diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index da6d2ba9e..b2bfb695b 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -634,7 +634,7 @@ class Model: tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] scores: list[float] = [-10000.0] * vocab_size - toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size + toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size for token_id in range(tokenizer.vocab_size()): piece = tokenizer.IdToPiece(token_id) @@ -677,7 +677,7 @@ class Model: for token_id, token_data in added_tokens_decoder.items(): token_id = int(token_id) token: str = token_data["content"] - if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN: + if toktypes[token_id] != SentencePieceTokenTypes.UNUSED: assert tokens[token_id] == token.encode("utf-8") if token_data.get("special") or self.does_token_look_special(token): toktypes[token_id] = SentencePieceTokenTypes.CONTROL @@ -1916,7 +1916,7 @@ class Phi3MiniModel(Model): tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] scores: list[float] = [-10000.0] * vocab_size - toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size + toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size for token_id in range(tokenizer.vocab_size()): @@ -1961,7 +1961,7 @@ class Phi3MiniModel(Model): for token_id, foken_data in added_tokens_decoder.items(): token_id = int(token_id) token = foken_data["content"].encode("utf-8") - if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN: + if toktypes[token_id] != SentencePieceTokenTypes.UNUSED: assert tokens[token_id] == token tokens[token_id] = token scores[token_id] = -1000.0 @@ -1977,7 +1977,7 @@ class Phi3MiniModel(Model): for foken_data in added_tokens: token_id = int(foken_data["id"]) token = foken_data["content"].encode("utf-8") - if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN: + if toktypes[token_id] != SentencePieceTokenTypes.UNUSED: assert tokens[token_id] == token tokens[token_id] = token scores[token_id] = -1000.0 @@ -2766,7 +2766,7 @@ class ArcticModel(Model): tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] scores: list[float] = [-10000.0] * vocab_size - toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size + toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size for token_id in range(tokenizer.vocab_size()): @@ -3021,7 +3021,7 @@ class T5Model(Model): tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] scores: list[float] = [-10000.0] * vocab_size - toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size + toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size for token_id in range(tokenizer.vocab_size()): piece = tokenizer.IdToPiece(token_id) @@ -3239,15 +3239,14 @@ class ChatGLMModel(Model): if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size(): score = tokenizer.tokenizer.sp_model.get_score(token_id) - if len(piece) == 0: - text = f"[PAD{token_id}]".encode("utf-8") - if token_id >= tokenizer.tokenizer.sp_model.vocab_size(): if piece in special_tokens: - # show special tokens in prompt - toktype = SentencePieceTokenTypes.USER_DEFINED + toktype = SentencePieceTokenTypes.CONTROL + elif len(piece) == 0: + text = f"[PAD{token_id}]".encode("utf-8") + toktype = SentencePieceTokenTypes.UNUSED else: - toktype = SentencePieceTokenTypes.UNKNOWN + toktype = SentencePieceTokenTypes.USER_DEFINED tokens.append(text) scores.append(score) toktypes.append(toktype)