mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 19:21:46 +00:00
OpenCL: Fix duplication of layers in VRAM and RAM, add GPU mul kernel (#1653)
* Use events instead of clFinish, where possible * OpenCL: Don't load gpu layers into RAM, add mul_f32 kernel * Reduce queueing overhead for contiguous tensors by using single mul kernel call * Adapt to #1612 cl_mem malloc changes * Reduce code duplication between cuda and opencl branches * Improve implementation
This commit is contained in:
parent
d8bd0013e8
commit
dcb2ed4826
184
ggml-opencl.cpp
184
ggml-opencl.cpp
@ -3,6 +3,7 @@
|
||||
#include <array>
|
||||
#include <atomic>
|
||||
#include <sstream>
|
||||
#include <vector>
|
||||
|
||||
#define CL_TARGET_OPENCL_VERSION 110
|
||||
#include <clblast.h>
|
||||
@ -197,6 +198,18 @@ __kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float
|
||||
}
|
||||
);
|
||||
|
||||
std::string mul_template = MULTILINE_QUOTE(
|
||||
__kernel void KERNEL_NAME(__global TYPE* x, const int x_offset, __global TYPE* y, const int y_offset, __global TYPE* dst, const int dst_offset, const int ky) {
|
||||
const int i = get_group_id(0)*get_local_size(0) + get_local_id(0);
|
||||
|
||||
if (i >= get_global_size(0)) {
|
||||
return;
|
||||
}
|
||||
|
||||
dst[dst_offset + i] = x[x_offset + i] * y[y_offset + i%ky];
|
||||
}
|
||||
);
|
||||
|
||||
#define CL_CHECK(err) \
|
||||
do { \
|
||||
cl_int err_ = (err); \
|
||||
@ -239,6 +252,13 @@ std::array<std::string, 30> dequant_mul_mat_vec_str_values = {
|
||||
"convert_mul_mat_vec_f16", "half", "1", "1", "convert_f16"
|
||||
};
|
||||
|
||||
std::array<std::string, 2> mul_str_keys = {
|
||||
"KERNEL_NAME", "TYPE"
|
||||
};
|
||||
std::array<std::string, 2> mul_str_values = {
|
||||
"mul_f32", "float"
|
||||
};
|
||||
|
||||
std::string& replace(std::string& s, const std::string& from, const std::string& to) {
|
||||
size_t pos = 0;
|
||||
while ((pos = s.find(from, pos)) != std::string::npos) {
|
||||
@ -261,6 +281,13 @@ std::string generate_kernels() {
|
||||
src << dequant_kernel << '\n';
|
||||
src << dmmv_kernel << '\n';
|
||||
}
|
||||
for (size_t i = 0; i < mul_str_values.size(); i += mul_str_keys.size()) {
|
||||
std::string mul_kernel = mul_template;
|
||||
for (size_t j = 0; j < mul_str_keys.size(); j++) {
|
||||
replace(mul_kernel, mul_str_keys[j], mul_str_values[i + j]);
|
||||
}
|
||||
src << mul_kernel << '\n';
|
||||
}
|
||||
return src.str();
|
||||
}
|
||||
|
||||
@ -272,6 +299,7 @@ static cl_program program;
|
||||
static cl_kernel convert_row_f16_cl;
|
||||
static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl;
|
||||
static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl;
|
||||
static cl_kernel mul_f32_cl;
|
||||
static bool fp16_support;
|
||||
|
||||
static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) {
|
||||
@ -508,6 +536,9 @@ void ggml_cl_init(void) {
|
||||
CL_CHECK((dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err), err));
|
||||
CL_CHECK((dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err), err));
|
||||
CL_CHECK((convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err), err));
|
||||
|
||||
// mul kernel
|
||||
CL_CHECK((mul_f32_cl = clCreateKernel(program, "mul_f32", &err), err));
|
||||
}
|
||||
|
||||
static cl_kernel* ggml_get_to_fp32_cl(ggml_type type) {
|
||||
@ -644,6 +675,98 @@ static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t o
|
||||
return err;
|
||||
}
|
||||
|
||||
static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
GGML_ASSERT(src1->backend == GGML_BACKEND_CL);
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
const int64_t ne03 = src0->ne[2];
|
||||
const int64_t ne0 = ne00 * ne01 * ne02 * ne03;
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
const int64_t ne12 = src1->ne[2];
|
||||
const int64_t ne13 = src1->ne[3];
|
||||
const int64_t nb10 = src1->nb[0];
|
||||
const int nb2 = dst->nb[2];
|
||||
const int nb3 = dst->nb[3];
|
||||
size_t x_size;
|
||||
size_t d_size;
|
||||
|
||||
cl_mem d_X = ggml_cl_pool_malloc(ne0 * sizeof(float), &x_size, CL_MEM_READ_ONLY); // src0
|
||||
cl_mem d_Y = (cl_mem) src1->data; // src1 is already on device, broadcasted.
|
||||
cl_mem d_D = ggml_cl_pool_malloc(ne0 * sizeof(float), &d_size, CL_MEM_WRITE_ONLY); // dst
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
const int i0 = i03*ne02 + i02;
|
||||
|
||||
cl_event ev;
|
||||
|
||||
// copy src0 to device
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, i0, src0, i03, i02, &ev));
|
||||
|
||||
if (nb10 == sizeof(float)) {
|
||||
// Contiguous, avoid overhead from queueing many kernel runs
|
||||
const int64_t i13 = i03%ne13;
|
||||
const int64_t i12 = i02%ne12;
|
||||
const int i1 = i13*ne12*ne11 + i12*ne11;
|
||||
|
||||
cl_int x_offset = 0;
|
||||
cl_int y_offset = i1*ne10;
|
||||
cl_int d_offset = 0;
|
||||
|
||||
size_t global = ne00 * ne01;
|
||||
cl_int ky = ne10;
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
|
||||
} else {
|
||||
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||||
const int64_t i13 = i03%ne13;
|
||||
const int64_t i12 = i02%ne12;
|
||||
const int64_t i11 = i01%ne11;
|
||||
const int i1 = i13*ne12*ne11 + i12*ne11 + i11;
|
||||
|
||||
cl_int x_offset = i01*ne00;
|
||||
cl_int y_offset = i1*ne10;
|
||||
cl_int d_offset = i01*ne00;
|
||||
|
||||
// compute
|
||||
size_t global = ne00;
|
||||
cl_int ky = ne10;
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
|
||||
}
|
||||
}
|
||||
|
||||
CL_CHECK(clReleaseEvent(ev));
|
||||
CL_CHECK(clFinish(queue));
|
||||
|
||||
// copy dst to host
|
||||
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
||||
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * ne00*ne01, d, 0, NULL, NULL));
|
||||
}
|
||||
}
|
||||
ggml_cl_pool_free(d_X, x_size);
|
||||
ggml_cl_pool_free(d_D, d_size);
|
||||
}
|
||||
|
||||
void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
||||
ggml_cl_mul_f32(src0, src1, dst);
|
||||
}
|
||||
|
||||
static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
@ -860,13 +983,15 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
||||
cl_kernel* dmmv = ggml_get_dequantize_mul_mat_vec_cl(type);
|
||||
GGML_ASSERT(to_fp32_cl != nullptr);
|
||||
|
||||
size_t ev_idx = 0;
|
||||
std::vector<cl_event> events;
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
cl_event ev_sgemm;
|
||||
|
||||
// copy src0 to device if necessary
|
||||
if (src0->backend == GGML_BACKEND_CPU) {
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, NULL));
|
||||
events.emplace_back();
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
|
||||
} else if (src0->backend == GGML_BACKEND_CL) {
|
||||
d_Q = (cl_mem) src0->data;
|
||||
} else {
|
||||
@ -874,30 +999,32 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
||||
}
|
||||
if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
|
||||
// copy src1 to device
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
|
||||
events.emplace_back();
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, events.data() + ev_idx++));
|
||||
|
||||
// compute
|
||||
const size_t global = ne01 * CL_DMMV_BLOCK_SIZE;
|
||||
const size_t local = CL_DMMV_BLOCK_SIZE;
|
||||
const cl_int ncols = ne00;
|
||||
events.emplace_back();
|
||||
CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
|
||||
CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL));
|
||||
CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y));
|
||||
CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D));
|
||||
CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols));
|
||||
CL_CHECK(clFinish(queue));
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, 0, NULL, &ev_sgemm));
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++));
|
||||
} else { // general dequantization kernel + CLBlast matrix matrix multiplication
|
||||
// convert src0 to fp32 on device
|
||||
const size_t global = x_ne;
|
||||
CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
|
||||
CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
|
||||
CL_CHECK(clFinish(queue));
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, NULL, 0, NULL, NULL));
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
|
||||
|
||||
// copy src1 to device
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
|
||||
|
||||
events.emplace_back();
|
||||
|
||||
// wait for conversion
|
||||
CL_CHECK(clFinish(queue));
|
||||
|
||||
@ -910,7 +1037,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
||||
d_Y, 0, ne10,
|
||||
beta,
|
||||
d_D, 0, ne01,
|
||||
&queue, &ev_sgemm);
|
||||
&queue, events.data() + ev_idx++);
|
||||
|
||||
if (status != clblast::StatusCode::kSuccess) {
|
||||
GGML_ASSERT(false);
|
||||
@ -919,8 +1046,13 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
||||
|
||||
// copy dst to host
|
||||
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
||||
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
|
||||
clReleaseEvent(ev_sgemm);
|
||||
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL));
|
||||
for (auto *event : events) {
|
||||
clReleaseEvent(event);
|
||||
}
|
||||
|
||||
ev_idx = 0;
|
||||
events.clear();
|
||||
}
|
||||
}
|
||||
|
||||
@ -1026,3 +1158,33 @@ void ggml_cl_transform_tensor(ggml_tensor * tensor) {
|
||||
tensor->data = dst;
|
||||
tensor->backend = GGML_BACKEND_CL;
|
||||
}
|
||||
|
||||
void ggml_cl_load_data(const char * fname, struct ggml_tensor * tensor, const size_t offset) {
|
||||
cl_int err;
|
||||
FILE * fp = fopen(fname, "rb");
|
||||
|
||||
const size_t size = ggml_nbytes(tensor);
|
||||
|
||||
cl_mem dst;
|
||||
CL_CHECK((dst = clCreateBuffer(context, CL_MEM_READ_ONLY, size, nullptr, &err), err));
|
||||
void * buf_host = malloc(size);
|
||||
|
||||
#ifdef _WIN32
|
||||
int ret = _fseeki64(fp, (__int64) offset, SEEK_SET);
|
||||
#else
|
||||
int ret = fseek(fp, (long) offset, SEEK_SET);
|
||||
#endif
|
||||
GGML_ASSERT(ret == 0); // same
|
||||
|
||||
size_t ret2 = fread(buf_host, size, 1, fp);
|
||||
if (ret2 != 1) {
|
||||
fprintf(stderr, "unexpectedly reached end of file");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
clEnqueueWriteBuffer(queue, dst, CL_TRUE, 0, size, buf_host, 0, nullptr, nullptr);
|
||||
|
||||
tensor->data = dst;
|
||||
free(buf_host);
|
||||
fclose(fp);
|
||||
}
|
||||
|
@ -8,6 +8,7 @@ extern "C" {
|
||||
|
||||
void ggml_cl_init(void);
|
||||
|
||||
void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
|
||||
@ -16,6 +17,7 @@ void * ggml_cl_host_malloc(size_t size);
|
||||
void ggml_cl_host_free(void * ptr);
|
||||
|
||||
void ggml_cl_transform_tensor(struct ggml_tensor * tensor);
|
||||
void ggml_cl_load_data(const char * fname, struct ggml_tensor * tensor, size_t offset);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
7
ggml.c
7
ggml.c
@ -8134,6 +8134,13 @@ static void ggml_compute_forward_mul_f32(
|
||||
}
|
||||
return;
|
||||
}
|
||||
#elif defined(GGML_USE_CLBLAST)
|
||||
if (src1->backend == GGML_BACKEND_CL) {
|
||||
if (ith == 0) {
|
||||
ggml_cl_mul(src0, src1, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
const int64_t nr = ggml_nrows(src0);
|
||||
|
57
llama.cpp
57
llama.cpp
@ -1010,8 +1010,12 @@ static void llama_model_load_internal(
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
#if defined(GGML_USE_CUBLAS)
|
||||
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CUDA
|
||||
fprintf(stderr, "%s: using CUDA for GPU acceleration\n", __func__);
|
||||
#elif defined(GGML_USE_CLBLAST)
|
||||
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CL
|
||||
fprintf(stderr, "%s: using OpenCL for GPU acceleration\n", __func__);
|
||||
#else
|
||||
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU
|
||||
#endif
|
||||
@ -1063,7 +1067,7 @@ static void llama_model_load_internal(
|
||||
layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}, backend);
|
||||
layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}, backend);
|
||||
|
||||
if (backend == GGML_BACKEND_CUDA) {
|
||||
if (backend == LLAMA_BACKEND_OFFLOAD) {
|
||||
vram_total +=
|
||||
ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
|
||||
ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.attention_norm) +
|
||||
@ -1093,15 +1097,15 @@ static void llama_model_load_internal(
|
||||
fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
|
||||
mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
|
||||
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
|
||||
|
||||
fprintf(stderr, "%s: [cublas] offloading %d layers to GPU\n", __func__, n_gpu);
|
||||
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
|
||||
fprintf(stderr, "%s: offloading %d layers to GPU\n", __func__, n_gpu);
|
||||
if (n_gpu_layers > (int) hparams.n_layer) {
|
||||
fprintf(stderr, "%s: [cublas] offloading output layer to GPU\n", __func__);
|
||||
fprintf(stderr, "%s: offloading output layer to GPU\n", __func__);
|
||||
}
|
||||
fprintf(stderr, "%s: [cublas] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024);
|
||||
#elif !defined(GGML_USE_CLBLAST)
|
||||
fprintf(stderr, "%s: total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024);
|
||||
#else
|
||||
(void) n_gpu_layers;
|
||||
#endif
|
||||
}
|
||||
@ -1113,7 +1117,7 @@ static void llama_model_load_internal(
|
||||
|
||||
ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);
|
||||
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
#if defined(GGML_USE_CUBLAS)
|
||||
{
|
||||
size_t done_size = 0;
|
||||
size_t data_size = 0;
|
||||
@ -1136,29 +1140,24 @@ static void llama_model_load_internal(
|
||||
}
|
||||
#elif defined(GGML_USE_CLBLAST)
|
||||
{
|
||||
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
|
||||
|
||||
fprintf(stderr, "ggml_opencl: offloading %d layers to GPU\n", n_gpu);
|
||||
|
||||
size_t vram_total = 0;
|
||||
|
||||
for (int i = 0; i < n_gpu; ++i) {
|
||||
const auto & layer = model.layers[i];
|
||||
|
||||
ggml_cl_transform_tensor(layer.wq); vram_total += ggml_nbytes(layer.wq);
|
||||
ggml_cl_transform_tensor(layer.wk); vram_total += ggml_nbytes(layer.wk);
|
||||
ggml_cl_transform_tensor(layer.wv); vram_total += ggml_nbytes(layer.wv);
|
||||
ggml_cl_transform_tensor(layer.wo); vram_total += ggml_nbytes(layer.wo);
|
||||
ggml_cl_transform_tensor(layer.w1); vram_total += ggml_nbytes(layer.w1);
|
||||
ggml_cl_transform_tensor(layer.w2); vram_total += ggml_nbytes(layer.w2);
|
||||
ggml_cl_transform_tensor(layer.w3); vram_total += ggml_nbytes(layer.w3);
|
||||
size_t done_size = 0;
|
||||
size_t data_size = 0;
|
||||
for (llama_load_tensor & lt : ml->tensors_map.tensors) {
|
||||
data_size += lt.size;
|
||||
if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
|
||||
done_size += lt.size;
|
||||
}
|
||||
if (n_gpu_layers > (int) hparams.n_layer) {
|
||||
fprintf(stderr, "ggml_opencl: offloading output layer to GPU\n");
|
||||
ggml_cl_transform_tensor(model.output); vram_total += ggml_nbytes(model.output);
|
||||
}
|
||||
|
||||
fprintf(stderr, "ggml_opencl: total VRAM used: %zu MB\n", vram_total / 1024 / 1024);
|
||||
for (llama_load_tensor & lt : ml->tensors_map.tensors) {
|
||||
if (lt.ggml_tensor->backend != GGML_BACKEND_CL) {
|
||||
continue;
|
||||
}
|
||||
if (progress_callback) {
|
||||
progress_callback((float) done_size / data_size, progress_callback_user_data);
|
||||
}
|
||||
ggml_cl_load_data(fname.c_str(), lt.ggml_tensor, lt.shards.at(0).file_off);
|
||||
done_size += lt.size;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user