llama : fix worst case graph build

This commit is contained in:
Georgi Gerganov 2023-09-19 11:05:08 +03:00
parent fa0e677820
commit daf4c6d360
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735
3 changed files with 100 additions and 81 deletions

View File

@ -781,7 +781,7 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
std::vector<llama_token> tmp = { llama_token_bos(lctx), llama_token_eos(lctx), }; std::vector<llama_token> tmp = { llama_token_bos(lctx), llama_token_eos(lctx), };
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0), params.n_threads); llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0), params.n_threads);
llama_kv_cache_keep_seq(lctx, -1); llama_kv_cache_rm_tokens(lctx, -1, -1);
llama_reset_timings(lctx); llama_reset_timings(lctx);
} }

View File

@ -977,7 +977,7 @@ int main(int argc, char ** argv) {
test t(inst, lmodel, ctx); test t(inst, lmodel, ctx);
llama_kv_cache_keep_seq(ctx, -1); llama_kv_cache_rm_tokens(ctx, -1, -1);
// warmup run // warmup run
if (t.n_prompt > 0) { if (t.n_prompt > 0) {
@ -988,7 +988,7 @@ int main(int argc, char ** argv) {
} }
for (int i = 0; i < params.reps; i++) { for (int i = 0; i < params.reps; i++) {
llama_kv_cache_keep_seq(ctx, -1); llama_kv_cache_rm_tokens(ctx, -1, -1);
uint64_t t_start = get_time_ns(); uint64_t t_start = get_time_ns();
if (t.n_prompt > 0) { if (t.n_prompt > 0) {

175
llama.cpp
View File

@ -1024,6 +1024,9 @@ struct llama_kv_cache {
uint32_t head = 0; uint32_t head = 0;
uint32_t size = 0; uint32_t size = 0;
// computed before each graph build
uint32_t cell_max = 0;
std::vector<llama_kv_cell> cells; std::vector<llama_kv_cell> cells;
struct ggml_tensor * k = NULL; struct ggml_tensor * k = NULL;
@ -1314,16 +1317,15 @@ static bool llama_kv_cache_find_slot(
return true; return true;
} }
// find how many cells are currently in use
int32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) { int32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
int32_t res = 0; for (uint32_t i = cache.size - 2; i > 0; --i) {
for (uint32_t i = 0; i < cache.size; i++) {
if (cache.cells[i].pos >= 0 && !cache.cells[i].seq_id.empty()) { if (cache.cells[i].pos >= 0 && !cache.cells[i].seq_id.empty()) {
res = i + 1; return i + 1;
} }
} }
return res; return 0;
} }
void llama_kv_cache_rm_tokens(struct llama_kv_cache & cache, int32_t c0, int32_t c1) { void llama_kv_cache_rm_tokens(struct llama_kv_cache & cache, int32_t c0, int32_t c1) {
@ -2604,12 +2606,13 @@ static struct ggml_cgraph * llm_build_llama(
const int n_gpu_layers = model.n_gpu_layers; const int n_gpu_layers = model.n_gpu_layers;
const int32_t n_tokens = batch.n_tokens; const int32_t n_tokens = batch.n_tokens;
const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : llama_kv_cache_cell_max(kv_self); const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.cell_max + n_tokens;
const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift;
//printf("n_kv = %d\n", n_kv); //printf("n_kv = %d\n", n_kv);
const bool do_rope_shift = kv_self.has_shift || ggml_allocr_is_measure(lctx.alloc);
auto & buf_compute = lctx.buf_compute; auto & buf_compute = lctx.buf_compute;
struct ggml_init_params params = { struct ggml_init_params params = {
@ -2713,13 +2716,26 @@ static struct ggml_cgraph * llm_build_llama(
} }
} }
// K_shift // shift the entire K-cache if needed
struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx); if (do_rope_shift) {
ggml_allocr_alloc(lctx.alloc, K_shift); struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
if (!ggml_allocr_is_measure(lctx.alloc)) { ggml_allocr_alloc(lctx.alloc, K_shift);
int * data = (int *) K_shift->data; if (!ggml_allocr_is_measure(lctx.alloc)) {
for (int i = 0; i < n_ctx; ++i) { int * data = (int *) K_shift->data;
data[i] = kv_self.cells[i].delta; for (int i = 0; i < n_ctx; ++i) {
data[i] = kv_self.cells[i].delta;
}
}
for (int il = 0; il < n_layer; ++il) {
ggml_build_forward_expand(gf,
ggml_rope_custom_inplace(ctx0,
ggml_view_3d(ctx0, kv_self.k,
n_embd_head, n_head_kv, n_ctx,
ggml_element_size(kv_self.k)*n_embd_head,
ggml_element_size(kv_self.k)*n_embd_gqa,
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
K_shift, n_embd_head, 0, 0, freq_base, freq_scale));
} }
} }
@ -2748,18 +2764,6 @@ static struct ggml_cgraph * llm_build_llama(
ggml_set_name(cur, "attention_norm_0"); ggml_set_name(cur, "attention_norm_0");
} }
// shift the entire K-cache if needed
if (do_rope_shift) {
ggml_build_forward_expand(gf,
ggml_rope_custom_inplace(ctx0,
ggml_view_3d(ctx0, kv_self.k,
n_embd_head, n_head_kv, n_ctx,
ggml_element_size(kv_self.k)*n_embd_head,
ggml_element_size(kv_self.k)*n_embd_gqa,
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
K_shift, n_embd_head, 0, 0, freq_base, freq_scale));
}
// self-attention // self-attention
{ {
// compute Q and K and RoPE them // compute Q and K and RoPE them
@ -2791,13 +2795,13 @@ static struct ggml_cgraph * llm_build_llama(
offload_func_v(Vcur); offload_func_v(Vcur);
ggml_set_name(Vcur, "Vcur"); ggml_set_name(Vcur, "Vcur");
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_self.head)); struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
offload_func_kq(k); offload_func_kq(k);
ggml_set_name(k, "k"); ggml_set_name(k, "k");
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa, struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
( n_ctx)*ggml_element_size(kv_self.v), ( n_ctx)*ggml_element_size(kv_self.v),
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_self.head*ggml_element_size(kv_self.v)); (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
offload_func_v(v); offload_func_v(v);
ggml_set_name(v, "v"); ggml_set_name(v, "v");
@ -2988,9 +2992,10 @@ static struct ggml_cgraph * llm_build_baichaun(
const int n_gpu_layers = model.n_gpu_layers; const int n_gpu_layers = model.n_gpu_layers;
const int32_t n_tokens = batch.n_tokens; const int32_t n_tokens = batch.n_tokens;
const int32_t n_kv = llama_kv_cache_cell_max(kv_self); const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.cell_max + n_tokens;
const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
const bool do_rope_shift = kv_self.has_shift || ggml_allocr_is_measure(lctx.alloc); const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift;
auto & buf_compute = lctx.buf_compute; auto & buf_compute = lctx.buf_compute;
@ -3095,13 +3100,26 @@ static struct ggml_cgraph * llm_build_baichaun(
} }
} }
// K_shift // shift the entire K-cache if needed
struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx); if (do_rope_shift) {
ggml_allocr_alloc(lctx.alloc, K_shift); struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
if (!ggml_allocr_is_measure(lctx.alloc)) { ggml_allocr_alloc(lctx.alloc, K_shift);
int * data = (int *) K_shift->data; if (!ggml_allocr_is_measure(lctx.alloc)) {
for (int i = 0; i < n_ctx; ++i) { int * data = (int *) K_shift->data;
data[i] = kv_self.cells[i].delta; for (int i = 0; i < n_ctx; ++i) {
data[i] = kv_self.cells[i].delta;
}
}
for (int il = 0; il < n_layer; ++il) {
ggml_build_forward_expand(gf,
ggml_rope_custom_inplace(ctx0,
ggml_view_3d(ctx0, kv_self.k,
n_embd_head, n_head_kv, n_ctx,
ggml_element_size(kv_self.k)*n_embd_head,
ggml_element_size(kv_self.k)*n_embd_gqa,
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
K_shift, n_embd_head, 0, 0, freq_base, freq_scale));
} }
} }
@ -3130,18 +3148,6 @@ static struct ggml_cgraph * llm_build_baichaun(
ggml_set_name(cur, "attention_norm_0"); ggml_set_name(cur, "attention_norm_0");
} }
// shift the entire K-cache if needed
if (do_rope_shift) {
ggml_build_forward_expand(gf,
ggml_rope_custom_inplace(ctx0,
ggml_view_3d(ctx0, kv_self.k,
n_embd_head, n_head_kv, n_ctx,
ggml_element_size(kv_self.k)*n_embd_head,
ggml_element_size(kv_self.k)*n_embd_gqa,
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
K_shift, n_embd_head, 0, 0, freq_base, freq_scale));
}
// self-attention // self-attention
{ {
// compute Q and K and RoPE them // compute Q and K and RoPE them
@ -3186,13 +3192,13 @@ static struct ggml_cgraph * llm_build_baichaun(
offload_func_v(Vcur); offload_func_v(Vcur);
ggml_set_name(Vcur, "Vcur"); ggml_set_name(Vcur, "Vcur");
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_self.head)); struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
offload_func_kq(k); offload_func_kq(k);
ggml_set_name(k, "k"); ggml_set_name(k, "k");
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa, struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
( n_ctx)*ggml_element_size(kv_self.v), ( n_ctx)*ggml_element_size(kv_self.v),
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_self.head*ggml_element_size(kv_self.v)); (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
offload_func_v(v); offload_func_v(v);
ggml_set_name(v, "v"); ggml_set_name(v, "v");
@ -3387,9 +3393,13 @@ static struct ggml_cgraph * llm_build_falcon(
const int n_gpu_layers = model.n_gpu_layers; const int n_gpu_layers = model.n_gpu_layers;
const int32_t n_tokens = batch.n_tokens; const int32_t n_tokens = batch.n_tokens;
const int32_t n_kv = llama_kv_cache_cell_max(kv_self); const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.cell_max + n_tokens;
const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
const bool do_rope_shift = kv_self.has_shift || ggml_allocr_is_measure(lctx.alloc); const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift;
//printf("kv_head = %d, n_kv = %d, n_tokens = %d, n_ctx = %d, is_measure = %d, has_shift = %d\n",
// kv_head, n_kv, n_tokens, n_ctx, ggml_allocr_is_measure(lctx.alloc), kv_self.has_shift);
auto & buf_compute = lctx.buf_compute; auto & buf_compute = lctx.buf_compute;
@ -3494,13 +3504,26 @@ static struct ggml_cgraph * llm_build_falcon(
} }
} }
// K_shift // shift the entire K-cache if needed
struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx); if (do_rope_shift) {
ggml_allocr_alloc(lctx.alloc, K_shift); struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
if (!ggml_allocr_is_measure(lctx.alloc)) { ggml_allocr_alloc(lctx.alloc, K_shift);
int * data = (int *) K_shift->data; if (!ggml_allocr_is_measure(lctx.alloc)) {
for (int i = 0; i < n_ctx; ++i) { int * data = (int *) K_shift->data;
data[i] = kv_self.cells[i].delta; for (int i = 0; i < n_ctx; ++i) {
data[i] = kv_self.cells[i].delta;
}
}
for (int il = 0; il < n_layer; ++il) {
ggml_build_forward_expand(gf,
ggml_rope_custom_inplace(ctx0,
ggml_view_3d(ctx0, kv_self.k,
n_embd_head, n_head_kv, n_ctx,
ggml_element_size(kv_self.k)*n_embd_head,
ggml_element_size(kv_self.k)*n_embd_gqa,
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
K_shift, n_embd_head, 2, 0, freq_base, freq_scale));
} }
} }
@ -3515,18 +3538,6 @@ static struct ggml_cgraph * llm_build_falcon(
} }
#endif // GGML_USE_CUBLAS #endif // GGML_USE_CUBLAS
// shift the entire K-cache if needed
if (do_rope_shift) {
ggml_build_forward_expand(gf,
ggml_rope_custom_inplace(ctx0,
ggml_view_3d(ctx0, kv_self.k,
n_embd_head, n_head_kv, n_ctx,
ggml_element_size(kv_self.k)*n_embd_head,
ggml_element_size(kv_self.k)*n_embd_gqa,
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
K_shift, n_embd_head, 2, 0, freq_base, freq_scale));
}
// self-attention // self-attention
// TODO: refactor into common function (shared with LLaMA) // TODO: refactor into common function (shared with LLaMA)
{ {
@ -3603,13 +3614,13 @@ static struct ggml_cgraph * llm_build_falcon(
offload_func_v(Vcur->src[0]->src[0]); offload_func_v(Vcur->src[0]->src[0]);
ggml_set_name(Vcur, "Vcur"); ggml_set_name(Vcur, "Vcur");
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_self.head)); struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
offload_func_kq(k); offload_func_kq(k);
ggml_set_name(k, "k"); ggml_set_name(k, "k");
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa, struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
( n_ctx)*ggml_element_size(kv_self.v), ( n_ctx)*ggml_element_size(kv_self.v),
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_self.head*ggml_element_size(kv_self.v)); (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
offload_func_v(v); offload_func_v(v);
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
@ -3741,7 +3752,8 @@ static struct ggml_cgraph * llm_build_starcoder(
const float norm_eps = hparams.f_norm_eps; const float norm_eps = hparams.f_norm_eps;
const int32_t n_tokens = batch.n_tokens; const int32_t n_tokens = batch.n_tokens;
const int32_t n_kv = llama_kv_cache_cell_max(kv_self); const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.cell_max + n_tokens;
const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
auto & buf_compute = lctx.buf_compute; auto & buf_compute = lctx.buf_compute;
@ -3853,12 +3865,12 @@ static struct ggml_cgraph * llm_build_starcoder(
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens)); struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens));
ggml_set_name(Vcur, "Vcur"); ggml_set_name(Vcur, "Vcur");
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_self.head)); struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
ggml_set_name(k, "k"); ggml_set_name(k, "k");
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa, struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
( n_ctx)*ggml_element_size(kv_self.v), ( n_ctx)*ggml_element_size(kv_self.v),
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_self.head*ggml_element_size(kv_self.v)); (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
@ -4054,8 +4066,15 @@ static bool llama_eval_internal(
batch.seq_id = seq_id.data(); batch.seq_id = seq_id.data();
} }
// we always start to search for a free slot from the start of the cache
// TODO: better strategies can be implemented
kv_self.head = 0; kv_self.head = 0;
// a heuristic, to avoid attending the full cache if it is not yet utilized
// after enough generations, the benefit from this heuristic disappears
// if we start defragmenting the cache, the benefit from this will be more important
kv_self.cell_max = llama_kv_cache_cell_max(kv_self);
if (!llama_kv_cache_find_slot(kv_self, batch)) { if (!llama_kv_cache_find_slot(kv_self, batch)) {
return false; return false;
} }