llama : add StableLM2 12B (#6635)

* StableLM2 12B support for huggingface -> GGUF

* StableLM12 tensormapping and constants

* StableLM-2-12b model support

* fix

* Added 12B support

* Removed autoformatting; resolved bug where model_arch was not selecting StableLM2

* Formatting

* Do QK norm stacking in model conversion step

* Converge StableLM and StableLM2 code to simplify graph construction

* Fix accidental removal

* Removed warnings

* Revert formatter

* Move QK norm stack to private function so it's easier to read

* refactor stablelm graph builder to support 1.6, 3b and 12b more efficiently

* Proper check for None type for new_name to avoid crash; formatting; revert change to base class `write_tensors()`

* Format

* Formatting

* format

Co-authored-by: compilade <git@compilade.net>

* Fix incorrect check for K norm

* space after commas; Keep indentation multiple of 4 spaces

* Flake8 format

* Removed unnecessary conditional branches

* Removed unused comment

* Fixed incorrect tensor passing

* Format

---------

Co-authored-by: compilade <git@compilade.net>
This commit is contained in:
Ashish 2024-04-16 08:48:35 -07:00 committed by GitHub
parent f4dea7da18
commit dbceec87c0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 134 additions and 12 deletions

View File

@ -1207,9 +1207,91 @@ class StableLMModel(Model):
rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"]) rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"]))) self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
self.gguf_writer.add_head_count(hparams["num_attention_heads"]) self.gguf_writer.add_head_count(hparams["num_attention_heads"])
self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True) self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"])) self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
def write_tensors(self):
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
n_head = self.hparams.get("num_attention_heads")
n_kv_head = self.hparams.get("num_key_value_heads")
q_norms = dict()
k_norms = dict()
for name, data_torch in self.get_tensors():
# we don't need these
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
continue
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
data = data_torch.squeeze().numpy()
n_dims = len(data.shape)
if name.find("q_layernorm.norms") != -1:
q_norms[name] = data
if len(q_norms) >= (block_count * n_head):
self._stack_qk_norm(block_count, name, tensor_map, n_head, q_norms, n_dims, layer_name="q_layernorm")
continue
if name.find("k_layernorm.norms") != -1:
k_norms[name] = data
if len(k_norms) >= (block_count * n_kv_head):
self._stack_qk_norm(block_count, name, tensor_map, n_kv_head, k_norms, n_dims, layer_name="k_layernorm")
continue
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
def _stack_qk_norm(self, block_count, name, tensor_map, n_head, norms, n_dims, layer_name="q_layernorm"):
for bid in range(block_count):
datas = []
for xid in range(n_head):
ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
datas.append(norms[ename])
del norms[ename]
data = np.stack(datas, axis=0)
data_dtype = data.dtype
merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
@Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM") @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
class LlamaModel(Model): class LlamaModel(Model):

View File

@ -455,6 +455,8 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_GATE, MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP, MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K_NORM,
], ],
MODEL_ARCH.QWEN: [ MODEL_ARCH.QWEN: [
MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.TOKEN_EMBD,

View File

@ -716,6 +716,8 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
}, },
}, },
{ {
@ -1744,6 +1746,7 @@ enum e_model {
MODEL_4B, MODEL_4B,
MODEL_7B, MODEL_7B,
MODEL_8B, MODEL_8B,
MODEL_12B,
MODEL_13B, MODEL_13B,
MODEL_14B, MODEL_14B,
MODEL_15B, MODEL_15B,
@ -3607,6 +3610,7 @@ static const char * llama_model_type_name(e_model type) {
case MODEL_3B: return "3B"; case MODEL_3B: return "3B";
case MODEL_7B: return "7B"; case MODEL_7B: return "7B";
case MODEL_8B: return "8B"; case MODEL_8B: return "8B";
case MODEL_12B: return "12B";
case MODEL_13B: return "13B"; case MODEL_13B: return "13B";
case MODEL_14B: return "14B"; case MODEL_14B: return "14B";
case MODEL_15B: return "15B"; case MODEL_15B: return "15B";
@ -3898,6 +3902,7 @@ static void llm_load_hparams(
switch (hparams.n_layer) { switch (hparams.n_layer) {
case 24: model.type = e_model::MODEL_1B; break; case 24: model.type = e_model::MODEL_1B; break;
case 32: model.type = e_model::MODEL_3B; break; case 32: model.type = e_model::MODEL_3B; break;
case 40: model.type = e_model::MODEL_12B; break;
default: model.type = e_model::MODEL_UNKNOWN; default: model.type = e_model::MODEL_UNKNOWN;
} }
} break; } break;
@ -5128,8 +5133,13 @@ static bool llm_load_tensors(
layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false); layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false); layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); // optional q and k layernorms, present in StableLM 2 12B
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, false);
layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, false);
// optional FFN norm, not present in StableLM 2 12B which uses parallel residual
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, false);
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
@ -8197,7 +8207,7 @@ struct llm_build_context {
struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) { for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
// norm // norm
cur = llm_build_norm(ctx0, inpL, hparams, cur = llm_build_norm(ctx0, inpL, hparams,
@ -8206,6 +8216,8 @@ struct llm_build_context {
LLM_NORM, cb, il); LLM_NORM, cb, il);
cb(cur, "attn_norm", il); cb(cur, "attn_norm", il);
struct ggml_tensor * inpSA = cur;
// self-attention // self-attention
{ {
// compute Q and K and RoPE them // compute Q and K and RoPE them
@ -8230,15 +8242,36 @@ struct llm_build_context {
cb(Vcur, "Vcur", il); cb(Vcur, "Vcur", il);
} }
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
cb(Qcur, "Qcur", il);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
cb(Kcur, "Kcur", il);
if (model.layers[il].attn_q_norm) {
Qcur = llm_build_norm(ctx0, Qcur, hparams,
model.layers[il].attn_q_norm,
NULL,
LLM_NORM, cb, il);
cb(Qcur, "Qcur", il);
}
if (model.layers[il].attn_k_norm) {
Kcur = llm_build_norm(ctx0, Kcur, hparams,
model.layers[il].attn_k_norm,
NULL,
LLM_NORM, cb, il);
cb(Kcur, "Kcur", il);
}
Qcur = ggml_rope_custom( Qcur = ggml_rope_custom(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, ctx0, Qcur, inp_pos,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow ext_factor, attn_factor, beta_fast, beta_slow
); );
cb(Qcur, "Qcur", il); cb(Qcur, "Qcur", il);
Kcur = ggml_rope_custom( Kcur = ggml_rope_custom(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, ctx0, Kcur, inp_pos,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow ext_factor, attn_factor, beta_fast, beta_slow
); );
@ -8253,20 +8286,25 @@ struct llm_build_context {
// skip computing output for unused tokens // skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids(); struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids); cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
} }
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il); cb(ffn_inp, "ffn_inp", il);
// feed-forward network // feed-forward network
{ {
if (model.layers[il].ffn_norm) {
cur = llm_build_norm(ctx0, ffn_inp, hparams, cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, model.layers[il].ffn_norm,
model.layers[il].ffn_norm_b, model.layers[il].ffn_norm_b,
LLM_NORM, cb, il); LLM_NORM, cb, il);
cb(cur, "ffn_norm", il); cb(cur, "ffn_norm", il);
} else {
// parallel residual
cur = inpSA;
}
cur = llm_build_ffn(ctx0, cur, cur = llm_build_ffn(ctx0, cur,
model.layers[il].ffn_up, NULL, model.layers[il].ffn_up, NULL,
model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate, NULL,