From da936188d87d70be6091840ed990c92dc66d8d46 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sun, 29 Oct 2023 11:48:24 +0200 Subject: [PATCH] llama : move refact in correct place + optimize graph input --- llama.cpp | 620 ++++++++++++++++++++++++++++-------------------------- 1 file changed, 317 insertions(+), 303 deletions(-) diff --git a/llama.cpp b/llama.cpp index ac359da69..72678a438 100644 --- a/llama.cpp +++ b/llama.cpp @@ -3166,10 +3166,10 @@ static struct ggml_cgraph * llm_build_llama( ggml_set_name(KQ_pos, "KQ_pos"); // shift the entire K-cache if needed - if (do_rope_shift) { - struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx); - ggml_set_name(K_shift, "K_shift"); + struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx); + ggml_set_name(K_shift, "K_shift"); + if (do_rope_shift) { for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * tmp = ggml_rope_custom_inplace(ctx0, @@ -3440,10 +3440,10 @@ static struct ggml_cgraph * llm_build_baichaun( ggml_set_name(KQ_pos, "KQ_pos"); // shift the entire K-cache if needed - if (do_rope_shift) { - struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx); - ggml_set_name(K_shift, "K_shift"); + struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx); + ggml_set_name(K_shift, "K_shift"); + if (do_rope_shift) { for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * tmp = ggml_rope_custom_inplace(ctx0, @@ -3658,247 +3658,6 @@ static struct ggml_cgraph * llm_build_baichaun( return gf; } -static struct ggml_cgraph * llm_build_refact( - llama_context & lctx, - const llama_batch & batch, - bool worst_case) { - const auto & model = lctx.model; - const auto & hparams = model.hparams; - const auto & cparams = lctx.cparams; - - const auto & kv_self = lctx.kv_self; - - GGML_ASSERT(!!kv_self.ctx); - - const int64_t n_embd = hparams.n_embd; - const int64_t n_layer = hparams.n_layer; - const int64_t n_ctx = cparams.n_ctx; - const int64_t n_head = hparams.n_head; - const int64_t n_head_kv = hparams.n_head_kv; - const int64_t n_embd_head = hparams.n_embd_head(); - const int64_t n_embd_gqa = hparams.n_embd_gqa(); - - const float norm_rms_eps = hparams.f_norm_rms_eps; - - const int32_t n_tokens = batch.n_tokens; - const int32_t n_kv = worst_case ? n_ctx : kv_self.n; - const int32_t kv_head = worst_case ? n_ctx - n_tokens : kv_self.head; - - // printf("n_kv = %d\n", n_kv); - - auto & buf_compute = lctx.buf_compute; - - struct ggml_init_params params = { - /*.mem_size =*/ buf_compute.size, - /*.mem_buffer =*/ buf_compute.data, - /*.no_alloc =*/ true, - }; - - struct ggml_context * ctx0 = ggml_init(params); - - ggml_cgraph * gf = ggml_new_graph(ctx0); - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - if (batch.token) { - struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); - ggml_set_name(inp_tokens, "inp_tokens"); - - inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens); - } else { -#ifdef GGML_USE_MPI - GGML_ASSERT(false && "not implemented"); -#endif - - inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens); - } - ggml_set_name(inpL, "inp_embd"); - - // KQ_scale - struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); - ggml_set_name(KQ_scale, "KQ_scale"); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); - ggml_set_name(KQ_mask, "KQ_mask"); - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * inpSA = inpL; - - // norm - { - cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps); - ggml_set_name(cur, "rms_norm_0"); - - // cur = cur*attn_norm(broadcasted) - cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm); - ggml_set_name(cur, "attn_norm_0"); - } - - // self-attention - { - // compute Q and K - struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur); - ggml_set_name(tmpk, "tmpk"); - - struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur); - ggml_set_name(tmpq, "tmpq"); - - struct ggml_tensor * Kcur = ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens); - ggml_set_name(Kcur, "Kcur"); - - struct ggml_tensor * Qcur = ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens); - ggml_set_name(Qcur, "Qcur"); - - // store key and value to memory - { - // compute the transposed [n_tokens, n_embd] V matrix - - struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur); - ggml_set_name(tmpv, "tmpv"); - - struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens)); - ggml_set_name(Vcur, "Vcur"); - - struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head)); - ggml_set_name(k, "k"); - - struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa, - ( n_ctx)*ggml_element_size(kv_self.v), - (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v)); - ggml_set_name(v, "v"); - - ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); - ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); - } - - struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); - ggml_set_name(Q, "Q"); - - struct ggml_tensor * K = - ggml_view_3d(ctx0, kv_self.k, - n_embd_head, n_kv, n_head_kv, - ggml_element_size(kv_self.k)*n_embd_gqa, - ggml_element_size(kv_self.k)*n_embd_head, - ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il); - ggml_set_name(K, "K"); - - // K * Q - struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); - ggml_set_name(KQ, "KQ"); - - // KQ_scaled = KQ / sqrt(n_embd_head) - // KQ_scaled shape [n_kv, n_tokens, n_head, 1] - struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale); - ggml_set_name(KQ_scaled, "KQ_scaled"); - - // KQ_masked = mask_past(KQ_scaled) - struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, /*n_past*/ 0, n_head, 8); - ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi"); - - struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask); - ggml_set_name(KQ_masked, "KQ_masked"); - - // KQ = soft_max(KQ_masked) - struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); - ggml_set_name(KQ_soft_max, "KQ_soft_max"); - - // split cached V into n_head heads - struct ggml_tensor * V = - ggml_view_3d(ctx0, kv_self.v, - n_kv, n_embd_head, n_head_kv, - ggml_element_size(kv_self.v)*n_ctx, - ggml_element_size(kv_self.v)*n_ctx*n_embd_head, - ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il); - ggml_set_name(V, "V"); - - struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); - ggml_set_name(KQV, "KQV"); - - // KQV_merged = KQV.permute(0, 2, 1, 3) - struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); - ggml_set_name(KQV_merged, "KQV_merged"); - - // cur = KQV_merged.contiguous().view(n_embd, n_tokens) - cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens); - ggml_set_name(cur, "KQV_merged_contiguous"); - - // projection (no bias) - cur = ggml_mul_mat(ctx0, - model.layers[il].wo, - cur); - ggml_set_name(cur, "result_wo"); - } - - struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA); - ggml_set_name(inpFF, "inpFF"); - - // feed-forward network - { - // norm - { - cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps); - ggml_set_name(cur, "rms_norm_1"); - - // cur = cur*ffn_norm(broadcasted) - cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm); - ggml_set_name(cur, "ffn_norm"); - } - - struct ggml_tensor * tmp = ggml_mul_mat(ctx0, - model.layers[il].w3, - cur); - ggml_set_name(tmp, "result_w3"); - - cur = ggml_mul_mat(ctx0, - model.layers[il].w1, - cur); - ggml_set_name(cur, "result_w1"); - - // SILU activation - cur = ggml_silu(ctx0, cur); - ggml_set_name(cur, "silu"); - - cur = ggml_mul(ctx0, cur, tmp); - ggml_set_name(cur, "silu_x_result_w3"); - - cur = ggml_mul_mat(ctx0, - model.layers[il].w2, - cur); - ggml_set_name(cur, "result_w2"); - } - - cur = ggml_add(ctx0, cur, inpFF); - ggml_set_name(cur, "inpFF_+_result_w2"); - - // input for next layer - inpL = cur; - } - - cur = inpL; - - // norm - { - cur = ggml_rms_norm(ctx0, cur, norm_rms_eps); - ggml_set_name(cur, "rms_norm_2"); - - // cur = cur*norm(broadcasted) - cur = ggml_mul(ctx0, cur, model.output_norm); - ggml_set_name(cur, "result_norm"); - } - - // lm_head - cur = ggml_mul_mat(ctx0, model.output, cur); - ggml_set_name(cur, "result_output"); - - ggml_build_forward_expand(gf, cur); - - ggml_free(ctx0); - - return gf; -} - static struct ggml_cgraph * llm_build_falcon( llama_context & lctx, const llama_batch & batch, @@ -3976,10 +3735,10 @@ static struct ggml_cgraph * llm_build_falcon( ggml_set_name(KQ_pos, "KQ_pos"); // shift the entire K-cache if needed - if (do_rope_shift) { - struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx); - ggml_set_name(K_shift, "K_shift"); + struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx); + ggml_set_name(K_shift, "K_shift"); + if (do_rope_shift) { for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * tmp = ggml_rope_custom_inplace(ctx0, @@ -4774,6 +4533,247 @@ static struct ggml_cgraph * llm_build_persimmon( return gf; } +static struct ggml_cgraph * llm_build_refact( + llama_context & lctx, + const llama_batch & batch, + bool worst_case) { + const auto & model = lctx.model; + const auto & hparams = model.hparams; + const auto & cparams = lctx.cparams; + + const auto & kv_self = lctx.kv_self; + + GGML_ASSERT(!!kv_self.ctx); + + const int64_t n_embd = hparams.n_embd; + const int64_t n_layer = hparams.n_layer; + const int64_t n_ctx = cparams.n_ctx; + const int64_t n_head = hparams.n_head; + const int64_t n_head_kv = hparams.n_head_kv; + const int64_t n_embd_head = hparams.n_embd_head(); + const int64_t n_embd_gqa = hparams.n_embd_gqa(); + + const float norm_rms_eps = hparams.f_norm_rms_eps; + + const int32_t n_tokens = batch.n_tokens; + const int32_t n_kv = worst_case ? n_ctx : kv_self.n; + const int32_t kv_head = worst_case ? n_ctx - n_tokens : kv_self.head; + + // printf("n_kv = %d\n", n_kv); + + auto & buf_compute = lctx.buf_compute; + + struct ggml_init_params params = { + /*.mem_size =*/ buf_compute.size, + /*.mem_buffer =*/ buf_compute.data, + /*.no_alloc =*/ true, + }; + + struct ggml_context * ctx0 = ggml_init(params); + + ggml_cgraph * gf = ggml_new_graph(ctx0); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + if (batch.token) { + struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + ggml_set_name(inp_tokens, "inp_tokens"); + + inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens); + } else { +#ifdef GGML_USE_MPI + GGML_ASSERT(false && "not implemented"); +#endif + + inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens); + } + ggml_set_name(inpL, "inp_embd"); + + // KQ_scale + struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); + ggml_set_name(KQ_scale, "KQ_scale"); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + ggml_set_name(KQ_mask, "KQ_mask"); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + // norm + { + cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps); + ggml_set_name(cur, "rms_norm_0"); + + // cur = cur*attn_norm(broadcasted) + cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm); + ggml_set_name(cur, "attn_norm_0"); + } + + // self-attention + { + // compute Q and K + struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + ggml_set_name(tmpk, "tmpk"); + + struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + ggml_set_name(tmpq, "tmpq"); + + struct ggml_tensor * Kcur = ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens); + ggml_set_name(Kcur, "Kcur"); + + struct ggml_tensor * Qcur = ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens); + ggml_set_name(Qcur, "Qcur"); + + // store key and value to memory + { + // compute the transposed [n_tokens, n_embd] V matrix + + struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + ggml_set_name(tmpv, "tmpv"); + + struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens)); + ggml_set_name(Vcur, "Vcur"); + + struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head)); + ggml_set_name(k, "k"); + + struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa, + ( n_ctx)*ggml_element_size(kv_self.v), + (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v)); + ggml_set_name(v, "v"); + + ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); + ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); + } + + struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); + ggml_set_name(Q, "Q"); + + struct ggml_tensor * K = + ggml_view_3d(ctx0, kv_self.k, + n_embd_head, n_kv, n_head_kv, + ggml_element_size(kv_self.k)*n_embd_gqa, + ggml_element_size(kv_self.k)*n_embd_head, + ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il); + ggml_set_name(K, "K"); + + // K * Q + struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); + ggml_set_name(KQ, "KQ"); + + // KQ_scaled = KQ / sqrt(n_embd_head) + // KQ_scaled shape [n_kv, n_tokens, n_head, 1] + struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale); + ggml_set_name(KQ_scaled, "KQ_scaled"); + + // KQ_masked = mask_past(KQ_scaled) + struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, /*n_past*/ 0, n_head, 8); + ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi"); + + struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask); + ggml_set_name(KQ_masked, "KQ_masked"); + + // KQ = soft_max(KQ_masked) + struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); + ggml_set_name(KQ_soft_max, "KQ_soft_max"); + + // split cached V into n_head heads + struct ggml_tensor * V = + ggml_view_3d(ctx0, kv_self.v, + n_kv, n_embd_head, n_head_kv, + ggml_element_size(kv_self.v)*n_ctx, + ggml_element_size(kv_self.v)*n_ctx*n_embd_head, + ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il); + ggml_set_name(V, "V"); + + struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); + ggml_set_name(KQV, "KQV"); + + // KQV_merged = KQV.permute(0, 2, 1, 3) + struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); + ggml_set_name(KQV_merged, "KQV_merged"); + + // cur = KQV_merged.contiguous().view(n_embd, n_tokens) + cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens); + ggml_set_name(cur, "KQV_merged_contiguous"); + + // projection (no bias) + cur = ggml_mul_mat(ctx0, + model.layers[il].wo, + cur); + ggml_set_name(cur, "result_wo"); + } + + struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA); + ggml_set_name(inpFF, "inpFF"); + + // feed-forward network + { + // norm + { + cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps); + ggml_set_name(cur, "rms_norm_1"); + + // cur = cur*ffn_norm(broadcasted) + cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm); + ggml_set_name(cur, "ffn_norm"); + } + + struct ggml_tensor * tmp = ggml_mul_mat(ctx0, + model.layers[il].w3, + cur); + ggml_set_name(tmp, "result_w3"); + + cur = ggml_mul_mat(ctx0, + model.layers[il].w1, + cur); + ggml_set_name(cur, "result_w1"); + + // SILU activation + cur = ggml_silu(ctx0, cur); + ggml_set_name(cur, "silu"); + + cur = ggml_mul(ctx0, cur, tmp); + ggml_set_name(cur, "silu_x_result_w3"); + + cur = ggml_mul_mat(ctx0, + model.layers[il].w2, + cur); + ggml_set_name(cur, "result_w2"); + } + + cur = ggml_add(ctx0, cur, inpFF); + ggml_set_name(cur, "inpFF_+_result_w2"); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + // norm + { + cur = ggml_rms_norm(ctx0, cur, norm_rms_eps); + ggml_set_name(cur, "rms_norm_2"); + + // cur = cur*norm(broadcasted) + cur = ggml_mul(ctx0, cur, model.output_norm); + ggml_set_name(cur, "result_norm"); + } + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + ggml_set_name(cur, "result_output"); + + ggml_build_forward_expand(gf, cur); + + ggml_free(ctx0); + + return gf; +} + static struct ggml_cgraph * llm_build_bloom( llama_context & lctx, const llama_batch & batch, @@ -5360,7 +5360,7 @@ static void llama_build_graph_input( // inp_tokens if (batch.token) { cur = ggml_graph_get_tensor(graph, "inp_tokens"); - GGML_ASSERT(cur != nullptr); // required + GGML_ASSERT(cur != nullptr && "missing tensor 'inp_tokens'"); ggml_allocr_alloc(lctx.alloc, cur); @@ -5374,7 +5374,7 @@ static void llama_build_graph_input( // inp_embd if (batch.embd) { cur = ggml_graph_get_tensor(graph, "inp_embd"); - GGML_ASSERT(cur != nullptr); // required + GGML_ASSERT(cur != nullptr && "missing tensor 'inp_embd'"); ggml_allocr_alloc(lctx.alloc, cur); @@ -5386,38 +5386,84 @@ static void llama_build_graph_input( } } - // TODO: make the following required based on the ARCH + switch (lctx.model.arch) { + case LLM_ARCH_LLAMA: + case LLM_ARCH_BAICHUAN: + case LLM_ARCH_FALCON: + case LLM_ARCH_PERSIMMON: + { + // KQ_pos + cur = ggml_graph_get_tensor(graph, "KQ_pos"); + GGML_ASSERT(cur != nullptr && "missing tensor 'KQ_pos'"); - // inp_pos - cur = ggml_graph_get_tensor(graph, "inp_pos"); - if (cur) { - ggml_allocr_alloc(lctx.alloc, cur); + ggml_allocr_alloc(lctx.alloc, cur); - if (!ggml_allocr_is_measure(lctx.alloc)) { - const int64_t n_tokens = cur->ne[0]; + if (!ggml_allocr_is_measure(lctx.alloc)) { + const int64_t n_tokens = cur->ne[0]; - int32_t * data = (int32_t *) cur->data; + int32_t * data = (int32_t *) cur->data; - for (int i = 0; i < n_tokens; ++i) { - data[i] = batch.pos[i]; - } - } + for (int i = 0; i < n_tokens; ++i) { + data[i] = batch.pos[i]; + } + } + + // K_shift + cur = ggml_graph_get_tensor(graph, "K_shift"); + //GGML_ASSERT(cur != nullptr && "missing tensor 'K_shift'"); + if (cur) { + ggml_allocr_alloc(lctx.alloc, cur); + + if (!ggml_allocr_is_measure(lctx.alloc)) { + const int64_t n_ctx = cur->ne[0]; + + int32_t * data = (int32_t *) cur->data; + + for (int i = 0; i < n_ctx; ++i) { + data[i] = lctx.kv_self.cells[i].delta; + } + } + } + } break; + case LLM_ARCH_STARCODER: + { + // inp_pos + cur = ggml_graph_get_tensor(graph, "inp_pos"); + GGML_ASSERT(cur != nullptr && "missing tensor 'inp_pos'"); + + ggml_allocr_alloc(lctx.alloc, cur); + + if (!ggml_allocr_is_measure(lctx.alloc)) { + const int64_t n_tokens = cur->ne[0]; + + int32_t * data = (int32_t *) cur->data; + + for (int i = 0; i < n_tokens; ++i) { + data[i] = batch.pos[i]; + } + } + } break; + default: + break; } - // KQ_scale - cur = ggml_graph_get_tensor(graph, "KQ_scale"); - if (cur) { + // common + { + // KQ_scale + cur = ggml_graph_get_tensor(graph, "KQ_scale"); + GGML_ASSERT(cur != nullptr && "missing tensor 'KQ_scale'"); + ggml_allocr_alloc(lctx.alloc, cur); if (!ggml_allocr_is_measure(lctx.alloc)) { const int64_t n_embd_head = lctx.model.hparams.n_embd_head(); ggml_set_f32(cur, 1.0f/sqrtf(float(n_embd_head))); } - } - // KQ_mask - cur = ggml_graph_get_tensor(graph, "KQ_mask"); - if (cur) { + // KQ_mask + cur = ggml_graph_get_tensor(graph, "KQ_mask"); + GGML_ASSERT(cur != nullptr && "missing tensor 'KQ_mask'"); + ggml_allocr_alloc(lctx.alloc, cur); if (!ggml_allocr_is_measure(lctx.alloc)) { @@ -5441,38 +5487,6 @@ static void llama_build_graph_input( } } } - - // KQ_pos - cur = ggml_graph_get_tensor(graph, "KQ_pos"); - if (cur) { - ggml_allocr_alloc(lctx.alloc, cur); - - if (!ggml_allocr_is_measure(lctx.alloc)) { - const int64_t n_tokens = cur->ne[0]; - - int32_t * data = (int32_t *) cur->data; - - for (int i = 0; i < n_tokens; ++i) { - data[i] = batch.pos[i]; - } - } - } - - // K_shift - cur = ggml_graph_get_tensor(graph, "K_shift"); - if (cur) { - ggml_allocr_alloc(lctx.alloc, cur); - - if (!ggml_allocr_is_measure(lctx.alloc)) { - const int64_t n_ctx = cur->ne[0]; - - int32_t * data = (int32_t *) cur->data; - - for (int i = 0; i < n_ctx; ++i) { - data[i] = lctx.kv_self.cells[i].delta; - } - } - } while (0); } static struct ggml_cgraph * llama_build_graph(