mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 03:01:45 +00:00
Adjust Metal buffer allocation to avoid allocating beyond MTLDevice.recommendedMaxWorkingSetSize
This commit is contained in:
parent
b213227067
commit
da7d2f9587
@ -50,8 +50,6 @@ int main(int argc, char ** argv) {
|
||||
struct ggml_tensor * input = ggml_graph_get_tensor(&gf, "embd");
|
||||
*(int32_t *) input->data = 1; // BOS
|
||||
|
||||
ggml_metal_set_tensor(ctx_metal, input);
|
||||
|
||||
// warmup
|
||||
ggml_metal_graph_compute(ctx_metal, &gf);
|
||||
|
||||
@ -72,7 +70,6 @@ int main(int argc, char ** argv) {
|
||||
// debug output
|
||||
{
|
||||
struct ggml_tensor * logits = gf.nodes[gf.n_nodes - 1];
|
||||
ggml_metal_get_tensor(ctx_metal, logits);
|
||||
|
||||
float * ptr = (float *) ggml_get_data(logits);
|
||||
|
||||
|
11
ggml-metal.h
11
ggml-metal.h
@ -13,9 +13,6 @@
|
||||
// are mapped to the device memory with the ggml_metal_add_buffer() function. This mapping is
|
||||
// used during the graph evaluation to determine the arguments of the compute kernels.
|
||||
//
|
||||
// Synchronization between device and host memory (for example for input and output tensors)
|
||||
// is done with the ggml_metal_set_tensor() and ggml_metal_get_tensor() functions.
|
||||
//
|
||||
|
||||
#pragma once
|
||||
|
||||
@ -23,7 +20,7 @@
|
||||
#include <stdbool.h>
|
||||
|
||||
// max memory buffers that can be mapped to the device
|
||||
#define GGML_METAL_MAX_BUFFERS 16
|
||||
#define GGML_METAL_MAX_BUFFERS 256
|
||||
|
||||
struct ggml_tensor;
|
||||
struct ggml_cgraph;
|
||||
@ -51,12 +48,6 @@ bool ggml_metal_add_buffer(
|
||||
size_t size,
|
||||
size_t max_size);
|
||||
|
||||
// set data from host memory into the device
|
||||
void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
|
||||
|
||||
// get data from the device into host memory
|
||||
void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
|
||||
|
||||
// same as ggml_graph_compute but uses Metal
|
||||
// creates gf->n_threads command buffers in parallel
|
||||
void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
|
||||
|
1301
ggml-metal.m
1301
ggml-metal.m
File diff suppressed because it is too large
Load Diff
@ -1555,7 +1555,6 @@ static bool llama_eval_internal(
|
||||
#ifdef GGML_USE_METAL
|
||||
if (lctx.ctx_metal && N == 1) {
|
||||
ggml_metal_graph_compute(lctx.ctx_metal, &gf);
|
||||
ggml_metal_get_tensor (lctx.ctx_metal, cur);
|
||||
} else {
|
||||
// IMPORTANT:
|
||||
// Since we don't have efficient Matrix x Matrix Metal multiplication yet, we fallback to vanilla
|
||||
@ -1564,14 +1563,6 @@ static bool llama_eval_internal(
|
||||
//
|
||||
// When we implement Matrix x Matrix Metal multiplication, we can avoid this branch.
|
||||
// But for now, we have focused only on Matrix x Vector Metal multiplication.
|
||||
//
|
||||
// TODO: avoid these syncs via shared memory (ref #1696)
|
||||
//
|
||||
if (lctx.ctx_metal) {
|
||||
// We need to sync the GPU KV cache with the CPU KV cache
|
||||
ggml_metal_get_tensor(lctx.ctx_metal, kv_self.k);
|
||||
ggml_metal_get_tensor(lctx.ctx_metal, kv_self.v);
|
||||
}
|
||||
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user