve(n_threads);
|
||||
//for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
|
||||
for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
|
||||
return vec;
|
||||
}();
|
||||
|
||||
size_t size = ggml_nelements(tensor);
|
||||
std::vector<float> data(size);
|
||||
auto init_thread = [&](size_t ith, size_t start, size_t end) {
|
||||
std::uniform_real_distribution<float> distribution(min, max);
|
||||
auto & gen = generators[ith];
|
||||
for (size_t i = start; i < end; i++) {
|
||||
data[i] = distribution(gen);
|
||||
}
|
||||
};
|
||||
|
||||
auto init_thread = [&](size_t ith, size_t start, size_t end) {
|
||||
std::uniform_real_distribution<float> distribution(min, max);
|
||||
for (size_t i = start; i < end; i++) {
|
||||
data[i] = distribution(generators[ith]);
|
||||
std::vector<std::future<void>> tasks;
|
||||
tasks.reserve(n_threads);
|
||||
for (size_t i = 0; i < n_threads; i++) {
|
||||
size_t start = i*nels/n_threads;
|
||||
size_t end = (i+1)*nels/n_threads;
|
||||
tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
|
||||
}
|
||||
};
|
||||
|
||||
std::vector<std::thread> threads;
|
||||
threads.reserve(n_threads);
|
||||
for (size_t i = 0; i < n_threads; i++) {
|
||||
size_t start = i*size/n_threads;
|
||||
size_t end = (i+1)*size/n_threads;
|
||||
threads.emplace_back(init_thread, i, start, end);
|
||||
}
|
||||
for (auto & t : threads) {
|
||||
t.join();
|
||||
}
|
||||
|
||||
#if 0
|
||||
const char * val_str = getenv("GGML_TEST_EPS");
|
||||
float val = 1e-9f;
|
||||
if (val_str != nullptr) {
|
||||
val = std::stof(val_str);
|
||||
printf("GGML_TEST_EPS=%e\n", val);
|
||||
}
|
||||
|
||||
// test quantization with very small values that may result in nan scales due to division by zero
|
||||
if (ggml_is_quantized(tensor->type)) {
|
||||
for (int i = 0; i < 256; i++) {
|
||||
data[i] = val;
|
||||
for (auto & t : tasks) {
|
||||
t.get();
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
|
||||
ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float));
|
||||
ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
|
||||
} else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
|
||||
GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0);
|
||||
std::vector<uint8_t> dataq(ggml_row_size(tensor->type, size));
|
||||
std::vector<float> imatrix(tensor->ne[0], 1.0f); // dummy importance matrix
|
||||
GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
|
||||
|
||||
// dummy importance matrix
|
||||
std::vector<float> imatrix(tensor->ne[0], 1.0f);
|
||||
const float * im = imatrix.data();
|
||||
if (!ggml_quantize_requires_imatrix(tensor->type)) {
|
||||
// when the imatrix is optional, we want to test both quantization with and without imatrix
|
||||
@ -98,15 +87,31 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
|
||||
}
|
||||
}
|
||||
|
||||
ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size/tensor->ne[0], tensor->ne[0], im);
|
||||
GGML_ASSERT(ggml_validate_row_data(tensor->type, dataq.data(), dataq.size()));
|
||||
// TODO: other cases
|
||||
//#pragma omp parallel for
|
||||
//for (int i = 0; i < tensor->ne[1]; i++) {
|
||||
// ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
|
||||
// i * tensor->ne[0], 1, tensor->ne[0], im);
|
||||
//}
|
||||
std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
|
||||
{
|
||||
// parallel quantization by block
|
||||
size_t blck_size = ggml_blck_size(tensor->type);
|
||||
size_t n_blocks = nels / blck_size;
|
||||
|
||||
auto quantize_thread = [&](size_t start, size_t end) {
|
||||
ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
|
||||
start * blck_size, end - start, blck_size, im);
|
||||
};
|
||||
|
||||
const size_t min_blocks_per_thread = 1;
|
||||
const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
|
||||
std::max<size_t>(1, n_blocks / min_blocks_per_thread));
|
||||
std::vector<std::future<void>> tasks;
|
||||
tasks.reserve(n_threads);
|
||||
for (size_t i = 0; i < n_threads; i++) {
|
||||
size_t start = i*n_blocks/n_threads;
|
||||
size_t end = (i+1)*n_blocks/n_threads;
|
||||
tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
|
||||
}
|
||||
for (auto & t : tasks) {
|
||||
t.get();
|
||||
}
|
||||
}
|
||||
ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
|
||||
} else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
|
||||
// This is going to create some weird integers though.
|
||||
@ -160,60 +165,6 @@ static std::vector<float> tensor_to_float(const ggml_tensor * t) {
|
||||
return tv;
|
||||
}
|
||||
|
||||
/*
|
||||
static double cosine_similarity(const float * v1, const float * v2, size_t n) {
|
||||
double dot = 0.0;
|
||||
double mag1 = 0.0;
|
||||
double mag2 = 0.0;
|
||||
|
||||
for (size_t i = 0; i < n; i++) {
|
||||
if (std::isnan(v1[i]) || std::isnan(v2[i])) {
|
||||
return -1.0f;
|
||||
}
|
||||
if (std::isinf(v1[i]) && std::isinf(v2[i])) {
|
||||
continue;
|
||||
}
|
||||
dot += v1[i]*v2[i];
|
||||
mag1 += v1[i]*v1[i];
|
||||
mag2 += v2[i]*v2[i];
|
||||
}
|
||||
|
||||
return dot/sqrt(mag1*mag2);
|
||||
}
|
||||
|
||||
static float distance(const float * v1, const float * v2, size_t n) {
|
||||
double d = 0.0;
|
||||
|
||||
for (size_t i = 0; i < n; i++) {
|
||||
if (std::isnan(v1[i]) || std::isnan(v2[i])) {
|
||||
return INFINITY;
|
||||
}
|
||||
if (std::isinf(v1[i]) && std::isinf(v2[i])) {
|
||||
continue;
|
||||
}
|
||||
d += (v1[i] - v2[i])*(v1[i] - v2[i]);
|
||||
}
|
||||
|
||||
return sqrt(d);
|
||||
}
|
||||
|
||||
static float vec_len(const float * v, size_t n) {
|
||||
double d = 0.0;
|
||||
|
||||
for (size_t i = 0; i < n; i++) {
|
||||
if (std::isnan(v[i])) {
|
||||
return INFINITY;
|
||||
}
|
||||
if (std::isinf(v[i])) {
|
||||
continue;
|
||||
}
|
||||
d += v[i]*v[i];
|
||||
}
|
||||
|
||||
return sqrt(d);
|
||||
}
|
||||
*/
|
||||
|
||||
// normalized mean squared error = mse(a, b) / mse(a, 0)
|
||||
static double nmse(const float * a, const float * b, size_t n) {
|
||||
double mse_a_b = 0.0;
|
||||
@ -264,7 +215,6 @@ static double mean_abs_asymm(const float * a, const float * b, const size_t n, c
|
||||
}
|
||||
|
||||
// utils for printing the variables of the test cases
|
||||
#define VAR_TO_STR(x) (#x "=" + var_to_str(x))
|
||||
|
||||
template<typename T>
|
||||
static std::string var_to_str(const T & x) {
|
||||
@ -297,10 +247,6 @@ static std::string var_to_str(const std::array<T, N> & x) {
|
||||
return s;
|
||||
}
|
||||
|
||||
//static std::string var_to_str(ggml_unary_op unary_op) {
|
||||
// return ggml_unary_op_name(unary_op);
|
||||
//}
|
||||
|
||||
static std::string var_to_str(ggml_type type) {
|
||||
return ggml_type_name(type);
|
||||
}
|
||||
@ -313,6 +259,8 @@ static std::string var_to_str(ggml_op_pool pool) {
|
||||
}
|
||||
}
|
||||
|
||||
#define VAR_TO_STR(x) (#x "=" + var_to_str(x))
|
||||
|
||||
#define VARS_TO_STR1(a) VAR_TO_STR(a)
|
||||
#define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
|
||||
#define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
|
||||
@ -370,13 +318,13 @@ struct test_case {
|
||||
return 1e-4;
|
||||
}
|
||||
|
||||
virtual float grad_eps(){
|
||||
virtual float grad_eps() {
|
||||
return 1e-1f;
|
||||
}
|
||||
|
||||
// If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
|
||||
// If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
|
||||
virtual bool grad_precise(){
|
||||
virtual bool grad_precise() {
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -409,6 +357,11 @@ struct test_case {
|
||||
return size;
|
||||
}
|
||||
|
||||
virtual uint64_t op_flops(ggml_tensor * t) {
|
||||
GGML_UNUSED(t);
|
||||
return 0;
|
||||
}
|
||||
|
||||
ggml_cgraph * gf = nullptr;
|
||||
ggml_cgraph * gb = nullptr;
|
||||
|
||||
@ -651,12 +604,11 @@ struct test_case {
|
||||
}
|
||||
|
||||
// align while also leaving some margin for variations in parameters
|
||||
int align = 20;
|
||||
int align = 8;
|
||||
int last = (len + align - 1) / align * align;
|
||||
if (last - len < 5) {
|
||||
last += align;
|
||||
}
|
||||
last = std::max(last, 60);
|
||||
printf("%*s", last - len, "");
|
||||
|
||||
// allocate
|
||||
@ -677,9 +629,25 @@ struct test_case {
|
||||
// warmup run
|
||||
ggml_backend_graph_compute(backend, gf);
|
||||
|
||||
// determine number of runs
|
||||
int n_runs;
|
||||
if (op_flops(out) > 0) {
|
||||
// based on flops
|
||||
const uint64_t GFLOP = 1000 * 1000 * 1000;
|
||||
const uint64_t target_flops_cpu = 8ULL * GFLOP;
|
||||
const uint64_t target_flops_gpu = 64ULL * GFLOP;
|
||||
uint64_t target_flops = ggml_backend_is_cpu(backend) ? target_flops_cpu : target_flops_gpu;
|
||||
n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
|
||||
} else {
|
||||
// based on memory size
|
||||
const size_t GB = 1ULL << 30;
|
||||
const size_t target_size_cpu = 8 * GB;
|
||||
const size_t target_size_gpu = 32 * GB;
|
||||
size_t target_size = ggml_backend_is_cpu(backend) ? target_size_cpu : target_size_gpu;
|
||||
n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
|
||||
}
|
||||
|
||||
// duplicate the op
|
||||
size_t target_size = ggml_backend_is_cpu(backend) ? 1ULL << 33 : 1ULL << 35; // 8 GB CPU, 32 GB GPU
|
||||
int n_runs = std::min((size_t) ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
|
||||
for (int i = 1; i < n_runs; i++) {
|
||||
ggml_graph_add_node(gf, out);
|
||||
}
|
||||
@ -712,11 +680,35 @@ struct test_case {
|
||||
int64_t end_time = ggml_time_us();
|
||||
double time_us = end_time - start_time;
|
||||
|
||||
printf(" %5d runs - %8.2f us/run - %8zu kB/run - \033[1;34m%7.2f GB/s\033[0m\n",
|
||||
printf(" %5d runs - %8.2f us/run - ",
|
||||
n_runs,
|
||||
time_us / n_runs,
|
||||
op_size(out) / 1024,
|
||||
mem / (time_us/1e6) / 1024.0 / 1024.0 / 1024.0);
|
||||
time_us / n_runs);
|
||||
|
||||
if (op_flops(out) > 0) {
|
||||
double flops_per_sec = (op_flops(out) * n_runs) / (time_us / 1e6);
|
||||
auto format_flops = [](double flops) -> std::string {
|
||||
char buf[256];
|
||||
if (flops >= 1e12) {
|
||||
snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
|
||||
} else if (flops >= 1e9) {
|
||||
snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
|
||||
} else if (flops >= 1e6) {
|
||||
snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
|
||||
} else {
|
||||
snprintf(buf, sizeof(buf), "%6.2f KFLOP", flops / 1e3);
|
||||
}
|
||||
return buf;
|
||||
};
|
||||
printf("%s/run - \033[1;34m%sS\033[0m",
|
||||
format_flops(op_flops(out)).c_str(),
|
||||
format_flops(flops_per_sec).c_str());
|
||||
|
||||
} else {
|
||||
printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m",
|
||||
op_size(out) / 1024,
|
||||
mem / (time_us/1e6) / 1024.0 / 1024.0 / 1024.0);
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
ggml_backend_buffer_free(buf);
|
||||
|
||||
@ -1591,13 +1583,9 @@ struct test_mul_mat : public test_case {
|
||||
return 5e-4;
|
||||
}
|
||||
|
||||
size_t op_size(ggml_tensor * t) override {
|
||||
size_t a = ggml_nbytes(t->src[0]) * n * nr[0] * nr[1];
|
||||
size_t b = ggml_nbytes(t->src[1]) * m;
|
||||
size_t c = ggml_nbytes(t);
|
||||
return a + b + c;
|
||||
|
||||
uint64_t op_flops(ggml_tensor * t) override {
|
||||
GGML_UNUSED(t);
|
||||
return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
|
||||
}
|
||||
|
||||
test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
|
||||
@ -1641,13 +1629,9 @@ struct test_mul_mat_id : public test_case {
|
||||
return 5e-4;
|
||||
}
|
||||
|
||||
size_t op_size(ggml_tensor * t) override {
|
||||
size_t a = ggml_nbytes(t->src[2]) * n;
|
||||
size_t b = ggml_nbytes(t->src[1]) * m;
|
||||
size_t c = ggml_nbytes(t);
|
||||
return a + b + c;
|
||||
|
||||
uint64_t op_flops(ggml_tensor * t) override {
|
||||
GGML_UNUSED(t);
|
||||
return 2 * m * k * n * n_used;
|
||||
}
|
||||
|
||||
test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
|
||||
@ -3163,47 +3147,46 @@ struct test_falcon : public test_llm {
|
||||
// ###########################################
|
||||
// ## Section 3: GGML Op Test Instantiation ##
|
||||
// ###########################################
|
||||
static const ggml_type all_types[] = {
|
||||
GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
|
||||
GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
|
||||
GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
|
||||
GGML_TYPE_Q8_0,
|
||||
GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
|
||||
GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
|
||||
GGML_TYPE_Q6_K,
|
||||
// GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
|
||||
GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
|
||||
GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
|
||||
GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
|
||||
};
|
||||
|
||||
static const ggml_type base_types[] = {
|
||||
GGML_TYPE_F32, GGML_TYPE_F16,
|
||||
GGML_TYPE_Q4_0,
|
||||
GGML_TYPE_Q4_K,
|
||||
GGML_TYPE_IQ2_XXS
|
||||
};
|
||||
|
||||
static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) {
|
||||
static const ggml_type other_types[] = {
|
||||
GGML_TYPE_Q4_1,
|
||||
GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
|
||||
GGML_TYPE_Q8_0,
|
||||
GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
|
||||
GGML_TYPE_Q5_K,
|
||||
GGML_TYPE_Q6_K,
|
||||
// GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
|
||||
GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
|
||||
GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
|
||||
GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
|
||||
GGML_TYPE_BF16,
|
||||
};
|
||||
|
||||
// Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
|
||||
static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
||||
std::vector<std::unique_ptr<test_case>> test_cases;
|
||||
std::default_random_engine rng(0);
|
||||
|
||||
const ggml_type all_types[] = {
|
||||
GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
|
||||
GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
|
||||
GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
|
||||
GGML_TYPE_Q8_0,
|
||||
GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
|
||||
GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
|
||||
GGML_TYPE_Q6_K,
|
||||
// GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
|
||||
GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
|
||||
GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
|
||||
GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
|
||||
};
|
||||
|
||||
const ggml_type base_types[] = {
|
||||
GGML_TYPE_F32, GGML_TYPE_F16,
|
||||
GGML_TYPE_Q4_0,
|
||||
GGML_TYPE_Q4_K,
|
||||
GGML_TYPE_IQ2_XXS
|
||||
};
|
||||
|
||||
const ggml_type other_types[] = {
|
||||
GGML_TYPE_Q4_1,
|
||||
GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
|
||||
GGML_TYPE_Q8_0,
|
||||
GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
|
||||
GGML_TYPE_Q5_K,
|
||||
GGML_TYPE_Q6_K,
|
||||
// GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
|
||||
GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
|
||||
GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
|
||||
GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
|
||||
GGML_TYPE_BF16,
|
||||
};
|
||||
|
||||
// unary ops
|
||||
for (int v : {0, 1}) {
|
||||
for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
|
||||
@ -3392,6 +3375,14 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 2}));
|
||||
}
|
||||
}
|
||||
for (ggml_type type_a : other_types) {
|
||||
for (ggml_type type_b : {GGML_TYPE_F32}) {
|
||||
if (ggml_blck_size(type_a) != 256) {
|
||||
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
|
||||
}
|
||||
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
|
||||
}
|
||||
}
|
||||
#else
|
||||
// m = a rows
|
||||
// n = b rows
|
||||
@ -3411,15 +3402,6 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
}
|
||||
#endif
|
||||
|
||||
for (ggml_type type_a : other_types) {
|
||||
for (ggml_type type_b : {GGML_TYPE_F32}) {
|
||||
if (ggml_blck_size(type_a) != 256) {
|
||||
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
|
||||
}
|
||||
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
|
||||
}
|
||||
}
|
||||
|
||||
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
|
||||
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
|
||||
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
|
||||
@ -3624,20 +3606,28 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
test_cases.emplace_back(new test_falcon(2));
|
||||
#endif
|
||||
|
||||
// run tests
|
||||
if (mode == MODE_GRAD) {
|
||||
size_t n_ok = 0;
|
||||
for (auto & test : test_cases) {
|
||||
if (test->eval_grad(backend, op_name)) {
|
||||
n_ok++;
|
||||
return test_cases;
|
||||
}
|
||||
|
||||
// Test cases for performance evaluation: should be representative of real-world use cases
|
||||
static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
|
||||
std::vector<std::unique_ptr<test_case>> test_cases;
|
||||
|
||||
for (int bs : {1, 8, 16, 32, 512}) {
|
||||
for (ggml_type type_a : all_types) {
|
||||
for (ggml_type type_b : {GGML_TYPE_F16, GGML_TYPE_F32}) {
|
||||
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 4096, {1, 1}, {1, 1}));
|
||||
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 32000, bs, 4096, {1, 1}, {1, 1}));
|
||||
}
|
||||
}
|
||||
printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
|
||||
|
||||
return n_ok == test_cases.size();
|
||||
}
|
||||
|
||||
return test_cases;
|
||||
}
|
||||
|
||||
static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) {
|
||||
if (mode == MODE_TEST) {
|
||||
auto test_cases = make_test_cases_eval();
|
||||
ggml_backend_t backend_cpu = ggml_backend_cpu_init();
|
||||
|
||||
size_t n_ok = 0;
|
||||
@ -3653,7 +3643,21 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
return n_ok == test_cases.size();
|
||||
}
|
||||
|
||||
if (mode == MODE_GRAD) {
|
||||
auto test_cases = make_test_cases_eval();
|
||||
size_t n_ok = 0;
|
||||
for (auto & test : test_cases) {
|
||||
if (test->eval_grad(backend, op_name)) {
|
||||
n_ok++;
|
||||
}
|
||||
}
|
||||
printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
|
||||
|
||||
return n_ok == test_cases.size();
|
||||
}
|
||||
|
||||
if (mode == MODE_PERF) {
|
||||
auto test_cases = make_test_cases_perf();
|
||||
for (auto & test : test_cases) {
|
||||
test->eval_perf(backend, op_name);
|
||||
}
|
||||
@ -3667,9 +3671,9 @@ static void usage(char ** argv) {
|
||||
printf("Usage: %s [mode] [-o op] [-b backend]\n", argv[0]);
|
||||
printf(" valid modes:\n");
|
||||
printf(" - test (default, compare with CPU backend for correctness)\n");
|
||||
printf(" - perf (performance evaluation)\n");
|
||||
printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
|
||||
printf(" op names are as given by ggml_op_desc() (e.g. GGML_ADD)\n");
|
||||
printf(" - perf (performance evaluation)\n");
|
||||
printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc)\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
@ -3728,6 +3732,11 @@ int main(int argc, char ** argv) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (ggml_backend_is_cpu(backend)) {
|
||||
// TODO: better value for n_threads
|
||||
ggml_backend_cpu_set_n_threads(backend, std::thread::hardware_concurrency() / 2);
|
||||
}
|
||||
|
||||
printf(" Backend name: %s\n", ggml_backend_name(backend));
|
||||
|
||||
bool ok = test_backend(backend, mode, op_name_filter);
|
||||
|
Loading…
Reference in New Issue
Block a user