mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 19:21:46 +00:00
Tokenizer SPM fixes for phi-3 and llama-spm (bugfix) (#7425)
* Update brute force test: add_special * Update brute force test: default values for add_bos_token and add_eos_token * Enable rtrim when pre-inserting BOS Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Revert "server : fix test regexes"
This commit is contained in:
parent
917dc8cfa6
commit
d7e852c1bc
@ -1749,7 +1749,7 @@ class Phi3MiniModel(Model):
|
|||||||
token_id = int(token_id)
|
token_id = int(token_id)
|
||||||
token = foken_data["content"].encode("utf-8")
|
token = foken_data["content"].encode("utf-8")
|
||||||
if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
|
if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
|
||||||
assert(tokens[token_id] == token)
|
assert tokens[token_id] == token
|
||||||
tokens[token_id] = token
|
tokens[token_id] = token
|
||||||
scores[token_id] = -1000.0
|
scores[token_id] = -1000.0
|
||||||
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
||||||
@ -1765,7 +1765,7 @@ class Phi3MiniModel(Model):
|
|||||||
token_id = int(foken_data["id"])
|
token_id = int(foken_data["id"])
|
||||||
token = foken_data["content"].encode("utf-8")
|
token = foken_data["content"].encode("utf-8")
|
||||||
if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
|
if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
|
||||||
assert(tokens[token_id] == token)
|
assert tokens[token_id] == token
|
||||||
tokens[token_id] = token
|
tokens[token_id] = token
|
||||||
scores[token_id] = -1000.0
|
scores[token_id] = -1000.0
|
||||||
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
||||||
|
@ -37,8 +37,8 @@ Feature: llama.cpp server
|
|||||||
|
|
||||||
Examples: Prompts
|
Examples: Prompts
|
||||||
| prompt | n_predict | re_content | n_prompt | n_predicted | truncated |
|
| prompt | n_predict | re_content | n_prompt | n_predicted | truncated |
|
||||||
| I believe the meaning of life is | 8 | (read\|going\|pretty)+ | 18 | 8 | not |
|
| I believe the meaning of life is | 8 | (read\|going)+ | 18 | 8 | not |
|
||||||
| Write a joke about AI from a very long prompt which will not be truncated | 256 | (princesses\|everyone\|kids\|Anna\|forest)+ | 45 | 64 | not |
|
| Write a joke about AI from a very long prompt which will not be truncated | 256 | (princesses\|everyone\|kids\|Anna\|forest)+ | 46 | 64 | not |
|
||||||
|
|
||||||
Scenario: Completion prompt truncated
|
Scenario: Completion prompt truncated
|
||||||
Given a prompt:
|
Given a prompt:
|
||||||
@ -67,8 +67,8 @@ Feature: llama.cpp server
|
|||||||
|
|
||||||
Examples: Prompts
|
Examples: Prompts
|
||||||
| model | system_prompt | user_prompt | max_tokens | re_content | n_prompt | n_predicted | enable_streaming | truncated |
|
| model | system_prompt | user_prompt | max_tokens | re_content | n_prompt | n_predicted | enable_streaming | truncated |
|
||||||
| llama-2 | Book | What is the best book | 8 | (Here\|what)+ | 76 | 8 | disabled | not |
|
| llama-2 | Book | What is the best book | 8 | (Here\|what)+ | 77 | 8 | disabled | not |
|
||||||
| codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 128 | (thanks\|happy\|bird\|fireplace)+ | -1 | 64 | enabled | |
|
| codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 128 | (thanks\|happy\|bird\|Annabyear)+ | -1 | 64 | enabled | |
|
||||||
|
|
||||||
|
|
||||||
Scenario Outline: OAI Compatibility w/ response format
|
Scenario Outline: OAI Compatibility w/ response format
|
||||||
@ -84,7 +84,7 @@ Feature: llama.cpp server
|
|||||||
| response_format | n_predicted | re_content |
|
| response_format | n_predicted | re_content |
|
||||||
| {"type": "json_object", "schema": {"const": "42"}} | 5 | "42" |
|
| {"type": "json_object", "schema": {"const": "42"}} | 5 | "42" |
|
||||||
| {"type": "json_object", "schema": {"items": [{"type": "integer"}]}} | 10 | \[ -300 \] |
|
| {"type": "json_object", "schema": {"items": [{"type": "integer"}]}} | 10 | \[ -300 \] |
|
||||||
| {"type": "json_object"} | 10 | \{ " Saragine. |
|
| {"type": "json_object"} | 10 | \{ " Jacky. |
|
||||||
|
|
||||||
|
|
||||||
Scenario: Tokenize / Detokenize
|
Scenario: Tokenize / Detokenize
|
||||||
|
@ -26,7 +26,7 @@ Feature: llama.cpp server slot management
|
|||||||
# Since we have cache, this should only process the last tokens
|
# Since we have cache, this should only process the last tokens
|
||||||
Given a user prompt "What is the capital of Germany?"
|
Given a user prompt "What is the capital of Germany?"
|
||||||
And a completion request with no api error
|
And a completion request with no api error
|
||||||
Then 24 tokens are predicted matching (Thank|special|Lily)
|
Then 24 tokens are predicted matching (Thank|special)
|
||||||
And 7 prompt tokens are processed
|
And 7 prompt tokens are processed
|
||||||
# Loading the original cache into slot 0,
|
# Loading the original cache into slot 0,
|
||||||
# we should only be processing 1 prompt token and get the same output
|
# we should only be processing 1 prompt token and get the same output
|
||||||
@ -41,7 +41,7 @@ Feature: llama.cpp server slot management
|
|||||||
Given a user prompt "What is the capital of Germany?"
|
Given a user prompt "What is the capital of Germany?"
|
||||||
And using slot id 1
|
And using slot id 1
|
||||||
And a completion request with no api error
|
And a completion request with no api error
|
||||||
Then 24 tokens are predicted matching (Thank|special|Lily)
|
Then 24 tokens are predicted matching (Thank|special)
|
||||||
And 1 prompt tokens are processed
|
And 1 prompt tokens are processed
|
||||||
|
|
||||||
Scenario: Erase Slot
|
Scenario: Erase Slot
|
||||||
|
11
llama.cpp
11
llama.cpp
@ -12498,15 +12498,16 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
|
|||||||
// tokenizer.encode('', add_special_tokens=True) returns [1]
|
// tokenizer.encode('', add_special_tokens=True) returns [1]
|
||||||
// tokenizer.encode('', add_special_tokens=False) returns []
|
// tokenizer.encode('', add_special_tokens=False) returns []
|
||||||
|
|
||||||
if (add_special && vocab.special_add_bos != 0) {
|
|
||||||
GGML_ASSERT(vocab.special_bos_id != -1);
|
|
||||||
output.push_back(vocab.special_bos_id);
|
|
||||||
}
|
|
||||||
|
|
||||||
static const bool rtrim = true; //TODO: as param
|
static const bool rtrim = true; //TODO: as param
|
||||||
bool is_prev_special = false;
|
bool is_prev_special = false;
|
||||||
bool special_token_rtrim = false;
|
bool special_token_rtrim = false;
|
||||||
|
|
||||||
|
if (add_special && vocab.special_add_bos != 0) {
|
||||||
|
GGML_ASSERT(vocab.special_bos_id != -1);
|
||||||
|
output.push_back(vocab.special_bos_id);
|
||||||
|
is_prev_special = true;
|
||||||
|
}
|
||||||
|
|
||||||
for (const auto & fragment : fragment_buffer) {
|
for (const auto & fragment : fragment_buffer) {
|
||||||
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
|
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
|
||||||
// without adding this leading whitespace, we do not get the same results as the original tokenizer
|
// without adding this leading whitespace, we do not get the same results as the original tokenizer
|
||||||
|
@ -154,19 +154,22 @@ def generator_custom_text_edge_cases() -> Iterator[str]:
|
|||||||
'\uFEFF//', # unicode_ranges_control, 0xFEFF (BOM)
|
'\uFEFF//', # unicode_ranges_control, 0xFEFF (BOM)
|
||||||
'Cửa Việt', # llama-3, ignore_merges = true
|
'Cửa Việt', # llama-3, ignore_merges = true
|
||||||
'<s>a', # Phi-3 fail
|
'<s>a', # Phi-3 fail
|
||||||
'<unk><|endoftext|><s>' # Phi-3 fail
|
'<unk><|endoftext|><s>', # Phi-3 fail
|
||||||
'a\na', # TODO: Bert fail
|
'a\na', # TODO: Bert fail
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
def generator_random_special_tokens(special_tokens:list[str], iterations=100) -> Iterator[str]:
|
def generator_random_special_tokens(tokenizer, iterations=100) -> Iterator[str]:
|
||||||
special_tokens = set(special_tokens)
|
special_tokens = set(tokenizer.all_special_tokens)
|
||||||
special_tokens.update([" ", "\n", "\t", "-", "!", "one", "1", "<s>", "</s>"])
|
special_tokens.update([" ", "\n", "\t", "-", "!", "one", "1", "<s>", "</s>"])
|
||||||
special_tokens = list(sorted(special_tokens))
|
special_tokens = list(sorted(special_tokens))
|
||||||
rand = random.Random()
|
rand = random.Random()
|
||||||
for m in range(iterations):
|
for m in range(iterations):
|
||||||
rand.seed(m)
|
rand.seed(m)
|
||||||
words = rand.choices(special_tokens, k=500)
|
words = rand.choices(special_tokens, k=500)
|
||||||
|
if tokenizer.add_bos_token: # skip spam warning of double BOS
|
||||||
|
while words and words[0] == tokenizer.bos_token:
|
||||||
|
words.pop(0)
|
||||||
yield "".join(words)
|
yield "".join(words)
|
||||||
|
|
||||||
|
|
||||||
@ -290,18 +293,19 @@ def main(argv: list[str] = None):
|
|||||||
model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))
|
model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))
|
||||||
tokenizer = AutoTokenizer.from_pretrained(args.dir_tokenizer)
|
tokenizer = AutoTokenizer.from_pretrained(args.dir_tokenizer)
|
||||||
|
|
||||||
def func_tokenize2(text: str):
|
tokenizer.add_bos_token = getattr(tokenizer, "add_bos_token", True)
|
||||||
return tokenizer.encode(text, add_special_tokens=False)
|
tokenizer.add_eos_token = getattr(tokenizer, "add_eos_token", False)
|
||||||
|
|
||||||
parse_special = all(len(func_tokenize2(t)) == 1 for t in tokenizer.all_special_tokens)
|
|
||||||
|
|
||||||
def func_tokenize1(text: str):
|
def func_tokenize1(text: str):
|
||||||
return model.tokenize(text, add_special=False, parse_special=parse_special)
|
return model.tokenize(text, add_special=True, parse_special=True)
|
||||||
|
|
||||||
|
def func_tokenize2(text: str):
|
||||||
|
return tokenizer.encode(text, add_special_tokens=True)
|
||||||
|
|
||||||
vocab = list(sorted(tokenizer.batch_decode(list(tokenizer.get_vocab().values()), skip_special_tokens=True)))
|
vocab = list(sorted(tokenizer.batch_decode(list(tokenizer.get_vocab().values()), skip_special_tokens=True)))
|
||||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text())
|
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text())
|
||||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text_edge_cases())
|
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text_edge_cases())
|
||||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_special_tokens(tokenizer.all_special_tokens, 10_000))
|
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_special_tokens(tokenizer, 10_000))
|
||||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_vocab_words(vocab))
|
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_vocab_words(vocab))
|
||||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_chars(10_000))
|
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_chars(10_000))
|
||||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_vocab_chars(vocab, 10_000))
|
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_vocab_chars(vocab, 10_000))
|
||||||
|
Loading…
Reference in New Issue
Block a user