Overlap cmdbuffer creation and cmdbuffer execution in Vulkan backend by submitting smaller cmdbuffers early. (#9118)

* Overlap cmdbuffer creation and cmdbuffer execution in Vulkan backend by submitting smaller cmdbuffers early.

* fix compile issues

* Fix issues where the last submit wasn't executed or handled properly.

* remove trailing whitespace

* Repair GGML_VULKAN_CHECK_RESULTS

* Increase submit counter only if actual work has been submitted and increase submit count to 100.

* Fix some nodes are not checked with GGML_VULKAN_CHECK_RESULTS enabled.
This commit is contained in:
Markus Tavenrath 2024-09-08 21:43:48 +02:00 committed by GitHub
parent e079bffb66
commit daa9623ab0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -787,6 +787,9 @@ static vk_submission ggml_vk_create_submission(vk_device& device, vk_queue& q, s
static void ggml_vk_submit(vk_context& ctx, vk::Fence fence) { static void ggml_vk_submit(vk_context& ctx, vk::Fence fence) {
if (ctx->seqs.empty()) { if (ctx->seqs.empty()) {
if (fence) {
ctx->q->queue.submit({}, fence);
}
return; return;
} }
VK_LOG_DEBUG("ggml_vk_submit(" << ctx << ", " << fence << ")"); VK_LOG_DEBUG("ggml_vk_submit(" << ctx << ", " << fence << ")");
@ -5658,11 +5661,15 @@ static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx) {
} }
} }
static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * node, int node_idx, bool last_node, bool dryrun){ static bool ggml_vk_compute_forward(ggml_backend_vk_context* ctx, ggml_tensor* tensor, int tensor_idx, bool use_fence);
// Returns true if node has enqueued work into the queue, false otherwise
// If submit is true the current all operations queued so far are being submitted to Vulkan to overlap cmdlist creation and GPU execution.
static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * node, int node_idx, ggml_tensor *node_begin, int node_idx_begin, bool dryrun, bool last_node, bool submit){
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) node->extra; ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) node->extra;
if (ggml_is_empty(node) || extra == nullptr) { if (ggml_is_empty(node) || extra == nullptr) {
return; return false;
} }
VK_LOG_DEBUG("ggml_vk_build_graph(" << node << ", " << ggml_op_name(node->op) << ")"); VK_LOG_DEBUG("ggml_vk_build_graph(" << node << ", " << ggml_op_name(node->op) << ")");
@ -5679,7 +5686,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
case GGML_OP_PERMUTE: case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE: case GGML_OP_TRANSPOSE:
case GGML_OP_NONE: case GGML_OP_NONE:
return; return false;
case GGML_OP_UNARY: case GGML_OP_UNARY:
switch (ggml_get_unary_op(node)) { switch (ggml_get_unary_op(node)) {
case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_SILU:
@ -5689,7 +5696,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
case GGML_UNARY_OP_TANH: case GGML_UNARY_OP_TANH:
break; break;
default: default:
return; return false;
} }
break; break;
case GGML_OP_REPEAT: case GGML_OP_REPEAT:
@ -5726,7 +5733,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
default: default:
std::cerr << "ggml_vulkan: Error: Missing op: " << ggml_op_name(node->op) << std::endl; std::cerr << "ggml_vulkan: Error: Missing op: " << ggml_op_name(node->op) << std::endl;
GGML_ABORT("fatal error"); GGML_ABORT("fatal error");
return; return false;
} }
vk_context compute_ctx; vk_context compute_ctx;
@ -5826,7 +5833,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
ggml_vk_unary(ctx, compute_ctx, src0, node, dryrun); ggml_vk_unary(ctx, compute_ctx, src0, node, dryrun);
break; break;
default: default:
return; return false;
} }
break; break;
case GGML_OP_DIAG_MASK_INF: case GGML_OP_DIAG_MASK_INF:
@ -5870,11 +5877,11 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
break; break;
default: default:
return; return false;
} }
if (dryrun) { if (dryrun) {
return; return false;
} }
ctx->tensor_ctxs[node_idx] = compute_ctx; ctx->tensor_ctxs[node_idx] = compute_ctx;
@ -5885,14 +5892,34 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
last_node = true; last_node = true;
#endif #endif
if (last_node) { if (submit || last_node) {
ggml_vk_ctx_end(compute_ctx); ggml_vk_ctx_end(compute_ctx);
compute_ctx->exit_tensor_idx = node_idx;
ctx->compute_ctx.reset(); // TODO probably it'd be better to pass a exit_node flag to ggml_vk_compute_forward
if (last_node) {
compute_ctx->exit_tensor_idx = node_idx_begin;
} }
else {
compute_ctx->exit_tensor_idx = -1;
}
ctx->compute_ctx.reset();
bool ok = ggml_vk_compute_forward(ctx, node_begin, node_idx_begin, false);
if (!ok) {
if (node->op == GGML_OP_UNARY) {
std::cerr << __func__ << ": error: op not supported UNARY " << node->name << " (" << ggml_unary_op_name(static_cast<ggml_unary_op>(node->op_params[0])) << ")" << std::endl;
}
else {
std::cerr << __func__ << ": error: op not supported " << node->name << " (" << ggml_op_name(node->op) << ")" << std::endl;
}
}
}
return true;
} }
static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * tensor, int tensor_idx){ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * tensor, int tensor_idx, bool use_fence = true){
ggml_tensor_extra_gpu * extra = nullptr; ggml_tensor_extra_gpu * extra = nullptr;
switch (tensor->op) { switch (tensor->op) {
@ -5960,40 +5987,38 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor *
VK_LOG_DEBUG("ggml_vk_compute_forward(" << tensor << ", name=" << tensor->name << ", op=" << ggml_op_name(tensor->op) << ", type=" << tensor->type << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << ", view_src=" << tensor->view_src << ", view_offs=" << tensor->view_offs << ")"); VK_LOG_DEBUG("ggml_vk_compute_forward(" << tensor << ", name=" << tensor->name << ", op=" << ggml_op_name(tensor->op) << ", type=" << tensor->type << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << ", view_src=" << tensor->view_src << ", view_offs=" << tensor->view_offs << ")");
#ifdef GGML_VULKAN_CHECK_RESULTS
ggml_vk_check_results_0(tensor);
#endif
vk_context subctx = ctx->tensor_ctxs[tensor_idx].lock(); vk_context subctx = ctx->tensor_ctxs[tensor_idx].lock();
#ifdef GGML_VULKAN_PERF // always wait for the GPU work to be done for the last submit
std::chrono::steady_clock::time_point start; if (tensor_idx == subctx->exit_tensor_idx) {
#endif // GGML_VULKAN_PERF use_fence = true;
}
// Only run if ctx hasn't been submitted yet // Only run if ctx hasn't been submitted yet
if (!subctx->seqs.empty()) { if (!subctx->seqs.empty()) {
#ifdef GGML_VULKAN_CHECK_RESULTS
ggml_vk_check_results_0(tensor);
use_fence = true;
#endif
// Do staging buffer copies // Do staging buffer copies
for (auto& cpy : subctx->in_memcpys) { for (auto& cpy : subctx->in_memcpys) {
memcpy(cpy.dst, cpy.src, cpy.n); memcpy(cpy.dst, cpy.src, cpy.n);
} }
#ifdef GGML_VULKAN_PERF ggml_vk_submit(subctx, use_fence ? ctx->fence : vk::Fence{});
start = std::chrono::steady_clock::now();
#endif // GGML_VULKAN_PERF
ggml_vk_submit(subctx, ctx->fence); if (use_fence) {
VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_compute_forward waitForFences");
ctx->device->device.resetFences({ ctx->fence });
}
#ifdef GGML_VULKAN_CHECK_RESULTS
ggml_vk_check_results_1(tensor);
#endif
} }
if (tensor_idx == subctx->exit_tensor_idx) { if (tensor_idx == subctx->exit_tensor_idx) {
VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_compute_forward waitForFences");
#ifdef GGML_VULKAN_PERF
auto duration = std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::steady_clock::now() - start);
ctx->device->perf_logger->log_timing(tensor, duration.count());
#endif // GGML_VULKAN_PERF
ctx->device->device.resetFences({ ctx->fence });
// Do staging buffer copies // Do staging buffer copies
for (auto& cpy : subctx->out_memcpys) { for (auto& cpy : subctx->out_memcpys) {
memcpy(cpy.dst, cpy.src, cpy.n); memcpy(cpy.dst, cpy.src, cpy.n);
@ -6482,7 +6507,7 @@ GGML_CALL static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backen
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context; ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
for (int i = 0; i < cgraph->n_nodes; i++) { for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_vk_build_graph(ctx, cgraph->nodes[i], i, 0, true); ggml_vk_build_graph(ctx, cgraph->nodes[i], i, nullptr, 0, true, false, false);
} }
ggml_vk_preallocate_buffers(ctx); ggml_vk_preallocate_buffers(ctx);
ggml_pipeline_allocate_descriptor_sets(ctx->device); ggml_pipeline_allocate_descriptor_sets(ctx->device);
@ -6497,31 +6522,36 @@ GGML_CALL static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backen
// Reserve tensor context space for all nodes // Reserve tensor context space for all nodes
ctx->tensor_ctxs.resize(cgraph->n_nodes); ctx->tensor_ctxs.resize(cgraph->n_nodes);
bool first_node_in_batch = true; // true if next node will be first node in a batch
int submit_node_idx = 0; // index to first node in a batch
// submit work every submit_count node to overlap CPU cmdbuffer generation with GPU execution
constexpr int submit_count = 100;
int submitted_nodes = 0;
for (int i = 0; i < cgraph->n_nodes; i++) { for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_vk_build_graph(ctx, cgraph->nodes[i], i, i == last_node, false); if (first_node_in_batch) {
submit_node_idx = i;
} }
for (int i = 0; i < cgraph->n_nodes; i++) { bool submit = (submitted_nodes >= submit_count) || (i == last_node);
ggml_tensor * node = cgraph->nodes[i];
if (ggml_vk_is_empty(node)) {
continue;
}
bool ok = ggml_vk_compute_forward(ctx, node, i); bool enqueued = ggml_vk_build_graph(ctx, cgraph->nodes[i], i, cgraph->nodes[submit_node_idx], submit_node_idx, false, i == last_node, submit);
if (!ok) {
if (node->op == GGML_OP_UNARY) { if (enqueued) {
std::cerr << __func__ << ": error: op not supported UNARY " << node->name << " (" << ggml_unary_op_name(static_cast<ggml_unary_op>(node->op_params[0])) << ")" << std::endl; ++submitted_nodes;
} else {
std::cerr << __func__ << ": error: op not supported " << node->name << " (" << ggml_op_name(node->op) << ")" << std::endl; #ifndef GGML_VULKAN_CHECK_RESULTS
} if (first_node_in_batch) {
} first_node_in_batch = false;
#ifdef GGML_VULKAN_CHECK_RESULTS
else {
ggml_vk_check_results_1(node);
} }
#endif #endif
GGML_ASSERT(ok); }
if (submit) {
first_node_in_batch = true;
submitted_nodes = 0;
}
} }
#ifdef GGML_VULKAN_PERF #ifdef GGML_VULKAN_PERF