mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-31 22:04:35 +00:00
llama : fix worst case graph build
This commit is contained in:
parent
fa0e677820
commit
daf4c6d360
@ -781,7 +781,7 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
|
||||
|
||||
std::vector<llama_token> tmp = { llama_token_bos(lctx), llama_token_eos(lctx), };
|
||||
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0), params.n_threads);
|
||||
llama_kv_cache_keep_seq(lctx, -1);
|
||||
llama_kv_cache_rm_tokens(lctx, -1, -1);
|
||||
llama_reset_timings(lctx);
|
||||
}
|
||||
|
||||
|
@ -977,7 +977,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
test t(inst, lmodel, ctx);
|
||||
|
||||
llama_kv_cache_keep_seq(ctx, -1);
|
||||
llama_kv_cache_rm_tokens(ctx, -1, -1);
|
||||
|
||||
// warmup run
|
||||
if (t.n_prompt > 0) {
|
||||
@ -988,7 +988,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
for (int i = 0; i < params.reps; i++) {
|
||||
llama_kv_cache_keep_seq(ctx, -1);
|
||||
llama_kv_cache_rm_tokens(ctx, -1, -1);
|
||||
|
||||
uint64_t t_start = get_time_ns();
|
||||
if (t.n_prompt > 0) {
|
||||
|
139
llama.cpp
139
llama.cpp
@ -1024,6 +1024,9 @@ struct llama_kv_cache {
|
||||
uint32_t head = 0;
|
||||
uint32_t size = 0;
|
||||
|
||||
// computed before each graph build
|
||||
uint32_t cell_max = 0;
|
||||
|
||||
std::vector<llama_kv_cell> cells;
|
||||
|
||||
struct ggml_tensor * k = NULL;
|
||||
@ -1314,16 +1317,15 @@ static bool llama_kv_cache_find_slot(
|
||||
return true;
|
||||
}
|
||||
|
||||
// find how many cells are currently in use
|
||||
int32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
|
||||
int32_t res = 0;
|
||||
|
||||
for (uint32_t i = 0; i < cache.size; i++) {
|
||||
for (uint32_t i = cache.size - 2; i > 0; --i) {
|
||||
if (cache.cells[i].pos >= 0 && !cache.cells[i].seq_id.empty()) {
|
||||
res = i + 1;
|
||||
return i + 1;
|
||||
}
|
||||
}
|
||||
|
||||
return res;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void llama_kv_cache_rm_tokens(struct llama_kv_cache & cache, int32_t c0, int32_t c1) {
|
||||
@ -2604,12 +2606,13 @@ static struct ggml_cgraph * llm_build_llama(
|
||||
const int n_gpu_layers = model.n_gpu_layers;
|
||||
|
||||
const int32_t n_tokens = batch.n_tokens;
|
||||
const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : llama_kv_cache_cell_max(kv_self);
|
||||
const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.cell_max + n_tokens;
|
||||
const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
|
||||
|
||||
const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift;
|
||||
|
||||
//printf("n_kv = %d\n", n_kv);
|
||||
|
||||
const bool do_rope_shift = kv_self.has_shift || ggml_allocr_is_measure(lctx.alloc);
|
||||
|
||||
auto & buf_compute = lctx.buf_compute;
|
||||
|
||||
struct ggml_init_params params = {
|
||||
@ -2713,7 +2716,8 @@ static struct ggml_cgraph * llm_build_llama(
|
||||
}
|
||||
}
|
||||
|
||||
// K_shift
|
||||
// shift the entire K-cache if needed
|
||||
if (do_rope_shift) {
|
||||
struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
|
||||
ggml_allocr_alloc(lctx.alloc, K_shift);
|
||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||
@ -2723,6 +2727,18 @@ static struct ggml_cgraph * llm_build_llama(
|
||||
}
|
||||
}
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
ggml_build_forward_expand(gf,
|
||||
ggml_rope_custom_inplace(ctx0,
|
||||
ggml_view_3d(ctx0, kv_self.k,
|
||||
n_embd_head, n_head_kv, n_ctx,
|
||||
ggml_element_size(kv_self.k)*n_embd_head,
|
||||
ggml_element_size(kv_self.k)*n_embd_gqa,
|
||||
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
|
||||
K_shift, n_embd_head, 0, 0, freq_base, freq_scale));
|
||||
}
|
||||
}
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
ggml_format_name(inpL, "layer_inp_%d", il);
|
||||
|
||||
@ -2748,18 +2764,6 @@ static struct ggml_cgraph * llm_build_llama(
|
||||
ggml_set_name(cur, "attention_norm_0");
|
||||
}
|
||||
|
||||
// shift the entire K-cache if needed
|
||||
if (do_rope_shift) {
|
||||
ggml_build_forward_expand(gf,
|
||||
ggml_rope_custom_inplace(ctx0,
|
||||
ggml_view_3d(ctx0, kv_self.k,
|
||||
n_embd_head, n_head_kv, n_ctx,
|
||||
ggml_element_size(kv_self.k)*n_embd_head,
|
||||
ggml_element_size(kv_self.k)*n_embd_gqa,
|
||||
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
|
||||
K_shift, n_embd_head, 0, 0, freq_base, freq_scale));
|
||||
}
|
||||
|
||||
// self-attention
|
||||
{
|
||||
// compute Q and K and RoPE them
|
||||
@ -2791,13 +2795,13 @@ static struct ggml_cgraph * llm_build_llama(
|
||||
offload_func_v(Vcur);
|
||||
ggml_set_name(Vcur, "Vcur");
|
||||
|
||||
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_self.head));
|
||||
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
|
||||
offload_func_kq(k);
|
||||
ggml_set_name(k, "k");
|
||||
|
||||
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
|
||||
( n_ctx)*ggml_element_size(kv_self.v),
|
||||
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_self.head*ggml_element_size(kv_self.v));
|
||||
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
|
||||
offload_func_v(v);
|
||||
ggml_set_name(v, "v");
|
||||
|
||||
@ -2988,9 +2992,10 @@ static struct ggml_cgraph * llm_build_baichaun(
|
||||
const int n_gpu_layers = model.n_gpu_layers;
|
||||
|
||||
const int32_t n_tokens = batch.n_tokens;
|
||||
const int32_t n_kv = llama_kv_cache_cell_max(kv_self);
|
||||
const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.cell_max + n_tokens;
|
||||
const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
|
||||
|
||||
const bool do_rope_shift = kv_self.has_shift || ggml_allocr_is_measure(lctx.alloc);
|
||||
const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift;
|
||||
|
||||
auto & buf_compute = lctx.buf_compute;
|
||||
|
||||
@ -3095,7 +3100,8 @@ static struct ggml_cgraph * llm_build_baichaun(
|
||||
}
|
||||
}
|
||||
|
||||
// K_shift
|
||||
// shift the entire K-cache if needed
|
||||
if (do_rope_shift) {
|
||||
struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
|
||||
ggml_allocr_alloc(lctx.alloc, K_shift);
|
||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||
@ -3105,6 +3111,18 @@ static struct ggml_cgraph * llm_build_baichaun(
|
||||
}
|
||||
}
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
ggml_build_forward_expand(gf,
|
||||
ggml_rope_custom_inplace(ctx0,
|
||||
ggml_view_3d(ctx0, kv_self.k,
|
||||
n_embd_head, n_head_kv, n_ctx,
|
||||
ggml_element_size(kv_self.k)*n_embd_head,
|
||||
ggml_element_size(kv_self.k)*n_embd_gqa,
|
||||
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
|
||||
K_shift, n_embd_head, 0, 0, freq_base, freq_scale));
|
||||
}
|
||||
}
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
ggml_format_name(inpL, "layer_inp_%d", il);
|
||||
|
||||
@ -3130,18 +3148,6 @@ static struct ggml_cgraph * llm_build_baichaun(
|
||||
ggml_set_name(cur, "attention_norm_0");
|
||||
}
|
||||
|
||||
// shift the entire K-cache if needed
|
||||
if (do_rope_shift) {
|
||||
ggml_build_forward_expand(gf,
|
||||
ggml_rope_custom_inplace(ctx0,
|
||||
ggml_view_3d(ctx0, kv_self.k,
|
||||
n_embd_head, n_head_kv, n_ctx,
|
||||
ggml_element_size(kv_self.k)*n_embd_head,
|
||||
ggml_element_size(kv_self.k)*n_embd_gqa,
|
||||
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
|
||||
K_shift, n_embd_head, 0, 0, freq_base, freq_scale));
|
||||
}
|
||||
|
||||
// self-attention
|
||||
{
|
||||
// compute Q and K and RoPE them
|
||||
@ -3186,13 +3192,13 @@ static struct ggml_cgraph * llm_build_baichaun(
|
||||
offload_func_v(Vcur);
|
||||
ggml_set_name(Vcur, "Vcur");
|
||||
|
||||
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_self.head));
|
||||
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
|
||||
offload_func_kq(k);
|
||||
ggml_set_name(k, "k");
|
||||
|
||||
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
|
||||
( n_ctx)*ggml_element_size(kv_self.v),
|
||||
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_self.head*ggml_element_size(kv_self.v));
|
||||
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
|
||||
offload_func_v(v);
|
||||
ggml_set_name(v, "v");
|
||||
|
||||
@ -3387,9 +3393,13 @@ static struct ggml_cgraph * llm_build_falcon(
|
||||
const int n_gpu_layers = model.n_gpu_layers;
|
||||
|
||||
const int32_t n_tokens = batch.n_tokens;
|
||||
const int32_t n_kv = llama_kv_cache_cell_max(kv_self);
|
||||
const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.cell_max + n_tokens;
|
||||
const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
|
||||
|
||||
const bool do_rope_shift = kv_self.has_shift || ggml_allocr_is_measure(lctx.alloc);
|
||||
const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift;
|
||||
|
||||
//printf("kv_head = %d, n_kv = %d, n_tokens = %d, n_ctx = %d, is_measure = %d, has_shift = %d\n",
|
||||
// kv_head, n_kv, n_tokens, n_ctx, ggml_allocr_is_measure(lctx.alloc), kv_self.has_shift);
|
||||
|
||||
auto & buf_compute = lctx.buf_compute;
|
||||
|
||||
@ -3494,7 +3504,8 @@ static struct ggml_cgraph * llm_build_falcon(
|
||||
}
|
||||
}
|
||||
|
||||
// K_shift
|
||||
// shift the entire K-cache if needed
|
||||
if (do_rope_shift) {
|
||||
struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
|
||||
ggml_allocr_alloc(lctx.alloc, K_shift);
|
||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||
@ -3504,6 +3515,18 @@ static struct ggml_cgraph * llm_build_falcon(
|
||||
}
|
||||
}
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
ggml_build_forward_expand(gf,
|
||||
ggml_rope_custom_inplace(ctx0,
|
||||
ggml_view_3d(ctx0, kv_self.k,
|
||||
n_embd_head, n_head_kv, n_ctx,
|
||||
ggml_element_size(kv_self.k)*n_embd_head,
|
||||
ggml_element_size(kv_self.k)*n_embd_gqa,
|
||||
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
|
||||
K_shift, n_embd_head, 2, 0, freq_base, freq_scale));
|
||||
}
|
||||
}
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct ggml_tensor * attn_norm;
|
||||
|
||||
@ -3515,18 +3538,6 @@ static struct ggml_cgraph * llm_build_falcon(
|
||||
}
|
||||
#endif // GGML_USE_CUBLAS
|
||||
|
||||
// shift the entire K-cache if needed
|
||||
if (do_rope_shift) {
|
||||
ggml_build_forward_expand(gf,
|
||||
ggml_rope_custom_inplace(ctx0,
|
||||
ggml_view_3d(ctx0, kv_self.k,
|
||||
n_embd_head, n_head_kv, n_ctx,
|
||||
ggml_element_size(kv_self.k)*n_embd_head,
|
||||
ggml_element_size(kv_self.k)*n_embd_gqa,
|
||||
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
|
||||
K_shift, n_embd_head, 2, 0, freq_base, freq_scale));
|
||||
}
|
||||
|
||||
// self-attention
|
||||
// TODO: refactor into common function (shared with LLaMA)
|
||||
{
|
||||
@ -3603,13 +3614,13 @@ static struct ggml_cgraph * llm_build_falcon(
|
||||
offload_func_v(Vcur->src[0]->src[0]);
|
||||
ggml_set_name(Vcur, "Vcur");
|
||||
|
||||
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_self.head));
|
||||
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
|
||||
offload_func_kq(k);
|
||||
ggml_set_name(k, "k");
|
||||
|
||||
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
|
||||
( n_ctx)*ggml_element_size(kv_self.v),
|
||||
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_self.head*ggml_element_size(kv_self.v));
|
||||
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
|
||||
offload_func_v(v);
|
||||
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
|
||||
@ -3741,7 +3752,8 @@ static struct ggml_cgraph * llm_build_starcoder(
|
||||
const float norm_eps = hparams.f_norm_eps;
|
||||
|
||||
const int32_t n_tokens = batch.n_tokens;
|
||||
const int32_t n_kv = llama_kv_cache_cell_max(kv_self);
|
||||
const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.cell_max + n_tokens;
|
||||
const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
|
||||
|
||||
auto & buf_compute = lctx.buf_compute;
|
||||
|
||||
@ -3853,12 +3865,12 @@ static struct ggml_cgraph * llm_build_starcoder(
|
||||
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens));
|
||||
ggml_set_name(Vcur, "Vcur");
|
||||
|
||||
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_self.head));
|
||||
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
|
||||
ggml_set_name(k, "k");
|
||||
|
||||
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
|
||||
( n_ctx)*ggml_element_size(kv_self.v),
|
||||
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_self.head*ggml_element_size(kv_self.v));
|
||||
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
|
||||
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
|
||||
@ -4054,8 +4066,15 @@ static bool llama_eval_internal(
|
||||
batch.seq_id = seq_id.data();
|
||||
}
|
||||
|
||||
// we always start to search for a free slot from the start of the cache
|
||||
// TODO: better strategies can be implemented
|
||||
kv_self.head = 0;
|
||||
|
||||
// a heuristic, to avoid attending the full cache if it is not yet utilized
|
||||
// after enough generations, the benefit from this heuristic disappears
|
||||
// if we start defragmenting the cache, the benefit from this will be more important
|
||||
kv_self.cell_max = llama_kv_cache_cell_max(kv_self);
|
||||
|
||||
if (!llama_kv_cache_find_slot(kv_self, batch)) {
|
||||
return false;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user