mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 19:21:46 +00:00
rpc : track allocated buffers (#7411)
* rpc : track allocated buffers ref: #7407 * rpc : pack rpc_tensor tightly
This commit is contained in:
parent
3bc10cb485
commit
db10f01310
211
ggml-rpc.cpp
211
ggml-rpc.cpp
@ -56,6 +56,7 @@ struct socket_t {
|
||||
};
|
||||
|
||||
// ggml_tensor is serialized into rpc_tensor
|
||||
#pragma pack(push, 1)
|
||||
struct rpc_tensor {
|
||||
uint64_t id;
|
||||
uint32_t type;
|
||||
@ -71,6 +72,7 @@ struct rpc_tensor {
|
||||
uint64_t data;
|
||||
char name[GGML_MAX_NAME];
|
||||
};
|
||||
#pragma pack(pop)
|
||||
|
||||
// RPC commands
|
||||
enum rpc_cmd {
|
||||
@ -340,23 +342,6 @@ static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
|
||||
return result;
|
||||
}
|
||||
|
||||
static ggml_tensor * deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor) {
|
||||
ggml_tensor * result = ggml_new_tensor_4d(ctx, (ggml_type) tensor->type,
|
||||
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
|
||||
for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
result->nb[i] = tensor->nb[i];
|
||||
}
|
||||
result->buffer = reinterpret_cast<ggml_backend_buffer_t>(tensor->buffer);
|
||||
result->op = (ggml_op) tensor->op;
|
||||
for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
|
||||
result->op_params[i] = tensor->op_params[i];
|
||||
}
|
||||
result->flags = tensor->flags;
|
||||
result->data = reinterpret_cast<void *>(tensor->data);
|
||||
ggml_set_name(result, tensor->name);
|
||||
return result;
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
||||
UNUSED(buffer);
|
||||
if (ggml_is_quantized(tensor->type)) {
|
||||
@ -465,13 +450,15 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer
|
||||
memcpy(&remote_ptr, output.data(), sizeof(remote_ptr));
|
||||
size_t remote_size;
|
||||
memcpy(&remote_size, output.data() + sizeof(uint64_t), sizeof(remote_size));
|
||||
|
||||
if (remote_ptr != 0) {
|
||||
ggml_backend_buffer_t buffer = ggml_backend_buffer_init(buft,
|
||||
ggml_backend_rpc_buffer_interface,
|
||||
new ggml_backend_rpc_buffer_context{buft_ctx->sock, {}, remote_ptr, "RPC"},
|
||||
remote_size);
|
||||
|
||||
return buffer;
|
||||
} else {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
static size_t get_alignment(const std::shared_ptr<socket_t> & sock) {
|
||||
@ -658,7 +645,7 @@ GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint) {
|
||||
}
|
||||
}
|
||||
#endif
|
||||
GGML_PRINT_DEBUG("Connecting to %s\n", endpoint);
|
||||
fprintf(stderr, "Connecting to %s\n", endpoint);
|
||||
std::string host;
|
||||
int port;
|
||||
if (!parse_endpoint(endpoint, host, port)) {
|
||||
@ -731,22 +718,61 @@ GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const char * endpoint
|
||||
|
||||
// RPC server-side implementation
|
||||
|
||||
static void rpc_alloc_buffer(ggml_backend_t backend, const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
|
||||
class rpc_server {
|
||||
public:
|
||||
rpc_server(ggml_backend_t backend) : backend(backend) {}
|
||||
~rpc_server();
|
||||
|
||||
bool alloc_buffer(const std::vector<uint8_t> & input, std::vector<uint8_t> & output);
|
||||
void get_alignment(std::vector<uint8_t> & output);
|
||||
void get_max_size(std::vector<uint8_t> & output);
|
||||
bool buffer_get_base(const std::vector<uint8_t> & input, std::vector<uint8_t> & output);
|
||||
bool free_buffer(const std::vector<uint8_t> & input);
|
||||
bool buffer_clear(const std::vector<uint8_t> & input);
|
||||
bool set_tensor(const std::vector<uint8_t> & input);
|
||||
bool get_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output);
|
||||
bool copy_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output);
|
||||
bool graph_compute(const std::vector<uint8_t> & input, std::vector<uint8_t> & output);
|
||||
|
||||
private:
|
||||
ggml_tensor * deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor);
|
||||
ggml_tensor * create_node(uint64_t id,
|
||||
struct ggml_context * ctx,
|
||||
const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
|
||||
std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map);
|
||||
|
||||
|
||||
ggml_backend_t backend;
|
||||
std::unordered_set<ggml_backend_buffer_t> buffers;
|
||||
};
|
||||
|
||||
bool rpc_server::alloc_buffer(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
|
||||
// input serialization format: | size (8 bytes) |
|
||||
if (input.size() != sizeof(uint64_t)) {
|
||||
return false;
|
||||
}
|
||||
uint64_t size;
|
||||
memcpy(&size, input.data(), sizeof(size));
|
||||
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
|
||||
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size);
|
||||
uint64_t remote_ptr = reinterpret_cast<uint64_t>(buffer);
|
||||
uint64_t remote_size = buffer->size;
|
||||
uint64_t remote_ptr = 0;
|
||||
uint64_t remote_size = 0;
|
||||
if (buffer != nullptr) {
|
||||
remote_ptr = reinterpret_cast<uint64_t>(buffer);
|
||||
remote_size = buffer->size;
|
||||
GGML_PRINT_DEBUG("[%s] size: %" PRIu64 " -> remote_ptr: %" PRIx64 ", remote_size: %" PRIu64 "\n", __func__, size, remote_ptr, remote_size);
|
||||
buffers.insert(buffer);
|
||||
} else {
|
||||
GGML_PRINT_DEBUG("[%s] size: %" PRIu64 " -> failed\n", __func__, size);
|
||||
}
|
||||
// output serialization format: | remote_ptr (8 bytes) | remote_size (8 bytes) |
|
||||
output.resize(2*sizeof(uint64_t), 0);
|
||||
memcpy(output.data(), &remote_ptr, sizeof(remote_ptr));
|
||||
memcpy(output.data() + sizeof(uint64_t), &remote_size, sizeof(remote_size));
|
||||
return true;
|
||||
}
|
||||
|
||||
static void rpc_get_alignment(ggml_backend_t backend, std::vector<uint8_t> & output) {
|
||||
void rpc_server::get_alignment(std::vector<uint8_t> & output) {
|
||||
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
|
||||
size_t alignment = ggml_backend_buft_get_alignment(buft);
|
||||
GGML_PRINT_DEBUG("[%s] alignment: %lu\n", __func__, alignment);
|
||||
@ -755,7 +781,7 @@ static void rpc_get_alignment(ggml_backend_t backend, std::vector<uint8_t> & out
|
||||
memcpy(output.data(), &alignment, sizeof(alignment));
|
||||
}
|
||||
|
||||
static void rpc_get_max_size(ggml_backend_t backend, std::vector<uint8_t> & output) {
|
||||
void rpc_server::get_max_size(std::vector<uint8_t> & output) {
|
||||
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
|
||||
size_t max_size = ggml_backend_buft_get_max_size(buft);
|
||||
GGML_PRINT_DEBUG("[%s] max_size: %lu\n", __func__, max_size);
|
||||
@ -764,41 +790,90 @@ static void rpc_get_max_size(ggml_backend_t backend, std::vector<uint8_t> & outp
|
||||
memcpy(output.data(), &max_size, sizeof(max_size));
|
||||
}
|
||||
|
||||
static void rpc_buffer_get_base(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
|
||||
bool rpc_server::buffer_get_base(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
|
||||
// input serialization format: | remote_ptr (8 bytes) |
|
||||
if (input.size() != sizeof(uint64_t)) {
|
||||
return false;
|
||||
}
|
||||
uint64_t remote_ptr;
|
||||
memcpy(&remote_ptr, input.data(), sizeof(remote_ptr));
|
||||
GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, remote_ptr);
|
||||
ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(remote_ptr);
|
||||
if (buffers.find(buffer) == buffers.end()) {
|
||||
GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__);
|
||||
return false;
|
||||
}
|
||||
void * base = ggml_backend_buffer_get_base(buffer);
|
||||
// output serialization format: | base_ptr (8 bytes) |
|
||||
uint64_t base_ptr = reinterpret_cast<uint64_t>(base);
|
||||
output.resize(sizeof(uint64_t), 0);
|
||||
memcpy(output.data(), &base_ptr, sizeof(base_ptr));
|
||||
return true;
|
||||
}
|
||||
|
||||
static void rpc_free_buffer(const std::vector<uint8_t> & input) {
|
||||
bool rpc_server::free_buffer(const std::vector<uint8_t> & input) {
|
||||
// input serialization format: | remote_ptr (8 bytes) |
|
||||
if (input.size() != sizeof(uint64_t)) {
|
||||
return false;
|
||||
}
|
||||
uint64_t remote_ptr;
|
||||
memcpy(&remote_ptr, input.data(), sizeof(remote_ptr));
|
||||
GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, remote_ptr);
|
||||
ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(remote_ptr);
|
||||
if (buffers.find(buffer) == buffers.end()) {
|
||||
GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__);
|
||||
return false;
|
||||
}
|
||||
ggml_backend_buffer_free(buffer);
|
||||
buffers.erase(buffer);
|
||||
return true;
|
||||
}
|
||||
|
||||
static void rpc_buffer_clear(const std::vector<uint8_t> & input) {
|
||||
bool rpc_server::buffer_clear(const std::vector<uint8_t> & input) {
|
||||
// input serialization format: | remote_ptr (8 bytes) | value (1 byte) |
|
||||
if (input.size() != sizeof(uint64_t) + sizeof(uint8_t)) {
|
||||
return false;
|
||||
}
|
||||
uint64_t remote_ptr;
|
||||
memcpy(&remote_ptr, input.data(), sizeof(remote_ptr));
|
||||
uint8_t value;
|
||||
memcpy(&value, input.data() + sizeof(uint64_t), sizeof(value));
|
||||
GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 ", value: %u\n", __func__, remote_ptr, value);
|
||||
ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(remote_ptr);
|
||||
if (buffers.find(buffer) == buffers.end()) {
|
||||
GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__);
|
||||
return false;
|
||||
}
|
||||
ggml_backend_buffer_clear(buffer, value);
|
||||
return true;
|
||||
}
|
||||
|
||||
static void rpc_set_tensor(const std::vector<uint8_t> & input) {
|
||||
ggml_tensor * rpc_server::deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor) {
|
||||
ggml_tensor * result = ggml_new_tensor_4d(ctx, (ggml_type) tensor->type,
|
||||
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
|
||||
for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
result->nb[i] = tensor->nb[i];
|
||||
}
|
||||
result->buffer = reinterpret_cast<ggml_backend_buffer_t>(tensor->buffer);
|
||||
if (result->buffer && buffers.find(result->buffer) == buffers.end()) {
|
||||
return nullptr;
|
||||
}
|
||||
result->op = (ggml_op) tensor->op;
|
||||
for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
|
||||
result->op_params[i] = tensor->op_params[i];
|
||||
}
|
||||
result->flags = tensor->flags;
|
||||
result->data = reinterpret_cast<void *>(tensor->data);
|
||||
ggml_set_name(result, tensor->name);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
bool rpc_server::set_tensor(const std::vector<uint8_t> & input) {
|
||||
// serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
|
||||
if (input.size() < sizeof(rpc_tensor) + sizeof(uint64_t)) {
|
||||
return false;
|
||||
}
|
||||
const rpc_tensor * in_tensor = (const rpc_tensor *)input.data();
|
||||
uint64_t offset;
|
||||
memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset));
|
||||
@ -811,14 +886,23 @@ static void rpc_set_tensor(const std::vector<uint8_t> & input) {
|
||||
};
|
||||
struct ggml_context * ctx = ggml_init(params);
|
||||
ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
|
||||
if (tensor == nullptr) {
|
||||
GGML_PRINT_DEBUG("[%s] error deserializing tensor\n", __func__);
|
||||
ggml_free(ctx);
|
||||
return false;
|
||||
}
|
||||
GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %zu\n", __func__, (void*)tensor->buffer, tensor->data, offset, size);
|
||||
const void * data = input.data() + sizeof(rpc_tensor) + sizeof(offset);
|
||||
ggml_backend_tensor_set(tensor, data, offset, size);
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
static void rpc_get_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
|
||||
bool rpc_server::get_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
|
||||
// serialization format: | rpc_tensor | offset (8 bytes) | size (8 bytes) |
|
||||
if (input.size() != sizeof(rpc_tensor) + 2*sizeof(uint64_t)) {
|
||||
return false;
|
||||
}
|
||||
const rpc_tensor * in_tensor = (const rpc_tensor *)input.data();
|
||||
uint64_t offset;
|
||||
memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset));
|
||||
@ -832,15 +916,24 @@ static void rpc_get_tensor(const std::vector<uint8_t> & input, std::vector<uint8
|
||||
};
|
||||
struct ggml_context * ctx = ggml_init(params);
|
||||
ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
|
||||
if (tensor == nullptr) {
|
||||
GGML_PRINT_DEBUG("[%s] error deserializing tensor\n", __func__);
|
||||
ggml_free(ctx);
|
||||
return false;
|
||||
}
|
||||
GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %" PRIu64 "\n", __func__, (void*)tensor->buffer, tensor->data, offset, size);
|
||||
// output serialization format: | data (size bytes) |
|
||||
output.resize(size, 0);
|
||||
ggml_backend_tensor_get(tensor, output.data(), offset, size);
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
static void rpc_copy_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
|
||||
bool rpc_server::copy_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
|
||||
// serialization format: | rpc_tensor src | rpc_tensor dst |
|
||||
if (input.size() != 2*sizeof(rpc_tensor)) {
|
||||
return false;
|
||||
}
|
||||
const rpc_tensor * rpc_src = (const rpc_tensor *)input.data();
|
||||
const rpc_tensor * rpc_dst = (const rpc_tensor *)(input.data() + sizeof(rpc_src));
|
||||
|
||||
@ -852,15 +945,21 @@ static void rpc_copy_tensor(const std::vector<uint8_t> & input, std::vector<uint
|
||||
struct ggml_context * ctx = ggml_init(params);
|
||||
ggml_tensor * src = deserialize_tensor(ctx, rpc_src);
|
||||
ggml_tensor * dst = deserialize_tensor(ctx, rpc_dst);
|
||||
if (src == nullptr || dst == nullptr) {
|
||||
GGML_PRINT_DEBUG("[%s] error deserializing tensors\n", __func__);
|
||||
ggml_free(ctx);
|
||||
return false;
|
||||
}
|
||||
GGML_PRINT_DEBUG("[%s] src->buffer: %p, dst->buffer: %p\n", __func__, (void*)src->buffer, (void*)dst->buffer);
|
||||
bool result = ggml_backend_buffer_copy_tensor(src, dst);
|
||||
// output serialization format: | result (1 byte) |
|
||||
output.resize(1, 0);
|
||||
output[0] = result;
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
static struct ggml_tensor * create_node(uint64_t id,
|
||||
ggml_tensor * rpc_server::create_node(uint64_t id,
|
||||
struct ggml_context * ctx,
|
||||
const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
|
||||
std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map) {
|
||||
@ -872,6 +971,9 @@ static struct ggml_tensor * create_node(uint64_t id,
|
||||
}
|
||||
const rpc_tensor * tensor = tensor_ptrs.at(id);
|
||||
struct ggml_tensor * result = deserialize_tensor(ctx, tensor);
|
||||
if (result == nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
tensor_map[id] = result;
|
||||
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||
result->src[i] = create_node(tensor->src[i], ctx, tensor_ptrs, tensor_map);
|
||||
@ -881,14 +983,23 @@ static struct ggml_tensor * create_node(uint64_t id,
|
||||
return result;
|
||||
}
|
||||
|
||||
static void rpc_graph_compute(ggml_backend_t backend, const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
|
||||
bool rpc_server::graph_compute(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
|
||||
// serialization format:
|
||||
// | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
|
||||
if (input.size() < sizeof(uint32_t)) {
|
||||
return false;
|
||||
}
|
||||
uint32_t n_nodes;
|
||||
memcpy(&n_nodes, input.data(), sizeof(n_nodes));
|
||||
if (input.size() < sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t)) {
|
||||
return false;
|
||||
}
|
||||
const uint64_t * nodes = (const uint64_t *)(input.data() + sizeof(n_nodes));
|
||||
uint32_t n_tensors;
|
||||
memcpy(&n_tensors, input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t), sizeof(n_tensors));
|
||||
if (input.size() < sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t) + n_tensors*sizeof(rpc_tensor)) {
|
||||
return false;
|
||||
}
|
||||
const rpc_tensor * tensors = (const rpc_tensor *)(input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t) + sizeof(n_tensors));
|
||||
GGML_PRINT_DEBUG("[%s] n_nodes: %u, n_tensors: %u\n", __func__, n_nodes, n_tensors);
|
||||
|
||||
@ -914,9 +1025,17 @@ static void rpc_graph_compute(ggml_backend_t backend, const std::vector<uint8_t>
|
||||
output.resize(1, 0);
|
||||
output[0] = status;
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
rpc_server::~rpc_server() {
|
||||
for (auto buffer : buffers) {
|
||||
ggml_backend_buffer_free(buffer);
|
||||
}
|
||||
}
|
||||
|
||||
static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t free_mem, size_t total_mem) {
|
||||
rpc_server server(backend);
|
||||
while (true) {
|
||||
uint8_t cmd;
|
||||
if (!recv_data(sockfd, &cmd, 1)) {
|
||||
@ -932,45 +1051,46 @@ static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t fre
|
||||
if (!recv_data(sockfd, input.data(), input_size)) {
|
||||
break;
|
||||
}
|
||||
bool ok = true;
|
||||
switch (cmd) {
|
||||
case ALLOC_BUFFER: {
|
||||
rpc_alloc_buffer(backend, input, output);
|
||||
ok = server.alloc_buffer(input, output);
|
||||
break;
|
||||
}
|
||||
case GET_ALIGNMENT: {
|
||||
rpc_get_alignment(backend, output);
|
||||
server.get_alignment(output);
|
||||
break;
|
||||
}
|
||||
case GET_MAX_SIZE: {
|
||||
rpc_get_max_size(backend, output);
|
||||
server.get_max_size(output);
|
||||
break;
|
||||
}
|
||||
case BUFFER_GET_BASE: {
|
||||
rpc_buffer_get_base(input, output);
|
||||
ok = server.buffer_get_base(input, output);
|
||||
break;
|
||||
}
|
||||
case FREE_BUFFER: {
|
||||
rpc_free_buffer(input);
|
||||
ok = server.free_buffer(input);
|
||||
break;
|
||||
}
|
||||
case BUFFER_CLEAR: {
|
||||
rpc_buffer_clear(input);
|
||||
ok = server.buffer_clear(input);
|
||||
break;
|
||||
}
|
||||
case SET_TENSOR: {
|
||||
rpc_set_tensor(input);
|
||||
ok = server.set_tensor(input);
|
||||
break;
|
||||
}
|
||||
case GET_TENSOR: {
|
||||
rpc_get_tensor(input, output);
|
||||
ok = server.get_tensor(input, output);
|
||||
break;
|
||||
}
|
||||
case COPY_TENSOR: {
|
||||
rpc_copy_tensor(input, output);
|
||||
ok = server.copy_tensor(input, output);
|
||||
break;
|
||||
}
|
||||
case GRAPH_COMPUTE: {
|
||||
rpc_graph_compute(backend, input, output);
|
||||
ok = server.graph_compute(input, output);
|
||||
break;
|
||||
}
|
||||
case GET_DEVICE_MEMORY: {
|
||||
@ -982,9 +1102,12 @@ static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t fre
|
||||
}
|
||||
default: {
|
||||
fprintf(stderr, "Unknown command: %d\n", cmd);
|
||||
return;
|
||||
ok = false;
|
||||
}
|
||||
}
|
||||
if (!ok) {
|
||||
break;
|
||||
}
|
||||
uint64_t output_size = output.size();
|
||||
if (!send_data(sockfd, &output_size, sizeof(output_size))) {
|
||||
break;
|
||||
|
Loading…
Reference in New Issue
Block a user