llama : refactor sampling v2 (#9294)

- Add `struct llama_sampler` and `struct llama_sampler_i`
- Add `llama_sampler_` API
- Add `llama_sampler_chain_` API for chaining multiple samplers
- Remove `LLAMA_API_INTERNAL`
- Add `llama_perf_` API and remove old `llama_print_timings` and `llama_reset_timings`
This commit is contained in:
Georgi Gerganov 2024-09-07 15:16:19 +03:00 committed by GitHub
parent 947538acb8
commit df270ef745
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
48 changed files with 3497 additions and 2914 deletions

View File

@ -927,7 +927,6 @@ OBJ_COMMON = \
common/ngram-cache.o \
common/sampling.o \
common/train.o \
common/grammar-parser.o \
common/build-info.o \
common/json-schema-to-grammar.o
@ -1167,11 +1166,6 @@ common/console.o: \
common/console.h
$(CXX) $(CXXFLAGS) -c $< -o $@
common/grammar-parser.o: \
common/grammar-parser.cpp \
common/grammar-parser.h
$(CXX) $(CXXFLAGS) -c $< -o $@
common/json-schema-to-grammar.o: \
common/json-schema-to-grammar.cpp \
common/json-schema-to-grammar.h

View File

@ -58,8 +58,6 @@ add_library(${TARGET} STATIC
sampling.cpp
console.h
console.cpp
grammar-parser.h
grammar-parser.cpp
json.hpp
json-schema-to-grammar.cpp
train.h

View File

@ -353,16 +353,15 @@ void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model)
}
bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
bool invalid_param = false;
std::string arg;
const std::string arg_prefix = "--";
llama_sampling_params & sparams = params.sparams;
for (int i = 1; i < argc; i++) {
arg = argv[i];
const std::string arg_prefix = "--";
std::string arg = argv[i];
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
std::replace(arg.begin(), arg.end(), '_', '-');
}
bool invalid_param = false;
if (!gpt_params_find_arg(argc, argv, arg, params, i, invalid_param)) {
throw std::invalid_argument("error: unknown argument: " + arg);
}
@ -386,11 +385,12 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
get_env("HF_TOKEN", params.hf_token);
}
auto & sparams = params.sparams;
if (params.escape) {
string_process_escapes(params.prompt);
string_process_escapes(params.input_prefix);
string_process_escapes(params.input_suffix);
string_process_escapes(sparams.cfg_negative_prompt);
for (auto & antiprompt : params.antiprompt) {
string_process_escapes(antiprompt);
}
@ -401,6 +401,10 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
params.kv_overrides.back().key[0] = 0;
}
if (sparams.seed == LLAMA_DEFAULT_SEED) {
sparams.seed = time(NULL);
}
return true;
}
@ -526,12 +530,10 @@ bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[GGML_MAX_N_THREAD
bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param) {
const char split_delim = ',';
llama_sampling_params & sparams = params.sparams;
auto & sparams = params.sparams;
if (arg == "-s" || arg == "--seed") {
CHECK_ARG
// TODO: this is temporary, in the future the sampling state will be moved fully to llama_sampling_context.
params.seed = std::stoul(argv[i]);
sparams.seed = std::stoul(argv[i]);
return true;
}
@ -842,12 +844,12 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
if (arg == "--samplers") {
CHECK_ARG
const auto sampler_names = string_split(argv[i], ';');
sparams.samplers_sequence = llama_sampling_types_from_names(sampler_names, true);
sparams.samplers = gpt_sampler_types_from_names(sampler_names, true);
return true;
}
if (arg == "--sampling-seq") {
CHECK_ARG
sparams.samplers_sequence = llama_sampling_types_from_chars(argv[i]);
sparams.samplers = gpt_sampler_types_from_chars(argv[i]);
return true;
}
if (arg == "--top-p") {
@ -873,7 +875,7 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
}
if (arg == "--typical") {
CHECK_ARG
sparams.typical_p = std::stof(argv[i]);
sparams.typ_p = std::stof(argv[i]);
return true;
}
if (arg == "--repeat-last-n") {
@ -922,30 +924,6 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
sparams.mirostat_tau = std::stof(argv[i]);
return true;
}
if (arg == "--cfg-negative-prompt") {
CHECK_ARG
sparams.cfg_negative_prompt = argv[i];
return true;
}
if (arg == "--cfg-negative-prompt-file") {
CHECK_ARG
std::ifstream file(argv[i]);
if (!file) {
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
invalid_param = true;
return true;
}
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(sparams.cfg_negative_prompt));
if (!sparams.cfg_negative_prompt.empty() && sparams.cfg_negative_prompt.back() == '\n') {
sparams.cfg_negative_prompt.pop_back();
}
return true;
}
if (arg == "--cfg-scale") {
CHECK_ARG
sparams.cfg_scale = std::stof(argv[i]);
return true;
}
if (arg == "-b" || arg == "--batch-size") {
CHECK_ARG
params.n_batch = std::stoi(argv[i]);
@ -1355,7 +1333,7 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
return true;
}
if (arg == "--ignore-eos") {
params.ignore_eos = true;
sparams.ignore_eos = true;
return true;
}
if (arg == "--penalize-nl") {
@ -1370,7 +1348,8 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
std::string value_str;
try {
if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
sparams.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
const float bias = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
sparams.logit_bias.push_back({key, bias});
}
else {
throw std::exception();
@ -1725,13 +1704,13 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
#endif
void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
const llama_sampling_params & sparams = params.sparams;
const auto & sparams = params.sparams;
std::string sampler_type_chars;
std::string sampler_type_names;
for (const auto sampler_type : sparams.samplers_sequence) {
sampler_type_chars += static_cast<char>(sampler_type);
sampler_type_names += llama_sampling_type_to_str(sampler_type) + ";";
for (const auto & sampler : sparams.samplers) {
sampler_type_chars += gpt_sampler_type_to_chr(sampler);
sampler_type_names += gpt_sampler_type_to_str(sampler) + ";";
}
sampler_type_names.pop_back();
@ -1766,7 +1745,6 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
options.push_back({ "*", " --verbose-prompt", "print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false" });
options.push_back({ "*", " --no-display-prompt", "don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false" });
options.push_back({ "*", "-co, --color", "colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false" });
options.push_back({ "*", "-s, --seed SEED", "RNG seed (default: %d, use random seed for < 0)", params.seed });
options.push_back({ "*", "-t, --threads N", "number of threads to use during generation (default: %d)", params.cpuparams.n_threads });
options.push_back({ "*", "-tb, --threads-batch N", "number of threads to use during batch and prompt processing (default: same as --threads)" });
options.push_back({ "speculative", "-td, --threads-draft N", "number of threads to use during generation (default: same as --threads)" });
@ -1846,18 +1824,19 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
" --spm-infill", "use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)", params.spm_infill ? "enabled" : "disabled" });
options.push_back({ "sampling" });
options.push_back({ "*", "-s, --seed SEED", "RNG seed (default: %d, use random seed for < 0)", sparams.seed });
options.push_back({ "*", " --samplers SAMPLERS", "samplers that will be used for generation in the order, separated by \';\'\n"
"(default: %s)", sampler_type_names.c_str() });
options.push_back({ "*", " --sampling-seq SEQUENCE",
"simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str() });
options.push_back({ "*", " --ignore-eos", "ignore end of stream token and continue generating (implies --logit-bias EOS-inf)" });
options.push_back({ "*", " --penalize-nl", "penalize newline tokens (default: %s)", sparams.penalize_nl ? "true" : "false" });
options.push_back({ "*", " --temp N", "temperature (default: %.1f)", (double)sparams.temp });
options.push_back({ "*", " --temp T", "temperature (default: %.1f)", (double)sparams.temp });
options.push_back({ "*", " --top-k N", "top-k sampling (default: %d, 0 = disabled)", sparams.top_k });
options.push_back({ "*", " --top-p N", "top-p sampling (default: %.1f, 1.0 = disabled)", (double)sparams.top_p });
options.push_back({ "*", " --min-p N", "min-p sampling (default: %.1f, 0.0 = disabled)", (double)sparams.min_p });
options.push_back({ "*", " --tfs N", "tail free sampling, parameter z (default: %.1f, 1.0 = disabled)", (double)sparams.tfs_z });
options.push_back({ "*", " --typical N", "locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)sparams.typical_p });
options.push_back({ "*", " --top-p P", "top-p sampling (default: %.1f, 1.0 = disabled)", (double)sparams.top_p });
options.push_back({ "*", " --min-p P", "min-p sampling (default: %.1f, 0.0 = disabled)", (double)sparams.min_p });
options.push_back({ "*", " --tfs P", "tail free sampling, parameter z (default: %.1f, 1.0 = disabled)", (double)sparams.tfs_z });
options.push_back({ "*", " --typical P", "locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)sparams.typ_p });
options.push_back({ "*", " --repeat-last-n N", "last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", sparams.penalty_last_n });
options.push_back({ "*", " --repeat-penalty N", "penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)sparams.penalty_repeat });
options.push_back({ "*", " --presence-penalty N", "repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)sparams.penalty_present });
@ -1872,11 +1851,6 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
options.push_back({ "*", " -l TOKEN_ID(+/-)BIAS", "modifies the likelihood of token appearing in the completion,\n"
"i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"
"or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'" });
options.push_back({ "main", " --cfg-negative-prompt PROMPT",
"negative prompt to use for guidance (default: '%s')", sparams.cfg_negative_prompt.c_str() });
options.push_back({ "main", " --cfg-negative-prompt-file FNAME",
"negative prompt file to use for guidance" });
options.push_back({ "main", " --cfg-scale N", "strength of guidance (default: %.1f, 1.0 = disable)", (double)sparams.cfg_scale });
options.push_back({ "main", " --chat-template JINJA_TEMPLATE",
"set custom jinja chat template (default: template taken from model's metadata)\n"
"if suffix/prefix are specified, template will be disabled\n"
@ -2528,8 +2502,9 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
llama_lora_adapters_apply(lctx, iparams.lora_adapters);
}
if (params.ignore_eos) {
params.sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
if (params.sparams.ignore_eos && llama_token_eos(model) == -1) {
fprintf(stderr, "%s: warning: model does not have an EOS token, ignoring --ignore-eos\n", __func__);
params.sparams.ignore_eos = false;
}
if (params.warmup) {
@ -2558,7 +2533,7 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
}
llama_kv_cache_clear(lctx);
llama_synchronize(lctx);
llama_reset_timings(lctx);
llama_perf_reset(lctx, LLAMA_PERF_TYPE_CONTEXT);
}
iparams.model = model;
@ -2637,7 +2612,6 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
cparams.n_threads = params.cpuparams.n_threads;
cparams.n_threads_batch = params.cpuparams_batch.n_threads == -1 ?
params.cpuparams.n_threads : params.cpuparams_batch.n_threads;
cparams.seed = params.seed;
cparams.logits_all = params.logits_all;
cparams.embeddings = params.embedding;
cparams.rope_scaling_type = params.rope_scaling_type;
@ -3523,7 +3497,7 @@ void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const cha
void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const llama_context * lctx,
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
const llama_sampling_params & sparams = params.sparams;
const auto & sparams = params.sparams;
fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT);
fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER);
@ -3574,8 +3548,6 @@ void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const l
fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
yaml_dump_string_multiline(stream, "cfg_negative_prompt", sparams.cfg_negative_prompt.c_str());
fprintf(stream, "cfg_scale: %f # default: 1.0\n", sparams.cfg_scale);
fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
@ -3586,10 +3558,7 @@ void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const l
fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
const auto logit_bias_eos = sparams.logit_bias.find(llama_token_eos(llama_get_model(lctx)));
const bool ignore_eos = logit_bias_eos != sparams.logit_bias.end() && logit_bias_eos->second == -INFINITY;
fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false");
fprintf(stream, "ignore_eos: %s # default: false\n", sparams.ignore_eos ? "true" : "false");
yaml_dump_string_multiline(stream, "in_prefix", params.input_prefix.c_str());
fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false");
@ -3600,11 +3569,8 @@ void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const l
fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
fprintf(stream, "logit_bias:\n");
for (std::pair<llama_token, float> lb : sparams.logit_bias) {
if (ignore_eos && lb.first == logit_bias_eos->first) {
continue;
}
fprintf(stream, " %d: %f", lb.first, lb.second);
for (const auto & logit_bias : sparams.logit_bias) {
fprintf(stream, " %d: %f", logit_bias.token, logit_bias.bias);
}
fprintf(stream, "lora:\n");
@ -3657,7 +3623,6 @@ void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const l
fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base);
fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale);
fprintf(stream, "seed: %u # default: -1 (random seed)\n", params.seed);
fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
fprintf(stream, "flash_attn: %s # default: false\n", params.flash_attn ? "true" : "false");
@ -3671,7 +3636,7 @@ void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const l
fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
fprintf(stream, "typ_p: %f # default: 1.0\n", sparams.typ_p);
fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false");
}

View File

@ -77,8 +77,6 @@ struct cpu_params {
};
struct gpt_params {
uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 0; // context size
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
@ -120,8 +118,7 @@ struct gpt_params {
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
// // sampling parameters
struct llama_sampling_params sparams;
struct gpt_sampler_params sparams;
std::string model = ""; // model path
std::string model_draft = ""; // draft model for speculative decoding
@ -185,7 +182,6 @@ struct gpt_params {
bool flash_attn = false; // flash attention
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
bool ignore_eos = false; // ignore generated EOS tokens
bool logits_all = false; // return logits for all tokens in the batch
bool use_mmap = true; // use mmap for faster loads
bool use_mlock = false; // use mlock to keep model in memory

View File

@ -1,539 +0,0 @@
#include "grammar-parser.h"
#include <cstdint>
#include <cwchar>
#include <string>
#include <utility>
#include <stdexcept>
#include <exception>
namespace grammar_parser {
// NOTE: assumes valid utf8 (but checks for overrun)
// copied from llama.cpp
static std::pair<uint32_t, const char *> decode_utf8(const char * src) {
static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
uint8_t first_byte = static_cast<uint8_t>(*src);
uint8_t highbits = first_byte >> 4;
int len = lookup[highbits];
uint8_t mask = (1 << (8 - len)) - 1;
uint32_t value = first_byte & mask;
const char * end = src + len; // may overrun!
const char * pos = src + 1;
for ( ; pos < end && *pos; pos++) {
value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
}
return std::make_pair(value, pos);
}
static uint32_t get_symbol_id(parse_state & state, const char * src, size_t len) {
uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
auto result = state.symbol_ids.emplace(std::string(src, len), next_id);
return result.first->second;
}
static uint32_t generate_symbol_id(parse_state & state, const std::string & base_name) {
uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
state.symbol_ids[base_name + '_' + std::to_string(next_id)] = next_id;
return next_id;
}
static void add_rule(
parse_state & state,
uint32_t rule_id,
const std::vector<llama_grammar_element> & rule) {
if (state.rules.size() <= rule_id) {
state.rules.resize(rule_id + 1);
}
state.rules[rule_id] = rule;
}
static bool is_digit_char(char c) {
return '0' <= c && c <= '9';
}
static bool is_word_char(char c) {
return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '-' || is_digit_char(c);
}
static std::pair<uint32_t, const char *> parse_hex(const char * src, int size) {
const char * pos = src;
const char * end = src + size;
uint32_t value = 0;
for ( ; pos < end && *pos; pos++) {
value <<= 4;
char c = *pos;
if ('a' <= c && c <= 'f') {
value += c - 'a' + 10;
} else if ('A' <= c && c <= 'F') {
value += c - 'A' + 10;
} else if ('0' <= c && c <= '9') {
value += c - '0';
} else {
break;
}
}
if (pos != end) {
throw std::runtime_error("expecting " + std::to_string(size) + " hex chars at " + src);
}
return std::make_pair(value, pos);
}
static const char * parse_space(const char * src, bool newline_ok) {
const char * pos = src;
while (*pos == ' ' || *pos == '\t' || *pos == '#' ||
(newline_ok && (*pos == '\r' || *pos == '\n'))) {
if (*pos == '#') {
while (*pos && *pos != '\r' && *pos != '\n') {
pos++;
}
} else {
pos++;
}
}
return pos;
}
static const char * parse_name(const char * src) {
const char * pos = src;
while (is_word_char(*pos)) {
pos++;
}
if (pos == src) {
throw std::runtime_error(std::string("expecting name at ") + src);
}
return pos;
}
static const char * parse_int(const char * src) {
const char * pos = src;
while (is_digit_char(*pos)) {
pos++;
}
if (pos == src) {
throw std::runtime_error(std::string("expecting integer at ") + src);
}
return pos;
}
static std::pair<uint32_t, const char *> parse_char(const char * src) {
if (*src == '\\') {
switch (src[1]) {
case 'x': return parse_hex(src + 2, 2);
case 'u': return parse_hex(src + 2, 4);
case 'U': return parse_hex(src + 2, 8);
case 't': return std::make_pair('\t', src + 2);
case 'r': return std::make_pair('\r', src + 2);
case 'n': return std::make_pair('\n', src + 2);
case '\\':
case '"':
case '[':
case ']':
return std::make_pair(src[1], src + 2);
default:
throw std::runtime_error(std::string("unknown escape at ") + src);
}
} else if (*src) {
return decode_utf8(src);
}
throw std::runtime_error("unexpected end of input");
}
const char * parse_alternates(
parse_state & state,
const char * src,
const std::string & rule_name,
uint32_t rule_id,
bool is_nested);
static const char * parse_sequence(
parse_state & state,
const char * src,
const std::string & rule_name,
std::vector<llama_grammar_element> & out_elements,
bool is_nested) {
size_t last_sym_start = out_elements.size();
const char * pos = src;
auto handle_repetitions = [&](int min_times, int max_times) {
if (last_sym_start == out_elements.size()) {
throw std::runtime_error(std::string("expecting preceding item to */+/?/{ at ") + pos);
}
// apply transformation to previous symbol (last_sym_start to end) according to
// the following rewrite rules:
// S{m,n} --> S S S (m times) S'(n-m)
// S'(x) ::= S S'(x-1) |
// (... n-m definitions of these S' rules ...)
// S'(1) ::= S |
// S{m,} --> S S S (m times) S'
// S' ::= S S' |
// S* --> S{0,}
// --> S' ::= S S' |
// S+ --> S{1,}
// --> S S'
// S' ::= S S' |
// S? --> S{0,1}
// --> S'
// S' ::= S |
std::vector<llama_grammar_element> previous_elements(out_elements.begin() + last_sym_start, out_elements.end());
if (min_times == 0) {
out_elements.resize(last_sym_start);
} else {
// Repeat the previous elements (min_times - 1) times
for (int i = 1; i < min_times; i++) {
out_elements.insert(out_elements.end(), previous_elements.begin(), previous_elements.end());
}
}
uint32_t last_rec_rule_id = 0;
auto n_opt = max_times < 0 ? 1 : max_times - min_times;
std::vector<llama_grammar_element> rec_rule(previous_elements);
for (int i = 0; i < n_opt; i++) {
rec_rule.resize(previous_elements.size());
uint32_t rec_rule_id = generate_symbol_id(state, rule_name);
if (i > 0 || max_times < 0) {
rec_rule.push_back({LLAMA_GRETYPE_RULE_REF, max_times < 0 ? rec_rule_id : last_rec_rule_id});
}
rec_rule.push_back({LLAMA_GRETYPE_ALT, 0});
rec_rule.push_back({LLAMA_GRETYPE_END, 0});
add_rule(state, rec_rule_id, rec_rule);
last_rec_rule_id = rec_rule_id;
}
if (n_opt > 0) {
out_elements.push_back({LLAMA_GRETYPE_RULE_REF, last_rec_rule_id});
}
};
while (*pos) {
if (*pos == '"') { // literal string
pos++;
last_sym_start = out_elements.size();
while (*pos != '"') {
if (!*pos) {
throw std::runtime_error("unexpected end of input");
}
auto char_pair = parse_char(pos);
pos = char_pair.second;
out_elements.push_back({LLAMA_GRETYPE_CHAR, char_pair.first});
}
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '[') { // char range(s)
pos++;
enum llama_gretype start_type = LLAMA_GRETYPE_CHAR;
if (*pos == '^') {
pos++;
start_type = LLAMA_GRETYPE_CHAR_NOT;
}
last_sym_start = out_elements.size();
while (*pos != ']') {
if (!*pos) {
throw std::runtime_error("unexpected end of input");
}
auto char_pair = parse_char(pos);
pos = char_pair.second;
enum llama_gretype type = last_sym_start < out_elements.size()
? LLAMA_GRETYPE_CHAR_ALT
: start_type;
out_elements.push_back({type, char_pair.first});
if (pos[0] == '-' && pos[1] != ']') {
if (!pos[1]) {
throw std::runtime_error("unexpected end of input");
}
auto endchar_pair = parse_char(pos + 1);
pos = endchar_pair.second;
out_elements.push_back({LLAMA_GRETYPE_CHAR_RNG_UPPER, endchar_pair.first});
}
}
pos = parse_space(pos + 1, is_nested);
} else if (is_word_char(*pos)) { // rule reference
const char * name_end = parse_name(pos);
uint32_t ref_rule_id = get_symbol_id(state, pos, name_end - pos);
pos = parse_space(name_end, is_nested);
last_sym_start = out_elements.size();
out_elements.push_back({LLAMA_GRETYPE_RULE_REF, ref_rule_id});
} else if (*pos == '(') { // grouping
// parse nested alternates into synthesized rule
pos = parse_space(pos + 1, true);
uint32_t sub_rule_id = generate_symbol_id(state, rule_name);
pos = parse_alternates(state, pos, rule_name, sub_rule_id, true);
last_sym_start = out_elements.size();
// output reference to synthesized rule
out_elements.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id});
if (*pos != ')') {
throw std::runtime_error(std::string("expecting ')' at ") + pos);
}
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '.') { // any char
last_sym_start = out_elements.size();
out_elements.push_back({LLAMA_GRETYPE_CHAR_ANY, 0});
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '*') {
pos = parse_space(pos + 1, is_nested);
handle_repetitions(0, -1);
} else if (*pos == '+') {
pos = parse_space(pos + 1, is_nested);
handle_repetitions(1, -1);
} else if (*pos == '?') {
pos = parse_space(pos + 1, is_nested);
handle_repetitions(0, 1);
} else if (*pos == '{') {
pos = parse_space(pos + 1, is_nested);
if (!is_digit_char(*pos)) {
throw std::runtime_error(std::string("expecting an int at ") + pos);
}
const char * int_end = parse_int(pos);
int min_times = std::stoul(std::string(pos, int_end - pos));
pos = parse_space(int_end, is_nested);
int max_times = -1;
if (*pos == '}') {
max_times = min_times;
pos = parse_space(pos + 1, is_nested);
} else if (*pos == ',') {
pos = parse_space(pos + 1, is_nested);
if (is_digit_char(*pos)) {
const char * int_end = parse_int(pos);
max_times = std::stoul(std::string(pos, int_end - pos));
pos = parse_space(int_end, is_nested);
}
if (*pos != '}') {
throw std::runtime_error(std::string("expecting '}' at ") + pos);
}
pos = parse_space(pos + 1, is_nested);
} else {
throw std::runtime_error(std::string("expecting ',' at ") + pos);
}
handle_repetitions(min_times, max_times);
} else {
break;
}
}
return pos;
}
const char * parse_alternates(
parse_state & state,
const char * src,
const std::string & rule_name,
uint32_t rule_id,
bool is_nested) {
std::vector<llama_grammar_element> rule;
const char * pos = parse_sequence(state, src, rule_name, rule, is_nested);
while (*pos == '|') {
rule.push_back({LLAMA_GRETYPE_ALT, 0});
pos = parse_space(pos + 1, true);
pos = parse_sequence(state, pos, rule_name, rule, is_nested);
}
rule.push_back({LLAMA_GRETYPE_END, 0});
add_rule(state, rule_id, rule);
return pos;
}
static const char * parse_rule(parse_state & state, const char * src) {
const char * name_end = parse_name(src);
const char * pos = parse_space(name_end, false);
size_t name_len = name_end - src;
uint32_t rule_id = get_symbol_id(state, src, name_len);
const std::string name(src, name_len);
if (!(pos[0] == ':' && pos[1] == ':' && pos[2] == '=')) {
throw std::runtime_error(std::string("expecting ::= at ") + pos);
}
pos = parse_space(pos + 3, true);
pos = parse_alternates(state, pos, name, rule_id, false);
if (*pos == '\r') {
pos += pos[1] == '\n' ? 2 : 1;
} else if (*pos == '\n') {
pos++;
} else if (*pos) {
throw std::runtime_error(std::string("expecting newline or end at ") + pos);
}
return parse_space(pos, true);
}
parse_state parse(const char * src) {
try {
parse_state state;
const char * pos = parse_space(src, true);
while (*pos) {
pos = parse_rule(state, pos);
}
// Validate the state to ensure that all rules are defined
for (const auto & rule : state.rules) {
if (rule.empty()) {
throw std::runtime_error("Undefined rule");
}
for (const auto & elem : rule) {
if (elem.type == LLAMA_GRETYPE_RULE_REF) {
// Ensure that the rule at that location exists
if (elem.value >= state.rules.size() || state.rules[elem.value].empty()) {
// Get the name of the rule that is missing
for (const auto & kv : state.symbol_ids) {
if (kv.second == elem.value) {
throw std::runtime_error("Undefined rule identifier '" + kv.first + "'");
}
}
}
}
}
}
return state;
} catch (const std::exception & err) {
fprintf(stderr, "%s: error parsing grammar: %s\n", __func__, err.what());
return parse_state();
}
}
static void print_grammar_char(FILE * file, uint32_t c) {
if (0x20 <= c && c <= 0x7f) {
fprintf(file, "%c", static_cast<char>(c));
} else {
// cop out of encoding UTF-8
fprintf(file, "<U+%04X>", c);
}
}
static bool is_char_element(llama_grammar_element elem) {
switch (elem.type) {
case LLAMA_GRETYPE_CHAR: return true;
case LLAMA_GRETYPE_CHAR_NOT: return true;
case LLAMA_GRETYPE_CHAR_ALT: return true;
case LLAMA_GRETYPE_CHAR_RNG_UPPER: return true;
case LLAMA_GRETYPE_CHAR_ANY: return true;
default: return false;
}
}
static void print_rule_binary(FILE * file, const std::vector<llama_grammar_element> & rule) {
for (auto elem : rule) {
switch (elem.type) {
case LLAMA_GRETYPE_END: fprintf(file, "END"); break;
case LLAMA_GRETYPE_ALT: fprintf(file, "ALT"); break;
case LLAMA_GRETYPE_RULE_REF: fprintf(file, "RULE_REF"); break;
case LLAMA_GRETYPE_CHAR: fprintf(file, "CHAR"); break;
case LLAMA_GRETYPE_CHAR_NOT: fprintf(file, "CHAR_NOT"); break;
case LLAMA_GRETYPE_CHAR_RNG_UPPER: fprintf(file, "CHAR_RNG_UPPER"); break;
case LLAMA_GRETYPE_CHAR_ALT: fprintf(file, "CHAR_ALT"); break;
case LLAMA_GRETYPE_CHAR_ANY: fprintf(file, "CHAR_ANY"); break;
}
switch (elem.type) {
case LLAMA_GRETYPE_END:
case LLAMA_GRETYPE_ALT:
case LLAMA_GRETYPE_RULE_REF:
fprintf(file, "(%u) ", elem.value);
break;
case LLAMA_GRETYPE_CHAR:
case LLAMA_GRETYPE_CHAR_NOT:
case LLAMA_GRETYPE_CHAR_RNG_UPPER:
case LLAMA_GRETYPE_CHAR_ALT:
case LLAMA_GRETYPE_CHAR_ANY:
fprintf(file, "(\"");
print_grammar_char(file, elem.value);
fprintf(file, "\") ");
break;
}
}
fprintf(file, "\n");
}
static void print_rule(
FILE * file,
uint32_t rule_id,
const std::vector<llama_grammar_element> & rule,
const std::map<uint32_t, std::string> & symbol_id_names) {
if (rule.empty() || rule.back().type != LLAMA_GRETYPE_END) {
throw std::runtime_error(
"malformed rule, does not end with LLAMA_GRETYPE_END: " + std::to_string(rule_id));
}
fprintf(file, "%s ::= ", symbol_id_names.at(rule_id).c_str());
for (size_t i = 0, end = rule.size() - 1; i < end; i++) {
llama_grammar_element elem = rule[i];
switch (elem.type) {
case LLAMA_GRETYPE_END:
throw std::runtime_error(
"unexpected end of rule: " + std::to_string(rule_id) + "," +
std::to_string(i));
case LLAMA_GRETYPE_ALT:
fprintf(file, "| ");
break;
case LLAMA_GRETYPE_RULE_REF:
fprintf(file, "%s ", symbol_id_names.at(elem.value).c_str());
break;
case LLAMA_GRETYPE_CHAR:
fprintf(file, "[");
print_grammar_char(file, elem.value);
break;
case LLAMA_GRETYPE_CHAR_NOT:
fprintf(file, "[^");
print_grammar_char(file, elem.value);
break;
case LLAMA_GRETYPE_CHAR_RNG_UPPER:
if (i == 0 || !is_char_element(rule[i - 1])) {
throw std::runtime_error(
"LLAMA_GRETYPE_CHAR_RNG_UPPER without preceding char: " +
std::to_string(rule_id) + "," + std::to_string(i));
}
fprintf(file, "-");
print_grammar_char(file, elem.value);
break;
case LLAMA_GRETYPE_CHAR_ALT:
if (i == 0 || !is_char_element(rule[i - 1])) {
throw std::runtime_error(
"LLAMA_GRETYPE_CHAR_ALT without preceding char: " +
std::to_string(rule_id) + "," + std::to_string(i));
}
print_grammar_char(file, elem.value);
break;
case LLAMA_GRETYPE_CHAR_ANY:
fprintf(file, ".");
break;
}
if (is_char_element(elem)) {
switch (rule[i + 1].type) {
case LLAMA_GRETYPE_CHAR_ALT:
case LLAMA_GRETYPE_CHAR_RNG_UPPER:
case LLAMA_GRETYPE_CHAR_ANY:
break;
default:
fprintf(file, "] ");
}
}
}
fprintf(file, "\n");
}
void print_grammar(FILE * file, const parse_state & state) {
try {
std::map<uint32_t, std::string> symbol_id_names;
for (const auto & kv : state.symbol_ids) {
symbol_id_names[kv.second] = kv.first;
}
for (size_t i = 0, end = state.rules.size(); i < end; i++) {
// fprintf(file, "%zu: ", i);
// print_rule_binary(file, state.rules[i]);
print_rule(file, uint32_t(i), state.rules[i], symbol_id_names);
// fprintf(file, "\n");
}
} catch (const std::exception & err) {
fprintf(stderr, "\n%s: error printing grammar: %s\n", __func__, err.what());
}
}
std::vector<const llama_grammar_element *> parse_state::c_rules() {
std::vector<const llama_grammar_element *> ret;
ret.reserve(rules.size());
for (const auto & rule : rules) {
ret.push_back(rule.data());
}
return ret;
}
}

View File

@ -1,29 +0,0 @@
// Implements a parser for an extended Backus-Naur form (BNF), producing the
// binary context-free grammar format specified by llama.h. Supports character
// ranges, grouping, and repetition operators. As an example, a grammar for
// arithmetic might look like:
//
// root ::= expr
// expr ::= term ([-+*/] term)*
// term ::= num | "(" space expr ")" space
// num ::= [0-9]+ space
// space ::= [ \t\n]*
#pragma once
#include "llama.h"
#include <vector>
#include <map>
#include <cstdint>
#include <string>
namespace grammar_parser {
struct parse_state {
std::map<std::string, uint32_t> symbol_ids;
std::vector<std::vector<llama_grammar_element>> rules;
std::vector<const llama_grammar_element *> c_rules();
};
parse_state parse(const char * src);
void print_grammar(FILE * file, const parse_state & state);
}

View File

@ -1,395 +1,116 @@
#define LLAMA_API_INTERNAL
#include "sampling.h"
#include <random>
struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params) {
struct llama_sampling_context * result = new llama_sampling_context();
#include "common.h"
result->params = params;
result->grammar = nullptr;
// the ring buffer works similarly to std::deque, but with a fixed capacity
// TODO: deduplicate with llama-impl.h
template<typename T>
struct ring_buffer {
ring_buffer(size_t cap) : capacity(cap), data(cap) {}
// if there is a grammar, parse it
if (!params.grammar.empty()) {
result->parsed_grammar = grammar_parser::parse(params.grammar.c_str());
// will be empty (default) if there are parse errors
if (result->parsed_grammar.rules.empty()) {
fprintf(stderr, "%s: failed to parse grammar\n", __func__);
delete result;
return nullptr;
T & front() {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[first];
}
// Ensure that there is a "root" node.
if (result->parsed_grammar.symbol_ids.find("root") == result->parsed_grammar.symbol_ids.end()) {
fprintf(stderr, "%s: grammar does not contain a 'root' symbol\n", __func__);
delete result;
return nullptr;
const T & front() const {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[first];
}
std::vector<const llama_grammar_element *> grammar_rules(result->parsed_grammar.c_rules());
struct llama_grammar * grammar = llama_grammar_init(
grammar_rules.data(),
grammar_rules.size(), result->parsed_grammar.symbol_ids.at("root"));
if (grammar == nullptr) {
throw std::runtime_error("Failed to initialize llama_grammar");
T & back() {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
result->grammar = grammar;
return data[pos];
}
result->prev.resize(params.n_prev);
const T & back() const {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[pos];
}
result->n_valid = 0;
void push_back(const T & value) {
if (sz == capacity) {
// advance the start when buffer is full
first = (first + 1) % capacity;
} else {
sz++;
}
data[pos] = value;
pos = (pos + 1) % capacity;
}
llama_sampling_set_rng_seed(result, params.seed);
T pop_front() {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
T value = data[first];
first = (first + 1) % capacity;
sz--;
return value;
}
const T & rat(size_t i) const {
if (i >= sz) {
throw std::runtime_error("ring buffer: index out of bounds");
}
return data[(first + sz - i - 1) % capacity];
}
std::vector<T> to_vector() const {
std::vector<T> result;
result.reserve(sz);
for (size_t i = 0; i < sz; i++) {
result.push_back(data[(first + i) % capacity]);
}
return result;
}
void llama_sampling_free(struct llama_sampling_context * ctx) {
if (ctx->grammar != NULL) {
llama_grammar_free(ctx->grammar);
void clear() {
// here only reset the status of the buffer
sz = 0;
first = 0;
pos = 0;
}
delete ctx;
bool empty() const {
return sz == 0;
}
void llama_sampling_reset(llama_sampling_context * ctx) {
if (ctx->grammar != NULL) {
llama_grammar_free(ctx->grammar);
ctx->grammar = NULL;
size_t size() const {
return sz;
}
if (!ctx->parsed_grammar.rules.empty()) {
std::vector<const llama_grammar_element *> grammar_rules(ctx->parsed_grammar.c_rules());
struct llama_grammar * grammar = llama_grammar_init(
grammar_rules.data(),
grammar_rules.size(), ctx->parsed_grammar.symbol_ids.at("root"));
if (grammar == nullptr) {
throw std::runtime_error("Failed to initialize llama_grammar");
}
ctx->grammar = grammar;
}
std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
ctx->cur.clear();
ctx->n_valid = 0;
}
void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed) {
if (seed == LLAMA_DEFAULT_SEED) {
seed = std::random_device{}();
}
ctx->rng.seed(seed);
}
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) {
if (dst->grammar) {
llama_grammar_free(dst->grammar);
dst->grammar = nullptr;
}
if (src->grammar) {
dst->grammar = llama_grammar_copy(src->grammar);
}
dst->prev = src->prev;
}
llama_token llama_sampling_last(llama_sampling_context * ctx) {
return ctx->prev.back();
}
std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n) {
const int size = ctx_sampling->prev.size();
n = std::min(n, size);
std::string result;
for (int i = size - n; i < size; i++) {
result += llama_token_to_piece(ctx_main, ctx_sampling->prev[i]);
}
return result;
}
std::string llama_sampling_print(const llama_sampling_params & params) {
char result[1024];
snprintf(result, sizeof(result),
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
"\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n"
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present,
params.top_k, params.tfs_z, params.top_p, params.min_p, params.typical_p, params.temp,
params.mirostat, params.mirostat_eta, params.mirostat_tau);
return std::string(result);
}
std::string llama_sampling_order_print(const llama_sampling_params & params) {
std::string result = "CFG -> Penalties ";
if (params.mirostat == 0) {
for (auto sampler_type : params.samplers_sequence) {
const auto sampler_type_name = llama_sampling_type_to_str(sampler_type);
if (!sampler_type_name.empty()) {
result += "-> " + sampler_type_name + " ";
}
}
} else {
result += "-> mirostat ";
}
return result;
}
std::string llama_sampling_type_to_str(llama_sampler_type sampler_type) {
switch (sampler_type) {
case llama_sampler_type::TOP_K: return "top_k";
case llama_sampler_type::TFS_Z: return "tfs_z";
case llama_sampler_type::TYPICAL_P: return "typical_p";
case llama_sampler_type::TOP_P: return "top_p";
case llama_sampler_type::MIN_P: return "min_p";
case llama_sampler_type::TEMPERATURE: return "temperature";
default : return "";
}
}
std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
std::unordered_map<std::string, llama_sampler_type> sampler_canonical_name_map {
{"top_k", llama_sampler_type::TOP_K},
{"top_p", llama_sampler_type::TOP_P},
{"typical_p", llama_sampler_type::TYPICAL_P},
{"min_p", llama_sampler_type::MIN_P},
{"tfs_z", llama_sampler_type::TFS_Z},
{"temperature", llama_sampler_type::TEMPERATURE}
size_t capacity = 0;
size_t sz = 0;
size_t first = 0;
size_t pos = 0;
std::vector<T> data;
};
// since samplers names are written multiple ways
// make it ready for both system names and input names
std::unordered_map<std::string, llama_sampler_type> sampler_alt_name_map {
{"top-k", llama_sampler_type::TOP_K},
{"top-p", llama_sampler_type::TOP_P},
{"nucleus", llama_sampler_type::TOP_P},
{"typical-p", llama_sampler_type::TYPICAL_P},
{"typical", llama_sampler_type::TYPICAL_P},
{"min-p", llama_sampler_type::MIN_P},
{"tfs-z", llama_sampler_type::TFS_Z},
{"tfs", llama_sampler_type::TFS_Z},
{"temp", llama_sampler_type::TEMPERATURE}
};
struct gpt_sampler {
gpt_sampler_params params;
std::vector<llama_sampler_type> sampler_types;
sampler_types.reserve(names.size());
for (const auto & name : names)
{
auto sampler_item = sampler_canonical_name_map.find(name);
if (sampler_item != sampler_canonical_name_map.end())
{
sampler_types.push_back(sampler_item->second);
}
else
{
if (allow_alt_names)
{
sampler_item = sampler_alt_name_map.find(name);
if (sampler_item != sampler_alt_name_map.end())
{
sampler_types.push_back(sampler_item->second);
}
}
}
}
return sampler_types;
}
struct llama_sampler * grmr;
struct llama_sampler * chain;
std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::string & names_string) {
std::unordered_map<char, llama_sampler_type> sampler_name_map {
{'k', llama_sampler_type::TOP_K},
{'p', llama_sampler_type::TOP_P},
{'y', llama_sampler_type::TYPICAL_P},
{'m', llama_sampler_type::MIN_P},
{'f', llama_sampler_type::TFS_Z},
{'t', llama_sampler_type::TEMPERATURE}
};
ring_buffer<llama_token> prev;
std::vector<llama_sampler_type> sampler_types;
sampler_types.reserve(names_string.size());
for (const auto & c : names_string) {
const auto sampler_item = sampler_name_map.find(c);
if (sampler_item != sampler_name_map.end()) {
sampler_types.push_back(sampler_item->second);
}
}
return sampler_types;
}
std::vector<llama_token_data> cur;
// no reasons to expose this function in header
static void sampler_queue(
struct llama_context * ctx_main,
const llama_sampling_params & params,
llama_token_data_array & cur_p,
size_t min_keep) {
const float temp = params.temp;
const float dynatemp_range = params.dynatemp_range;
const float dynatemp_exponent = params.dynatemp_exponent;
const int32_t top_k = params.top_k;
const float top_p = params.top_p;
const float min_p = params.min_p;
const float tfs_z = params.tfs_z;
const float typical_p = params.typical_p;
const std::vector<llama_sampler_type> & samplers_sequence = params.samplers_sequence;
llama_token_data_array cur_p;
for (auto sampler_type : samplers_sequence) {
switch (sampler_type) {
case llama_sampler_type::TOP_K : llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep); break;
case llama_sampler_type::TFS_Z : llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep); break;
case llama_sampler_type::TYPICAL_P: llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
case llama_sampler_type::TOP_P : llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break;
case llama_sampler_type::MIN_P : llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break;
case llama_sampler_type::TEMPERATURE:
if (dynatemp_range > 0) {
float dynatemp_min = std::max(0.0f, temp - dynatemp_range);
float dynatemp_max = std::max(0.0f, temp + dynatemp_range);
llama_sample_entropy(ctx_main, &cur_p, dynatemp_min, dynatemp_max, dynatemp_exponent);
} else {
llama_sample_temp(ctx_main, &cur_p, temp);
}
break;
default : break;
}
}
}
void set_logits(struct llama_context * ctx, int idx) {
const auto * logits = llama_get_logits_ith(ctx, idx);
static llama_token llama_sampling_sample_impl(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
const int idx,
bool is_resampling) {
const llama_sampling_params & params = ctx_sampling->params;
const float temp = params.temp;
const int mirostat = params.mirostat;
const float mirostat_tau = params.mirostat_tau;
const float mirostat_eta = params.mirostat_eta;
std::vector<float> original_logits;
auto cur_p = llama_sampling_prepare(ctx_sampling, ctx_main, ctx_cfg, idx, /* apply_grammar= */ is_resampling, &original_logits);
if (ctx_sampling->grammar != NULL && !is_resampling) {
GGML_ASSERT(!original_logits.empty());
}
llama_token id = 0;
if (temp < 0.0) {
// greedy sampling, with probs
llama_sample_softmax(ctx_main, &cur_p);
id = cur_p.data[0].id;
} else if (temp == 0.0) {
// greedy sampling, no probs
id = llama_sample_token_greedy(ctx_main, &cur_p);
} else {
if (mirostat == 1) {
const int mirostat_m = 100;
llama_sample_temp(ctx_main, &cur_p, temp);
id = llama_sample_token_mirostat(ctx_main, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_sampling->mirostat_mu);
} else if (mirostat == 2) {
llama_sample_temp(ctx_main, &cur_p, temp);
id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
} else {
// temperature sampling
size_t min_keep = std::max(1, params.min_keep);
sampler_queue(ctx_main, params, cur_p, min_keep);
id = llama_sample_token_with_rng(ctx_main, &cur_p, ctx_sampling->rng);
//{
// const int n_top = 10;
// LOG("top %d candidates:\n", n_top);
// for (int i = 0; i < n_top; i++) {
// const llama_token id = cur_p.data[i].id;
// (void)id; // To avoid a warning that id is unused when logging is disabled.
// LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx_main, id).c_str(), cur_p.data[i].p);
// }
//}
//LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
}
}
if (ctx_sampling->grammar != NULL && !is_resampling) {
// Get a pointer to the logits
float * logits = llama_get_logits_ith(ctx_main, idx);
// Create an array with a single token data element for the sampled id
llama_token_data single_token_data = {id, logits[id], 0.0f};
llama_token_data_array single_token_data_array = { &single_token_data, 1, false };
// Apply grammar constraints to the single token
llama_grammar_sample(ctx_sampling->grammar, ctx_main, &single_token_data_array);
// Check if the token is valid according to the grammar by seeing if its logit has been set to -INFINITY
bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
// If the token is not valid according to the grammar, perform resampling
if (!is_valid) {
LOG("Resampling because token %d: '%s' does not meet grammar rules\n", id, llama_token_to_piece(ctx_main, id).c_str());
// Restore logits from the copy
std::copy(original_logits.begin(), original_logits.end(), logits);
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, /* is_resampling= */ true);
}
}
ctx_sampling->n_valid = temp == 0.0f ? 0 : cur_p.size;
return id;
}
static llama_token_data_array llama_sampling_prepare_impl(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
const int idx,
bool apply_grammar,
std::vector<float> * original_logits) {
const llama_sampling_params & params = ctx_sampling->params;
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
const float penalty_repeat = params.penalty_repeat;
const float penalty_freq = params.penalty_freq;
const float penalty_present = params.penalty_present;
const bool penalize_nl = params.penalize_nl;
auto & prev = ctx_sampling->prev;
auto & cur = ctx_sampling->cur;
// Get a pointer to the logits
float * logits = llama_get_logits_ith(ctx_main, idx);
if (ctx_sampling->grammar != NULL && !apply_grammar) {
GGML_ASSERT(original_logits != NULL);
// Only make a copy of the original logits if we are not applying grammar checks, not sure if I actually have to do this.
*original_logits = {logits, logits + n_vocab};
}
// apply params.logit_bias map
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
logits[it->first] += it->second;
}
if (ctx_cfg) {
float * logits_guidance = llama_get_logits_ith(ctx_cfg, idx);
llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale);
}
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
cur.resize(n_vocab);
@ -397,64 +118,326 @@ static llama_token_data_array llama_sampling_prepare_impl(
cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
}
llama_token_data_array cur_p = { cur.data(), cur.size(), false };
cur_p = { cur.data(), cur.size(), -1, false };
}
};
// apply penalties
const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
if (penalty_tokens_used_size) {
const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))];
std::string gpt_sampler_params::print() const {
char result[1024];
llama_sample_repetition_penalties(ctx_main, &cur_p,
penalty_tokens.data() + penalty_tokens.size() - penalty_tokens_used_size,
penalty_tokens_used_size, penalty_repeat, penalty_freq, penalty_present);
snprintf(result, sizeof(result),
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
"\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n"
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
top_k, tfs_z, top_p, min_p, typ_p, temp,
mirostat, mirostat_eta, mirostat_tau);
if (!penalize_nl) {
for (size_t idx = 0; idx < cur_p.size; idx++) {
if (cur_p.data[idx].id == llama_token_nl(llama_get_model(ctx_main))) {
cur_p.data[idx].logit = nl_logit;
return std::string(result);
}
struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const struct gpt_sampler_params & params) {
llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
lparams.no_perf = false; // TODO: control via params
auto * result = new gpt_sampler {
/* .params = */ params,
/* .grmr = */ llama_sampler_init_grammar(model, params.grammar.c_str(), "root"),
/* .chain = */ llama_sampler_chain_init(lparams),
/* .prev = */ ring_buffer<llama_token>(params.n_prev),
/* .cur = */ {},
/* .cur_p = */ {},
};
llama_sampler_chain_add(result->chain,
llama_sampler_init_logit_bias(
llama_n_vocab(model),
params.logit_bias.size(),
params.logit_bias.data()));
llama_sampler_chain_add(result->chain,
llama_sampler_init_penalties(
llama_n_vocab (model),
llama_token_eos(model),
llama_token_nl (model),
params.penalty_last_n,
params.penalty_repeat,
params.penalty_freq,
params.penalty_present,
params.penalize_nl,
params.ignore_eos));
if (params.temp > 0.0f) {
if (params.mirostat == 0) {
for (const auto & cnstr : params.samplers) {
switch (cnstr) {
case GPT_SAMPLER_TYPE_TOP_K:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
break;
case GPT_SAMPLER_TYPE_TOP_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
break;
case GPT_SAMPLER_TYPE_MIN_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
break;
case GPT_SAMPLER_TYPE_TFS_Z:
llama_sampler_chain_add(result->chain, llama_sampler_init_tail_free(params.tfs_z, params.min_keep));
break;
case GPT_SAMPLER_TYPE_TYPICAL_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
break;
case GPT_SAMPLER_TYPE_TEMPERATURE:
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
break;
default:
GGML_ASSERT(false && "unknown sampler type");
}
}
llama_sampler_chain_add(result->chain, llama_sampler_init_softmax());
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
} else if (params.mirostat == 1) {
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_n_vocab(model), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
} else if (params.mirostat == 2) {
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
} else {
GGML_ASSERT(false && "unknown mirostat version");
}
} else {
llama_sampler_chain_add(result->chain, llama_sampler_init_softmax());
llama_sampler_chain_add(result->chain, llama_sampler_init_greedy());
}
return result;
}
void gpt_sampler_free(struct gpt_sampler * gsmpl) {
if (gsmpl) {
llama_sampler_free(gsmpl->grmr);
llama_sampler_free(gsmpl->chain);
delete gsmpl;
}
}
void gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool accept_grammar) {
if (accept_grammar) {
llama_sampler_accept(gsmpl->grmr, token);
}
llama_sampler_accept(gsmpl->chain, token);
gsmpl->prev.push_back(token);
}
void gpt_sampler_reset(struct gpt_sampler * gsmpl) {
llama_sampler_reset(gsmpl->grmr);
llama_sampler_reset(gsmpl->chain);
}
struct gpt_sampler * gpt_sampler_clone(gpt_sampler * gsmpl) {
return new gpt_sampler {
/* .params = */ gsmpl->params,
/* .grmr = */ llama_sampler_clone(gsmpl->grmr),
/* .chain = */ llama_sampler_clone(gsmpl->chain),
/* .prev = */ gsmpl->prev,
/* .cur = */ gsmpl->cur,
/* .cur_p = */ gsmpl->cur_p,
};
}
void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler * gsmpl) {
// TODO: measure grammar performance
if (gsmpl) {
llama_perf_print(gsmpl->chain, LLAMA_PERF_TYPE_SAMPLER_CHAIN);
}
if (ctx) {
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
}
}
llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
gsmpl->set_logits(ctx, idx);
auto & grmr = gsmpl->grmr;
auto & chain = gsmpl->chain;
auto & cur_p = gsmpl->cur_p; // initialized by set_logits
if (grammar_first) {
llama_sampler_apply(grmr, &cur_p);
}
llama_sampler_apply(chain, &cur_p);
GGML_ASSERT(cur_p.selected != -1 && "no selected token during sampling - check your sampling configuration");
const llama_token id = cur_p.data[cur_p.selected].id;
if (grammar_first) {
return id;
}
// check if it the sampled token fits the grammar
{
llama_token_data single_token_data = { id, 1.0f, 0.0f };
llama_token_data_array single_token_data_array = { &single_token_data, 1, -1, false };
llama_sampler_apply(grmr, &single_token_data_array);
const bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
if (is_valid) {
return id;
}
}
// resampling:
// if the token is not valid, sample again, but first apply the grammar sampler and then the sampling chain
gsmpl->set_logits(ctx, idx);
llama_sampler_apply(grmr, &cur_p);
llama_sampler_apply(chain, &cur_p);
GGML_ASSERT(cur_p.selected != -1 && "no selected token during re-sampling - check your sampling configuration");
return cur_p.data[cur_p.selected].id;
}
// helpers
llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl) {
return &gsmpl->cur_p;
}
llama_token gpt_sampler_last(const struct gpt_sampler * gsmpl) {
return gsmpl->prev.rat(0);
}
std::string gpt_sampler_print(const struct gpt_sampler * gsmpl) {
std::string result = "\tlogits ";
for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) {
const auto * smpl = llama_sampler_chain_get(gsmpl->chain, i);
result += std::string("-> ") + llama_sampler_name(smpl) + " ";
}
return result;
}
std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx_main, int n) {
n = std::min(n, (int) gsmpl->prev.size());
if (n <= 0) {
return "";
}
std::string result;
result.reserve(8*n); // 8 is the average length of a token [citation needed], TODO: compute this from the vocab
for (int i = n - 1; i >= 0; i--) {
const llama_token id = gsmpl->prev.rat(i);
GGML_ASSERT(id != LLAMA_TOKEN_NULL && "null token in the sampling history - should not happen");
result += llama_token_to_piece(ctx_main, id);
}
return result;
}
char gpt_sampler_type_to_chr(enum gpt_sampler_type cnstr) {
switch (cnstr) {
case GPT_SAMPLER_TYPE_TOP_K: return 'k';
case GPT_SAMPLER_TYPE_TFS_Z: return 'f';
case GPT_SAMPLER_TYPE_TYPICAL_P: return 'y';
case GPT_SAMPLER_TYPE_TOP_P: return 'p';
case GPT_SAMPLER_TYPE_MIN_P: return 'm';
case GPT_SAMPLER_TYPE_TEMPERATURE: return 't';
default : return '?';
}
}
std::string gpt_sampler_type_to_str(enum gpt_sampler_type cnstr) {
switch (cnstr) {
case GPT_SAMPLER_TYPE_TOP_K: return "top_k";
case GPT_SAMPLER_TYPE_TFS_Z: return "tfs_z";
case GPT_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
case GPT_SAMPLER_TYPE_TOP_P: return "top_p";
case GPT_SAMPLER_TYPE_MIN_P: return "min_p";
case GPT_SAMPLER_TYPE_TEMPERATURE: return "temperature";
default : return "";
}
}
std::vector<gpt_sampler_type> gpt_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
std::unordered_map<std::string, gpt_sampler_type> sampler_canonical_name_map {
{ "top_k", GPT_SAMPLER_TYPE_TOP_K },
{ "top_p", GPT_SAMPLER_TYPE_TOP_P },
{ "typ_p", GPT_SAMPLER_TYPE_TYPICAL_P },
{ "min_p", GPT_SAMPLER_TYPE_MIN_P },
{ "tfs_z", GPT_SAMPLER_TYPE_TFS_Z },
{ "temperature", GPT_SAMPLER_TYPE_TEMPERATURE },
};
// since samplers names are written multiple ways
// make it ready for both system names and input names
std::unordered_map<std::string, gpt_sampler_type> sampler_alt_name_map {
{ "top-k", GPT_SAMPLER_TYPE_TOP_K },
{ "top-p", GPT_SAMPLER_TYPE_TOP_P },
{ "nucleus", GPT_SAMPLER_TYPE_TOP_P },
{ "typical-p", GPT_SAMPLER_TYPE_TYPICAL_P },
{ "typical", GPT_SAMPLER_TYPE_TYPICAL_P },
{ "typ-p", GPT_SAMPLER_TYPE_TYPICAL_P },
{ "typ", GPT_SAMPLER_TYPE_TYPICAL_P },
{ "min-p", GPT_SAMPLER_TYPE_MIN_P },
{ "tfs-z", GPT_SAMPLER_TYPE_TFS_Z },
{ "tfs", GPT_SAMPLER_TYPE_TFS_Z },
{ "temp", GPT_SAMPLER_TYPE_TEMPERATURE },
};
std::vector<gpt_sampler_type> samplers;
samplers.reserve(names.size());
for (const auto & name : names) {
auto sampler = sampler_canonical_name_map.find(name);
if (sampler != sampler_canonical_name_map.end()) {
samplers.push_back(sampler->second);
} else {
if (allow_alt_names) {
sampler = sampler_alt_name_map.find(name);
if (sampler != sampler_alt_name_map.end()) {
samplers.push_back(sampler->second);
}
}
}
}
// apply grammar checks before sampling logic
if (apply_grammar && ctx_sampling->grammar != NULL) {
llama_grammar_sample(ctx_sampling->grammar, ctx_main, &cur_p);
return samplers;
}
return cur_p;
std::vector<gpt_sampler_type> gpt_sampler_types_from_chars(const std::string & chars) {
std::unordered_map<char, gpt_sampler_type> sampler_name_map {
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TOP_K), GPT_SAMPLER_TYPE_TOP_K },
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TFS_Z), GPT_SAMPLER_TYPE_TFS_Z },
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TYPICAL_P), GPT_SAMPLER_TYPE_TYPICAL_P },
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TOP_P), GPT_SAMPLER_TYPE_TOP_P },
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_MIN_P), GPT_SAMPLER_TYPE_MIN_P },
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TEMPERATURE), GPT_SAMPLER_TYPE_TEMPERATURE }
};
std::vector<gpt_sampler_type> samplers;
samplers.reserve(chars.size());
for (const auto & c : chars) {
const auto sampler = sampler_name_map.find(c);
if (sampler != sampler_name_map.end()) {
samplers.push_back(sampler->second);
}
}
llama_token llama_sampling_sample(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
const int idx) {
// Call the implementation function with is_resampling set to false by default
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, /* is_resampling= */ false);
}
llama_token_data_array llama_sampling_prepare(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
const int idx,
bool apply_grammar,
std::vector<float> * original_logits) {
return llama_sampling_prepare_impl(ctx_sampling,ctx_main, ctx_cfg, idx, apply_grammar, original_logits);
}
void llama_sampling_accept(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
llama_token id,
bool apply_grammar) {
ctx_sampling->prev.erase(ctx_sampling->prev.begin());
ctx_sampling->prev.push_back(id);
if (ctx_sampling->grammar != NULL && apply_grammar) {
llama_grammar_accept_token(ctx_sampling->grammar, ctx_main, id);
}
return samplers;
}

View File

@ -2,25 +2,23 @@
#include "llama.h"
#include "grammar-parser.h"
#include <random>
#include <string>
#include <unordered_map>
#include <vector>
// sampler types
enum class llama_sampler_type : char {
TOP_K = 'k',
TOP_P = 'p',
MIN_P = 'm',
TFS_Z = 'f',
TYPICAL_P = 'y',
TEMPERATURE = 't'
enum gpt_sampler_type {
GPT_SAMPLER_TYPE_NONE = 0,
GPT_SAMPLER_TYPE_TOP_K = 1,
GPT_SAMPLER_TYPE_TOP_P = 2,
GPT_SAMPLER_TYPE_MIN_P = 3,
GPT_SAMPLER_TYPE_TFS_Z = 4,
GPT_SAMPLER_TYPE_TYPICAL_P = 5,
GPT_SAMPLER_TYPE_TEMPERATURE = 6,
};
// sampling parameters
typedef struct llama_sampling_params {
struct gpt_sampler_params {
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
int32_t n_prev = 64; // number of previous tokens to remember
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
@ -28,7 +26,7 @@ typedef struct llama_sampling_params {
float top_p = 0.95f; // 1.0 = disabled
float min_p = 0.05f; // 0.0 = disabled
float tfs_z = 1.00f; // 1.0 = disabled
float typical_p = 1.00f; // 1.0 = disabled
float typ_p = 1.00f; // typical_p, 1.0 = disabled
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
float dynatemp_range = 0.00f; // 0.0 = disabled
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
@ -40,121 +38,94 @@ typedef struct llama_sampling_params {
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
bool penalize_nl = false; // consider newlines as a repeatable token
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampling_context
bool ignore_eos = false;
std::vector<llama_sampler_type> samplers_sequence = {
llama_sampler_type::TOP_K,
llama_sampler_type::TFS_Z,
llama_sampler_type::TYPICAL_P,
llama_sampler_type::TOP_P,
llama_sampler_type::MIN_P,
llama_sampler_type::TEMPERATURE
std::vector<enum gpt_sampler_type> samplers = {
GPT_SAMPLER_TYPE_TOP_K,
GPT_SAMPLER_TYPE_TFS_Z,
GPT_SAMPLER_TYPE_TYPICAL_P,
GPT_SAMPLER_TYPE_TOP_P,
GPT_SAMPLER_TYPE_MIN_P,
GPT_SAMPLER_TYPE_TEMPERATURE
};
std::string grammar; // optional BNF-like grammar to constrain sampling
// Classifier-Free Guidance
// https://arxiv.org/abs/2306.17806
std::string cfg_negative_prompt; // string to help guidance
float cfg_scale = 1.f; // how strong is guidance
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
std::vector<llama_token> penalty_prompt_tokens;
bool use_penalty_prompt_tokens = false;
} llama_sampling_params;
// general sampler context
// TODO: move to llama.h
struct llama_sampling_context {
// parameters that will be used for sampling
llama_sampling_params params;
// mirostat sampler state
float mirostat_mu;
llama_grammar * grammar;
// internal
grammar_parser::parse_state parsed_grammar;
// TODO: replace with ring-buffer
std::vector<llama_token> prev;
std::vector<llama_token_data> cur;
size_t n_valid; // Number of correct top tokens with correct probabilities.
std::mt19937 rng;
// print the parameters into a string
std::string print() const;
};
#include "common.h"
// Create a new sampling context instance.
struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params);
void llama_sampling_free(struct llama_sampling_context * ctx);
// Reset the sampler context
// - clear prev tokens
// - reset grammar
void llama_sampling_reset(llama_sampling_context * ctx);
// Set the sampler seed
void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed);
// Copy the sampler context
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst);
// Get the last sampled token
llama_token llama_sampling_last(llama_sampling_context * ctx);
// Get a string representation of the last sampled tokens
std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n);
// Print sampling parameters into a string
std::string llama_sampling_print(const llama_sampling_params & params);
// Print sampling order into a string
std::string llama_sampling_order_print(const llama_sampling_params & params);
std::string llama_sampling_type_to_str(llama_sampler_type sampler_type);
std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::string & names_string);
// this is a common sampling function used across the examples for convenience
// it can serve as a starting point for implementing your own sampling function
// Note: When using multiple sequences, it is the caller's responsibility to call
// llama_sampling_reset when a sequence ends
// gpt_sampler extends llama_sampler with additional functionality:
//
// required:
// - ctx_main: context to use for sampling
// - ctx_sampling: sampling-specific context
// - grammar support
// - custom sampler logic based on the parameters
// - history of the last accepted tokens
// - performance metrics
//
// optional:
// - ctx_cfg: context to use for classifier-free guidance
// - idx: sample from llama_get_logits_ith(ctx, idx)
// This goal is to have a common implementation of the sampling logic shared across the examples.
// For example, depending on the temperature, the sampling chain can be very simple (greedy) or more
// complex (top-k, top-p, etc).
//
// returns:
// - token: sampled token
// - candidates: vector of candidate tokens
// Another example is related to the grammar. In general, the grammar constraints applied on the full
// vocabulary can be very taxing. To improve performance, the grammar can be applied only to the sampled
// token in order to verify if it fits the grammar. And only if the token doesn't fit the grammar, the
// grammar constraints are applied to the full vocabulary and the token is resampled.
//
// The gpt_sampler also maintains a container with the last accepted tokens. In the future, this can
// be moved into the core llama library.
//
// For convenience, the gpt_sampler also maintains a container with the current candidate tokens.
// This can be used to access the probabilities of the rest of the non-sampled tokens.
//
// TODO: measure grammar performance
//
llama_token llama_sampling_sample(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
int idx = -1);
// Prepares and adjusts the set of token candidates for sampling based on penalties, biases, and sampling parameters.
llama_token_data_array llama_sampling_prepare(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
int idx = 0,
bool apply_grammar = true,
std::vector<float> * original_logits = nullptr);
struct gpt_sampler;
void llama_sampling_accept(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
llama_token id,
bool apply_grammar);
// llama_sampler API overloads
struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const struct gpt_sampler_params & params);
void gpt_sampler_free(struct gpt_sampler * gsmpl);
// if accept_grammar is true, the token is accepted both by the sampling chain and the grammar
void gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool accept_grammar);
void gpt_sampler_reset (struct gpt_sampler * gsmpl);
struct gpt_sampler * gpt_sampler_clone (struct gpt_sampler * gsmpl);
// arguments can be nullptr to skip printing
void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler * gsmpl);
// extended sampling implementation:
//
// - set logits
// - apply the configured sampler chain
// - check if the token fits the grammar (if any)
// - if not: resample by first applying the grammar constraints and then sampling again (slower path)
//
// if grammar_first is true, the grammar is applied before the samplers (slower)
// useful in cases where all the resulting candidates (not just the sampled one) must fit the grammar
//
llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
// helpers
// access the internal list of current candidate tokens
llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl);
// get the last accepted token
llama_token gpt_sampler_last(const struct gpt_sampler * gsmpl);
// print the sampler chain into a string
std::string gpt_sampler_print(const struct gpt_sampler * gsmpl);
// get a string representation of the last accepted tokens
std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx, int n);
char gpt_sampler_type_to_chr(enum gpt_sampler_type cnstr);
std::string gpt_sampler_type_to_str(enum gpt_sampler_type cnstr);
std::vector<enum gpt_sampler_type> gpt_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
std::vector<enum gpt_sampler_type> gpt_sampler_types_from_chars(const std::string & chars);

View File

@ -210,7 +210,8 @@ int main(int argc, char ** argv) {
}
}
llama_print_timings(ctx);
LOG_TEE("\n");
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
llama_batch_free(batch);

View File

@ -27,7 +27,6 @@ guard let model = llama_load_model_from_file(modelPath.cString(using: .utf8), mo
print("Failed to load model")
exit(1)
}
defer {
llama_free_model(model)
}
@ -37,7 +36,6 @@ var tokens = tokenize(text: prompt, add_bos: true)
let n_kv_req = UInt32(tokens.count) + UInt32((n_len - Int(tokens.count)) * n_parallel)
var context_params = llama_context_default_params()
context_params.seed = 1234
context_params.n_ctx = n_kv_req
context_params.n_batch = UInt32(max(n_len, n_parallel))
context_params.n_threads = 8
@ -48,11 +46,26 @@ guard context != nil else {
print("Failed to initialize context")
exit(1)
}
defer {
llama_free(context)
}
var sparams = llama_sampler_chain_default_params()
let smpl = llama_sampler_chain_init(sparams)
guard smpl != nil else {
print("Failed to initialize sampling")
exit(1)
}
defer {
llama_sampler_free(smpl)
}
llama_sampler_chain_add(smpl, llama_sampler_init_top_k(40));
llama_sampler_chain_add(smpl, llama_sampler_init_top_p(0.9, 1));
llama_sampler_chain_add(smpl, llama_sampler_init_temp (0.4));
llama_sampler_chain_add(smpl, llama_sampler_init_dist (1234));
let n_ctx = llama_n_ctx(context)
print("\nn_len = \(n_len), n_ctx = \(n_ctx), n_batch = \(context_params.n_batch), n_parallel = \(n_parallel), n_kv_req = \(n_kv_req)\n")
@ -125,32 +138,9 @@ while n_cur <= n_len {
continue
}
var n_vocab = llama_n_vocab(model)
var logits = llama_get_logits_ith(context, i_batch[i])
let new_token_id = llama_sampler_sample(smpl, context, i_batch[i])
var candidates: [llama_token_data] = .init(repeating: llama_token_data(), count: Int(n_vocab))
for token_id in 0 ..< n_vocab {
candidates.append(llama_token_data(id: token_id, logit: logits![Int(token_id)], p: 0.0))
}
var candidates_p: llama_token_data_array = .init(
data: &candidates,
size: candidates.count,
sorted: false
)
let top_k: Int32 = 40
let top_p: Float = 0.9
let temp: Float = 0.4
llama_sample_top_k(context, &candidates_p, top_k, 1)
llama_sample_top_p(context, &candidates_p, top_p, 1)
llama_sample_temp(context, &candidates_p, temp)
let new_token_id = llama_sample_token(context, &candidates_p)
// const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
llama_sampler_accept(smpl, new_token_id)
// is it an end of stream? -> mark the stream as finished
if llama_token_is_eog(model, new_token_id) || n_cur == n_len {
@ -210,9 +200,10 @@ if n_parallel > 1 {
let t_main_end = ggml_time_us()
print("decoded \(n_decode) tokens in \(String(format: "%.2f", Double(t_main_end - t_main_start) / 1_000_000.0)) s, speed: \(String(format: "%.2f", Double(n_decode) / (Double(t_main_end - t_main_start) / 1_000_000.0))) t/s\n")
print("decoded \(n_decode) tokens in \(String(format: "%.2f", Double(t_main_end - t_main_start) / 1_000_000.0)) s, speed: \(String(format: "%.2f", Double(n_decode) / (Double(t_main_end - t_main_start) / 1_000_000.0))) t/s\n\n")
llama_print_timings(context)
llama_perf_print(UnsafeRawPointer(context), LLAMA_PERF_TYPE_CONTEXT)
llama_perf_print(UnsafeRawPointer(smpl), LLAMA_PERF_TYPE_SAMPLER_CHAIN)
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
let utf8Count = text.utf8.count

View File

@ -2,7 +2,6 @@
#include "llama.h"
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
@ -65,6 +64,15 @@ int main(int argc, char ** argv) {
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
auto sparams = llama_sampler_chain_default_params();
llama_sampler * smpl = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl, llama_sampler_init_top_k(params.sparams.top_k));
llama_sampler_chain_add(smpl, llama_sampler_init_top_p(params.sparams.top_p, params.sparams.min_keep));
llama_sampler_chain_add(smpl, llama_sampler_init_temp (params.sparams.temp));
llama_sampler_chain_add(smpl, llama_sampler_init_dist (params.sparams.seed));
if (ctx == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
@ -164,29 +172,9 @@ int main(int argc, char ** argv) {
continue;
}
auto n_vocab = llama_n_vocab(model);
auto * logits = llama_get_logits_ith(ctx, i_batch[i]);
const llama_token new_token_id = llama_sampler_sample(smpl, ctx, i_batch[i]);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
const int top_k = 40;
const float top_p = 0.9f;
const float temp = 0.4f;
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
llama_sample_temp (ctx, &candidates_p, temp);
const llama_token new_token_id = llama_sample_token(ctx, &candidates_p);
//const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
llama_sampler_accept(smpl, new_token_id);
// is it an end of generation? -> mark the stream as finished
if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
@ -244,12 +232,15 @@ int main(int argc, char ** argv) {
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
llama_print_timings(ctx);
LOG_TEE("\n");
llama_perf_print(smpl, LLAMA_PERF_TYPE_SAMPLER_CHAIN);
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
fprintf(stderr, "\n");
llama_batch_free(batch);
llama_sampler_free(smpl);
llama_free(ctx);
llama_free_model(model);

View File

@ -90,13 +90,7 @@ int main(int argc, char ** argv) {
print_build_info();
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed);
LOG_TEE("%s: seed = %u\n", __func__, params.sparams.seed);
llama_backend_init();
llama_numa_init(params.numa);
@ -313,8 +307,10 @@ int main(int argc, char ** argv) {
if (notArray) fprintf(stdout, "\n}\n");
}
LOG_TEE("\n");
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
// clean up
llama_print_timings(ctx);
llama_batch_free(batch);
llama_free(ctx);
llama_free_model(model);

View File

@ -151,8 +151,6 @@ int main(int argc, char ** argv) {
print_build_info();
std::mt19937 rng(params.seed);
llama_backend_init();
llama_numa_init(params.numa);
@ -183,7 +181,8 @@ int main(int argc, char ** argv) {
return 1;
}
llama_print_timings(ctx);
LOG_TEE("\n");
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
llama_free(ctx);
llama_free_model(model);

View File

@ -1,9 +1,5 @@
#define LLAMA_API_INTERNAL
#include "grammar-parser.h"
#include "ggml.h"
#include "llama.h"
#include "unicode.h"
#include "llama-grammar.h"
#include <cstdio>
#include <cstdlib>
@ -12,29 +8,28 @@
#include <string>
#include <vector>
static bool llama_sample_grammar_string(struct llama_grammar * grammar, const std::string & input_str, size_t & error_pos, std::string & error_msg) {
auto decoded = decode_utf8(input_str, {});
const auto & code_points = decoded.first;
static bool llama_grammar_validate(struct llama_grammar * grammar, const std::string & input_str, size_t & error_pos, std::string & error_msg) {
const auto cpts = unicode_cpts_from_utf8(input_str);
const llama_grammar_rules & rules = llama_grammar_get_rules (grammar);
llama_grammar_stacks & cur_stacks = llama_grammar_get_stacks(grammar);
llama_grammar_stacks & stacks_cur = llama_grammar_get_stacks(grammar);
size_t pos = 0;
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
const llama_grammar_stacks prev_stacks = llama_grammar_get_stacks(grammar); // copy
for (const auto & cpt : cpts) {
const llama_grammar_stacks stacks_prev = llama_grammar_get_stacks(grammar); // copy
llama_grammar_accept(rules, prev_stacks, *it, cur_stacks);
llama_grammar_accept(rules, stacks_prev, cpt, stacks_cur);
if (cur_stacks.empty()) {
if (stacks_cur.empty()) {
error_pos = pos;
error_msg = "Unexpected character '" + unicode_cpt_to_utf8(*it) + "'";
cur_stacks = prev_stacks;
error_msg = "Unexpected character '" + unicode_cpt_to_utf8(cpt) + "'";
stacks_cur = stacks_prev;
return false;
}
++pos;
}
for (const auto & stack : cur_stacks) {
for (const auto & stack : stacks_cur) {
if (stack.empty()) {
return true;
}
@ -85,27 +80,7 @@ int main(int argc, char** argv) {
grammar_str = buffer.str();
}
// Parse the GBNF grammar
auto parsed_grammar = grammar_parser::parse(grammar_str.c_str());
// will be empty (default) if there are parse errors
if (parsed_grammar.rules.empty()) {
fprintf(stdout, "%s: failed to parse grammar\n", __func__);
return 1;
}
// Ensure that there is a "root" node.
if (parsed_grammar.symbol_ids.find("root") == parsed_grammar.symbol_ids.end()) {
fprintf(stdout, "%s: grammar does not contain a 'root' symbol\n", __func__);
return 1;
}
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
// Create the LLAMA grammar
auto grammar = llama_grammar_init(
grammar_rules.data(),
grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
llama_grammar * grammar = llama_grammar_init_impl(nullptr, grammar_str.c_str(), "root");
if (grammar == nullptr) {
throw std::runtime_error("Failed to initialize llama_grammar");
}
@ -122,7 +97,7 @@ int main(int argc, char** argv) {
// Validate the input string against the grammar
size_t error_pos;
std::string error_msg;
bool is_valid = llama_sample_grammar_string(grammar, input_str, error_pos, error_msg);
bool is_valid = llama_grammar_validate(grammar, input_str, error_pos, error_msg);
if (is_valid) {
fprintf(stdout, "Input string is valid according to the grammar.\n");
@ -131,7 +106,7 @@ int main(int argc, char** argv) {
}
// Clean up
llama_grammar_free(grammar);
llama_grammar_free_impl(grammar);
return 0;
}

View File

@ -9,7 +9,7 @@
static std::vector<std::vector<float>> encode(llama_context * ctx, const std::vector<std::string> & sentences, const std::string & instruction) {
std::vector<std::vector<float>> result;
const llama_model * mdl = llama_get_model(ctx);
const llama_model * model = llama_get_model(ctx);
llama_batch batch = llama_batch_init(llama_n_batch(ctx), 0, 1);
@ -18,16 +18,16 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
const std::string input_string = instruction + sentences[i];
std::vector<llama_token> inputs = llama_tokenize(mdl, input_string, true, false);
std::vector<llama_token> inputs = llama_tokenize(model, input_string, true, false);
const int32_t n_toks = inputs.size();
// GritLM seems to have EOS = ""
// https://github.com/ContextualAI/gritlm/blob/92025b16534712b31b3c4aaaf069350e222bd5f8/gritlm/gritlm.py#L18
// inputs.push_back(llama_token_eos(mdl));
// inputs.push_back(llama_token_eos(model));
// we want to ignore instruction tokens for mean pooling
const int32_t n_inst = llama_tokenize(mdl, instruction, true, false).size();
const int32_t n_inst = llama_tokenize(model, instruction, true, false).size();
#ifdef GRIT_DEBUG
// debug tokens - should be matching as referenced in the GritLM sample
@ -51,7 +51,7 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
llama_decode(ctx, batch);
// get embedding dimensions
uint64_t n_embd = llama_n_embd(mdl);
uint64_t n_embd = llama_n_embd(model);
// allocate embedding output
std::vector<float> emb_unorm(n_embd, 0.0f);
@ -92,11 +92,11 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
return result;
}
static std::string generate(llama_context * ctx, const std::string & prompt, bool stream) {
static std::string generate(llama_context * ctx, llama_sampler * smpl, const std::string & prompt, bool stream) {
std::string result;
const llama_model * mdl = llama_get_model(ctx);
llama_token eos_token = llama_token_eos(mdl);
const llama_model * model = llama_get_model(ctx);
llama_token eos_token = llama_token_eos(model);
llama_kv_cache_clear(ctx);
llama_set_embeddings(ctx, false);
@ -104,28 +104,25 @@ static std::string generate(llama_context * ctx, const std::string & prompt, boo
llama_batch bat = llama_batch_init(llama_n_batch(ctx), 0, 1);
std::vector<llama_token> inputs = llama_tokenize(mdl, prompt, false, true);
std::vector<llama_token> inputs = llama_tokenize(model, prompt, false, true);
int32_t i_current_token = 0;
while (true) {
llama_batch_clear(bat);
auto n_inputs = (int32_t)inputs.size();
{
const int32_t n_inputs = inputs.size();
for (int32_t i = 0; i < n_inputs; i++) {
llama_batch_add(bat, inputs[i], i_current_token++, { 0 }, i == n_inputs - 1);
}
}
inputs.clear();
llama_decode(ctx, bat);
auto logits = llama_get_logits_ith(ctx, bat.n_tokens - 1);
auto candidates = std::vector<llama_token_data>(llama_n_vocab(mdl));
auto n_candidates = (int32_t)candidates.size();
for (int32_t token = 0; token < n_candidates; token++) {
candidates[token] = llama_token_data{ token, logits[token], 0.0f };
}
auto candidates_p = llama_token_data_array{ candidates.data(), candidates.size(), false };
llama_token token = llama_sampler_sample(smpl, ctx, bat.n_tokens - 1);
llama_sampler_accept(smpl, token);
llama_token token = llama_sample_token_greedy(ctx, &candidates_p);
if (token == eos_token) {
break;
}
@ -167,10 +164,18 @@ int main(int argc, char * argv[]) {
llama_backend_init();
llama_model * mdl = llama_load_model_from_file(params.model.c_str(), mparams);
llama_model * model = llama_load_model_from_file(params.model.c_str(), mparams);
// create generation context
llama_context * ctx = llama_new_context_with_model(mdl, cparams);
llama_context * ctx = llama_new_context_with_model(model, cparams);
auto sparams = llama_sampler_chain_default_params();
sparams.no_perf = false;
llama_sampler * smpl = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl, llama_sampler_init_greedy());
// ### Embedding/Representation ###
// samples taken from: https://github.com/ContextualAI/gritlm#basic
@ -191,7 +196,7 @@ int main(int argc, char * argv[]) {
const std::vector<std::vector<float>> d_rep = encode(ctx, documents, gritlm_instruction(""));
const std::vector<std::vector<float>> q_rep = encode(ctx, queries, gritlm_instruction(instruction));
const int n_embd = llama_n_embd(mdl);
const int n_embd = llama_n_embd(model);
const float cosine_sim_q0_d0 = llama_embd_similarity_cos(q_rep[0].data(), d_rep[0].data(), n_embd);
const float cosine_sim_q0_d1 = llama_embd_similarity_cos(q_rep[0].data(), d_rep[1].data(), n_embd);
@ -208,11 +213,12 @@ int main(int argc, char * argv[]) {
// GritLM models are not finetuned with system prompts, as you can just include system-like instructions together with your user instruction
{
const std::string prompt = "<|user|>\nPlease write me a poem about my recent hike of Mt. Fuji at midnight in the style of Shakespeare.\n<|assistant|>\n";
std::string response = generate(ctx, prompt, true);
std::string response = generate(ctx, smpl, prompt, true);
}
llama_sampler_free(smpl);
llama_free(ctx);
llama_free_model(mdl);
llama_free_model(model);
llama_backend_free();
return 0;

View File

@ -638,7 +638,8 @@ int main(int argc, char ** argv) {
g_collector.save_imatrix();
llama_print_timings(ctx);
LOG_TEE("\n");
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
llama_free(ctx);
llama_free_model(model);

View File

@ -2,7 +2,6 @@
#include "console.h"
#include "llama.h"
#include "grammar-parser.h"
#include <cassert>
#include <cinttypes>
@ -34,6 +33,7 @@
static llama_context ** g_ctx;
static llama_model ** g_model;
static gpt_sampler ** g_smpl;
static gpt_params * g_params;
static std::vector<llama_token> * g_input_tokens;
static std::ostringstream * g_output_ss;
@ -81,7 +81,7 @@ static void write_logfile(
yaml_dump_string_multiline(logfile, "output", output.c_str());
yaml_dump_vector_int(logfile, "output_tokens", output_tokens);
llama_dump_timing_info_yaml(logfile, ctx);
llama_perf_dump_yaml(logfile, ctx);
fclose(logfile);
}
@ -93,7 +93,7 @@ static void sigint_handler(int signo) {
} else {
console::cleanup();
printf("\n");
llama_print_timings(*g_ctx);
gpt_perf_print(*g_ctx, *g_smpl);
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
_exit(130);
}
@ -103,7 +103,6 @@ static void sigint_handler(int signo) {
int main(int argc, char ** argv) {
gpt_params params;
llama_sampling_params & sparams = params.sparams;
g_params = &params;
if (!gpt_params_parse(argc, argv, params)) {
@ -111,6 +110,8 @@ int main(int argc, char ** argv) {
return 1;
}
auto & sparams = params.sparams;
#ifndef LOG_DISABLE_LOGS
log_set_target(log_filename_generator("infill", "log"));
LOG_TEE("Log start\n");
@ -156,26 +157,21 @@ int main(int argc, char ** argv) {
LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
}
LOG_TEE("%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
LOG_TEE("%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET);
print_build_info();
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
LOG_TEE("%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed);
LOG_TEE("%s: seed = %u\n", __func__, params.sparams.seed);
LOG("%s: llama backend init\n", __func__);
llama_backend_init();
llama_numa_init(params.numa);
llama_model * model;
llama_context * ctx;
llama_model * model = nullptr;
llama_context * ctx = nullptr;
gpt_sampler * smpl = nullptr;
g_model = &model;
g_ctx = &ctx;
g_smpl = &smpl;
// load the model and apply lora adapter, if any
LOG("%s: load the model and apply lora adapter, if any\n", __func__);
@ -305,7 +301,7 @@ int main(int argc, char ** argv) {
LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
}
}
LOG_TEE("sampling: \n%s\n", llama_sampling_print(sparams).c_str());
LOG_TEE("sampling: \n%s\n", sparams.print().c_str());
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
LOG_TEE("\n\n");
@ -349,7 +345,7 @@ int main(int argc, char ** argv) {
std::vector<llama_token> embd;
struct llama_sampling_context * ctx_sampling = llama_sampling_init(sparams);
smpl = gpt_sampler_init(model, sparams);
while (n_remain != 0 || params.interactive) {
// predict
@ -421,11 +417,11 @@ int main(int argc, char ** argv) {
embd.clear();
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
const llama_token id = llama_sampling_sample(ctx_sampling, ctx, nullptr);
const llama_token id = gpt_sampler_sample(smpl, ctx, -1);
llama_sampling_accept(ctx_sampling, ctx, id, true);
gpt_sampler_accept(smpl, id, true);
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, ctx_sampling->prev).c_str());
// LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, smpl->prev.to_vector()).c_str());
embd.push_back(id);
@ -444,7 +440,7 @@ int main(int argc, char ** argv) {
// push the prompt in the sampling context in order to apply repetition penalties later
// for the prompt, we don't apply grammar rules
llama_sampling_accept(ctx_sampling, ctx, embd_inp[n_consumed], false);
gpt_sampler_accept(smpl, embd_inp[n_consumed], false);
++n_consumed;
if ((int) embd.size() >= params.n_batch) {
@ -476,7 +472,7 @@ int main(int argc, char ** argv) {
// if not currently processing queued inputs;
if ((int) embd_inp.size() <= n_consumed) {
// deal with eot token in infill mode
if ((llama_sampling_last(ctx_sampling) == llama_token_eot(model) || is_interacting) && params.interactive){
if ((gpt_sampler_last(smpl) == llama_token_eot(model) || is_interacting) && params.interactive){
if (is_interacting && !params.interactive_first) {
// print an eot token
printf("%s", llama_token_to_piece(ctx, llama_token_eot(model)).c_str());
@ -542,7 +538,7 @@ int main(int argc, char ** argv) {
is_interacting = false;
}
// deal with end of generation tokens in interactive mode
else if (llama_token_is_eog(model, llama_sampling_last(ctx_sampling))) {
else if (llama_token_is_eog(model, gpt_sampler_last(smpl))) {
LOG("found EOS token\n");
if (params.interactive) {
@ -615,7 +611,7 @@ int main(int argc, char ** argv) {
if (n_past > 0) {
if (is_interacting) {
llama_sampling_reset(ctx_sampling);
gpt_sampler_reset(smpl);
}
is_interacting = false;
}
@ -638,13 +634,14 @@ int main(int argc, char ** argv) {
fflush(stdout);
}
llama_print_timings(ctx);
LOG_TEE("\n");
gpt_perf_print(ctx, smpl);
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
llama_free(ctx);
llama_free_model(model);
llama_sampling_free(ctx_sampling);
gpt_sampler_free(smpl);
llama_backend_free();
#ifndef LOG_DISABLE_LOGS

View File

@ -1630,7 +1630,7 @@ int main(int argc, char ** argv) {
fflush(p_err->fout);
}
llama_print_timings(ctx);
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
llama_free(ctx);

View File

@ -120,7 +120,7 @@ Java_android_llama_cpp_LLamaAndroid_new_1context(JNIEnv *env, jobject, jlong jmo
LOGi("Using %d threads", n_threads);
llama_context_params ctx_params = llama_context_default_params();
ctx_params.seed = 1234;
ctx_params.n_ctx = 2048;
ctx_params.n_threads = n_threads;
ctx_params.n_threads_batch = n_threads;
@ -380,11 +380,13 @@ Java_android_llama_cpp_LLamaAndroid_completion_1loop(
JNIEnv * env,
jobject,
jlong context_pointer,
jlong sampling_pointer,
jlong batch_pointer,
jint n_len,
jobject intvar_ncur
) {
const auto context = reinterpret_cast<llama_context *>(context_pointer);
const auto sampling = reinterpret_cast<llama_sampler *>(sampling_pointer);
const auto batch = reinterpret_cast<llama_batch *>(batch_pointer);
const auto model = llama_get_model(context);
@ -392,20 +394,10 @@ Java_android_llama_cpp_LLamaAndroid_completion_1loop(
if (!la_int_var_value) la_int_var_value = env->GetMethodID(la_int_var, "getValue", "()I");
if (!la_int_var_inc) la_int_var_inc = env->GetMethodID(la_int_var, "inc", "()V");
auto n_vocab = llama_n_vocab(model);
auto logits = llama_get_logits_ith(context, batch->n_tokens - 1);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// sample the most likely token
const auto new_token_id = llama_sample_token_greedy(context, &candidates_p);
const auto new_token_id = llama_sampler_sample(sampling, context, batch->n_tokens - 1);
llama_sampler_accept(sampling, new_token_id);
const auto n_cur = env->CallIntMethod(intvar_ncur, la_int_var_value);
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {

View File

@ -24,6 +24,7 @@ func llama_batch_add(_ batch: inout llama_batch, _ id: llama_token, _ pos: llama
actor LlamaContext {
private var model: OpaquePointer
private var context: OpaquePointer
private var sampling: UnsafeMutablePointer<llama_sampler>
private var batch: llama_batch
private var tokens_list: [llama_token]
var is_done: Bool = false
@ -42,9 +43,15 @@ actor LlamaContext {
self.tokens_list = []
self.batch = llama_batch_init(512, 0, 1)
self.temporary_invalid_cchars = []
let sparams = llama_sampler_chain_default_params()
self.sampling = llama_sampler_chain_init(sparams)
llama_sampler_chain_add(self.sampling, llama_sampler_init_temp(0.4))
llama_sampler_chain_add(self.sampling, llama_sampler_init_softmax())
llama_sampler_chain_add(self.sampling, llama_sampler_init_dist(1234))
}
deinit {
llama_sampler_free(sampling)
llama_batch_free(batch)
llama_free(context)
llama_free_model(model)
@ -69,7 +76,6 @@ actor LlamaContext {
print("Using \(n_threads) threads")
var ctx_params = llama_context_default_params()
ctx_params.seed = 1234
ctx_params.n_ctx = 2048
ctx_params.n_threads = Int32(n_threads)
ctx_params.n_threads_batch = Int32(n_threads)
@ -144,20 +150,9 @@ actor LlamaContext {
func completion_loop() -> String {
var new_token_id: llama_token = 0
let n_vocab = llama_n_vocab(model)
let logits = llama_get_logits_ith(context, batch.n_tokens - 1)
new_token_id = llama_sampler_sample(sampling, context, batch.n_tokens - 1)
var candidates = Array<llama_token_data>()
candidates.reserveCapacity(Int(n_vocab))
for token_id in 0..<n_vocab {
candidates.append(llama_token_data(id: token_id, logit: logits![Int(token_id)], p: 0.0))
}
candidates.withUnsafeMutableBufferPointer() { buffer in
var candidates_p = llama_token_data_array(data: buffer.baseAddress, size: buffer.count, sorted: false)
new_token_id = llama_sample_token_greedy(context, &candidates_p)
}
llama_sampler_accept(sampling, new_token_id)
if llama_token_is_eog(model, new_token_id) || n_cur == n_len {
print("\n")

View File

@ -40,11 +40,11 @@ static bool eval_string(struct llama_context * ctx_llama, const char* str, int n
return true;
}
static const char * sample(struct llama_sampling_context * ctx_sampling,
static const char * sample(struct gpt_sampler * smpl,
struct llama_context * ctx_llama,
int * n_past) {
const llama_token id = llama_sampling_sample(ctx_sampling, ctx_llama, NULL);
llama_sampling_accept(ctx_sampling, ctx_llama, id, true);
const llama_token id = gpt_sampler_sample(smpl, ctx_llama, -1);
gpt_sampler_accept(smpl, id, true);
static std::string ret;
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
ret = "</s>";
@ -191,15 +191,15 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
LOG_TEE("\n");
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams);
if (!ctx_sampling) {
struct gpt_sampler * smpl = gpt_sampler_init(ctx_llava->model, params->sparams);
if (!smpl) {
fprintf(stderr, "%s: failed to initialize sampling subsystem\n", __func__);
exit(1);
}
std::string response = "";
for (int i = 0; i < max_tgt_len; i++) {
const char * tmp = sample(ctx_sampling, ctx_llava->ctx_llama, &n_past);
const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past);
response += tmp;
if (strcmp(tmp, "</s>") == 0) break;
if (strstr(tmp, "###")) break; // Yi-VL behavior
@ -211,7 +211,7 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
fflush(stdout);
}
llama_sampling_free(ctx_sampling);
gpt_sampler_free(smpl);
printf("\n");
}
@ -310,7 +310,7 @@ int main(int argc, char ** argv) {
// process the prompt
process_prompt(ctx_llava, image_embed, &params, params.prompt);
llama_print_timings(ctx_llava->ctx_llama);
llama_perf_print(ctx_llava->ctx_llama, LLAMA_PERF_TYPE_CONTEXT);
llava_image_embed_free(image_embed);
ctx_llava->model = NULL;
llava_free(ctx_llava);
@ -327,7 +327,7 @@ int main(int argc, char ** argv) {
// process the prompt
process_prompt(ctx_llava, image_embed, &params, params.prompt);
llama_print_timings(ctx_llava->ctx_llama);
llama_perf_print(ctx_llava->ctx_llama, LLAMA_PERF_TYPE_CONTEXT);
llava_image_embed_free(image_embed);
ctx_llava->model = NULL;
llava_free(ctx_llava);

View File

@ -163,11 +163,11 @@ static void process_image(struct llava_context * ctx_llava, struct llava_image_e
LOG_TEE("%s: image token past: %d\n", __func__, n_past);
}
static const char * sample(struct llama_sampling_context * ctx_sampling,
static const char * sample(struct gpt_sampler * smpl,
struct llama_context * ctx_llama,
int * n_past) {
const llama_token id = llama_sampling_sample(ctx_sampling, ctx_llama, NULL);
llama_sampling_accept(ctx_sampling, ctx_llama, id, true);
const llama_token id = gpt_sampler_sample(smpl, ctx_llama, -1);
gpt_sampler_accept(smpl, id, true);
static std::string ret;
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
ret = "</s>";
@ -214,7 +214,7 @@ static struct llava_context * minicpmv_init(gpt_params * params, const std::stri
return ctx_llava;
}
static struct llama_sampling_context * llama_init(struct llava_context * ctx_llava, gpt_params * params, std::string prompt, int &n_past, bool is_first = false){
static struct gpt_sampler * llama_init(struct llava_context * ctx_llava, gpt_params * params, std::string prompt, int &n_past, bool is_first = false){
std::string user_prompt = prompt;
int has_minicpmv_projector = clip_is_minicpmv(ctx_llava->ctx_clip);
if (!is_first) {
@ -238,13 +238,13 @@ static struct llama_sampling_context * llama_init(struct llava_context * ctx_lla
LOG_TEE("\n");
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams);
return ctx_sampling;
struct gpt_sampler * smpl = gpt_sampler_init(ctx_llava->model, params->sparams);
return smpl;
}
static const char * llama_loop(struct llava_context * ctx_llava,struct llama_sampling_context * ctx_sampling, int &n_past){
static const char * llama_loop(struct llava_context * ctx_llava,struct gpt_sampler * smpl, int &n_past){
const char * tmp = sample(ctx_sampling, ctx_llava->ctx_llama, &n_past);
const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past);
return tmp;
}
@ -278,12 +278,12 @@ int main(int argc, char ** argv) {
if (!params.prompt.empty()) {
LOG_TEE("<user>%s\n", params.prompt.c_str());
LOG_TEE("<assistant>");
auto ctx_sampling = llama_init(ctx_llava, &params, params.prompt.c_str(), n_past, true);
auto smpl = llama_init(ctx_llava, &params, params.prompt.c_str(), n_past, true);
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
std::string response = "";
bool have_tmp = false;
for (int i = 0; i < max_tgt_len; i++) {
auto tmp = llama_loop(ctx_llava, ctx_sampling, n_past);
auto tmp = llama_loop(ctx_llava, smpl, n_past);
response += tmp;
if (strcmp(tmp, "</s>") == 0){
if(!have_tmp)continue;
@ -296,18 +296,18 @@ int main(int argc, char ** argv) {
fflush(stdout);
}
llama_sampling_free(ctx_sampling);
gpt_sampler_free(smpl);
}else {
while (true) {
LOG_TEE("<user>");
std::string prompt;
std::getline(std::cin, prompt);
LOG_TEE("<assistant>");
auto ctx_sampling = llama_init(ctx_llava, &params, prompt, n_past, true);
auto smpl = llama_init(ctx_llava, &params, prompt, n_past, true);
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
std::string response = "";
for (int i = 0; i < max_tgt_len; i++) {
auto tmp = llama_loop(ctx_llava, ctx_sampling, n_past);
auto tmp = llama_loop(ctx_llava, smpl, n_past);
response += tmp;
if (strcmp(tmp, "</s>") == 0) break;
if (strstr(tmp, "###")) break; // Yi-VL behavior
@ -315,11 +315,11 @@ int main(int argc, char ** argv) {
if (strstr(response.c_str(), "<user>")) break; // minicpm-v
fflush(stdout);
}
llama_sampling_free(ctx_sampling);
gpt_sampler_free(smpl);
}
}
printf("\n");
llama_print_timings(ctx_llava->ctx_llama);
llama_perf_print(ctx_llava->ctx_llama, LLAMA_PERF_TYPE_CONTEXT);
ctx_llava->model = NULL;
llava_free(ctx_llava);

View File

@ -1,7 +1,6 @@
#include "common.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
@ -118,7 +117,7 @@ int main(int argc, char ** argv) {
llama_batch batch = llama_batch_init(params.n_ctx, 0, W + G + 1);
// target model sampling context
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
struct gpt_sampler * smpl = gpt_sampler_init(model, params.sparams);
// verification n-grams
std::vector<ngram_data> ngrams_cur(G);
@ -159,9 +158,9 @@ int main(int argc, char ** argv) {
// sample first token
{
id = llama_sampling_sample(ctx_sampling, ctx, NULL, 0);
id = gpt_sampler_sample(smpl, ctx, 0);
llama_sampling_accept(ctx_sampling, ctx, id, true);
gpt_sampler_accept(smpl, id, true);
{
const std::string token_str = llama_token_to_piece(ctx, id);
@ -284,9 +283,9 @@ int main(int argc, char ** argv) {
}
// sample the next token
id = llama_sampling_sample(ctx_sampling, ctx, NULL, i_batch);
id = gpt_sampler_sample(smpl, ctx, i_batch);
llama_sampling_accept(ctx_sampling, ctx, id, true);
gpt_sampler_accept(smpl, id, true);
// print
{
@ -361,7 +360,7 @@ int main(int argc, char ** argv) {
if (v == 0) {
// sample from the last level
for (int i = 0; i < W; i++) {
tokens_j[N - 2][i] = llama_sampling_sample(ctx_sampling, ctx, NULL, ngrams_cur.size()*(N-1) + W*(N - 2) + i);
tokens_j[N - 2][i] = gpt_sampler_sample(smpl, ctx, ngrams_cur.size()*(N-1) + W*(N - 2) + i);
}
} else {
for (int i = 0; i < W; i++) {
@ -468,10 +467,12 @@ int main(int argc, char ** argv) {
LOG_TEE("n_predict = %d\n", n_predict);
LOG_TEE("n_accept = %d\n", n_accept);
llama_print_timings(ctx);
LOG_TEE("\n");
gpt_perf_print(ctx, smpl);
gpt_sampler_free(smpl);
llama_kv_cache_view_free(&kvc_view);
llama_sampling_free(ctx_sampling);
llama_batch_free(batch);

View File

@ -3,13 +3,11 @@
#include "common.h"
#include "ngram-cache.h"
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <fstream>
#include <string>
#include <vector>
#include <unordered_map>
int main(int argc, char ** argv){
gpt_params params;
@ -106,7 +104,7 @@ int main(int argc, char ** argv){
bool has_eos = false;
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
struct gpt_sampler * smpl = gpt_sampler_init(model, params.sparams);
std::vector<llama_token> draft;
@ -130,9 +128,9 @@ int main(int argc, char ** argv){
int i_dft = 0;
while (true) {
// sample from the target model
llama_token id = llama_sampling_sample(ctx_sampling, ctx, NULL, i_dft);
llama_token id = gpt_sampler_sample(smpl, ctx, i_dft);
llama_sampling_accept(ctx_sampling, ctx, id, true);
gpt_sampler_accept(smpl, id, true);
const std::string token_str = llama_token_to_piece(ctx, id);
@ -240,10 +238,12 @@ int main(int argc, char ** argv){
LOG_TEE("n_accept = %d\n", n_accept);
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
LOG_TEE("\ntarget:\n");
llama_print_timings(ctx);
LOG_TEE("\ntarget:\n\n");
llama_perf_print(smpl, LLAMA_PERF_TYPE_SAMPLER_CHAIN);
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
gpt_sampler_free(smpl);
llama_sampling_free(ctx_sampling);
llama_batch_free(batch_tgt);
llama_free(ctx);

View File

@ -33,6 +33,7 @@
static llama_context ** g_ctx;
static llama_model ** g_model;
static gpt_sampler ** g_smpl;
static gpt_params * g_params;
static std::vector<llama_token> * g_input_tokens;
static std::ostringstream * g_output_ss;
@ -92,7 +93,7 @@ static void write_logfile(
yaml_dump_string_multiline(logfile, "output", output.c_str());
yaml_dump_vector_int(logfile, "output_tokens", output_tokens);
llama_dump_timing_info_yaml(logfile, ctx);
llama_perf_dump_yaml(logfile, ctx);
fclose(logfile);
}
@ -105,7 +106,7 @@ static void sigint_handler(int signo) {
} else {
console::cleanup();
printf("\n");
llama_print_timings(*g_ctx);
gpt_perf_print(*g_ctx, *g_smpl);
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
_exit(130);
}
@ -121,8 +122,7 @@ static void llama_log_callback_logTee(ggml_log_level level, const char * text, v
static std::string chat_add_and_format(struct llama_model * model, std::vector<llama_chat_msg> & chat_msgs, std::string role, std::string content) {
llama_chat_msg new_msg{role, content};
auto formatted = llama_chat_format_single(
model, g_params->chat_template, chat_msgs, new_msg, role == "user");
auto formatted = llama_chat_format_single(model, g_params->chat_template, chat_msgs, new_msg, role == "user");
chat_msgs.push_back({role, content});
LOG("formatted: %s\n", formatted.c_str());
return formatted;
@ -137,7 +137,7 @@ int main(int argc, char ** argv) {
return 1;
}
llama_sampling_params & sparams = params.sparams;
auto & sparams = params.sparams;
#ifndef LOG_DISABLE_LOGS
log_set_target(log_filename_generator("main", "log"));
@ -183,27 +183,23 @@ int main(int argc, char ** argv) {
LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
}
LOG_TEE("%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
LOG_TEE("%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET);
print_build_info();
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
LOG_TEE("%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed);
LOG_TEE("%s: seed = %u\n", __func__, params.sparams.seed);
LOG("%s: llama backend init\n", __func__);
llama_backend_init();
llama_numa_init(params.numa);
llama_model * model;
llama_context * ctx;
llama_context * ctx_guidance = NULL;
llama_model * model = nullptr;
llama_context * ctx = nullptr;
gpt_sampler * smpl = nullptr;
std::vector<llama_chat_msg> chat_msgs;
g_model = &model;
g_ctx = &ctx;
g_smpl = &smpl;
// load the model and apply lora adapter, if any
LOG("%s: load the model and apply lora adapter, if any\n", __func__);
@ -211,10 +207,6 @@ int main(int argc, char ** argv) {
model = llama_init.model;
ctx = llama_init.context;
if (sparams.cfg_scale > 1.f) {
struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
ctx_guidance = llama_new_context_with_model(model, lparams);
}
if (model == NULL) {
LOG_TEE("%s: error: unable to load model\n", __func__);
@ -251,9 +243,6 @@ int main(int argc, char ** argv) {
}
llama_attach_threadpool(ctx, threadpool, threadpool_batch);
if (ctx_guidance) {
llama_attach_threadpool(ctx_guidance, threadpool, threadpool_batch);
}
const int n_ctx_train = llama_n_ctx_train(model);
const int n_ctx = llama_n_ctx(ctx);
@ -337,24 +326,6 @@ int main(int argc, char ** argv) {
}
// Tokenize negative prompt
std::vector<llama_token> guidance_inp;
int guidance_offset = 0;
int original_prompt_len = 0;
if (ctx_guidance) {
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt));
guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, true, true);
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp).c_str());
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, true, true);
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp).c_str());
original_prompt_len = original_inp.size();
guidance_offset = (int)guidance_inp.size() - original_prompt_len;
LOG("original_prompt_len: %s", log_tostr(original_prompt_len));
LOG("guidance_offset: %s", log_tostr(guidance_offset));
}
if ((int) embd_inp.size() > n_ctx - 4) {
LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
return 1;
@ -421,15 +392,6 @@ int main(int argc, char ** argv) {
LOG_TEE("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
}
if (ctx_guidance) {
LOG_TEE("\n");
LOG_TEE("%s: negative prompt: '%s'\n", __func__, sparams.cfg_negative_prompt.c_str());
LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
for (int i = 0; i < (int) guidance_inp.size(); i++) {
LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str());
}
}
if (params.n_keep > add_bos) {
LOG_TEE("%s: static prompt based on n_keep: '", __func__);
for (int i = 0; i < params.n_keep; i++) {
@ -495,8 +457,15 @@ int main(int argc, char ** argv) {
}
}
}
LOG_TEE("sampling: \n%s\n", llama_sampling_print(sparams).c_str());
LOG_TEE("sampling order: \n%s\n", llama_sampling_order_print(sparams).c_str());
smpl = gpt_sampler_init(model, sparams);
if (!smpl) {
fprintf(stderr, "%s: failed to initialize sampling subsystem\n", __func__);
exit(1);
}
LOG_TEE("sampling params: \n%s\n", sparams.print().c_str());
LOG_TEE(" sampler constr: \n%s\n", gpt_sampler_print(smpl).c_str());
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
// group-attention state
@ -543,7 +512,6 @@ int main(int argc, char ** argv) {
int n_remain = params.n_predict;
int n_consumed = 0;
int n_session_consumed = 0;
int n_past_guidance = 0;
std::vector<int> input_tokens; g_input_tokens = &input_tokens;
std::vector<int> output_tokens; g_output_tokens = &output_tokens;
@ -555,7 +523,6 @@ int main(int argc, char ** argv) {
display = params.display_prompt;
std::vector<llama_token> embd;
std::vector<llama_token> embd_guidance;
// tokenized antiprompts
std::vector<std::vector<llama_token>> antiprompt_ids;
@ -565,12 +532,6 @@ int main(int argc, char ** argv) {
antiprompt_ids.emplace_back(::llama_tokenize(ctx, antiprompt, false, true));
}
struct llama_sampling_context * ctx_sampling = llama_sampling_init(sparams);
if (!ctx_sampling) {
fprintf(stderr, "%s: failed to initialize sampling subsystem\n", __func__);
exit(1);
}
if (llama_model_has_encoder(model)) {
int enc_input_size = embd_inp.size();
llama_token * enc_input_buf = embd_inp.data();
@ -612,7 +573,7 @@ int main(int argc, char ** argv) {
// if we run out of context:
// - take the n_keep first tokens from the original prompt (via n_past)
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) >= n_ctx) {
if (n_past + (int) embd.size() >= n_ctx) {
if (params.n_predict == -2) {
LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
break;
@ -629,11 +590,7 @@ int main(int argc, char ** argv) {
n_past -= n_discard;
if (ctx_guidance) {
n_past_guidance -= n_discard;
}
LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
LOG("after swap: n_past = %d\n", n_past);
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
@ -686,46 +643,6 @@ int main(int argc, char ** argv) {
}
}
// evaluate tokens in batches
// embd is typically prepared beforehand to fit within a batch, but not always
if (ctx_guidance) {
int input_size = 0;
llama_token * input_buf = NULL;
if (n_past_guidance < (int) guidance_inp.size()) {
// Guidance context should have the same data with these modifications:
//
// * Replace the initial prompt
// * Shift everything by guidance_offset
embd_guidance = guidance_inp;
if (embd.begin() + original_prompt_len < embd.end()) {
embd_guidance.insert(
embd_guidance.end(),
embd.begin() + original_prompt_len,
embd.end()
);
}
input_buf = embd_guidance.data();
input_size = embd_guidance.size();
LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance).c_str());
} else {
input_buf = embd.data();
input_size = embd.size();
}
for (int i = 0; i < input_size; i += params.n_batch) {
int n_eval = std::min(input_size - i, params.n_batch);
if (llama_decode(ctx_guidance, llama_batch_get_one(input_buf + i, n_eval, n_past_guidance, 0))) {
LOG_TEE("%s : failed to eval\n", __func__);
return 1;
}
n_past_guidance += n_eval;
}
}
for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
int n_eval = (int) embd.size() - i;
if (n_eval > params.n_batch) {
@ -755,7 +672,6 @@ int main(int argc, char ** argv) {
}
embd.clear();
embd_guidance.clear();
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
// optionally save the session on first sample (for faster prompt loading next time)
@ -766,11 +682,11 @@ int main(int argc, char ** argv) {
LOG("saved session to %s\n", path_session.c_str());
}
const llama_token id = llama_sampling_sample(ctx_sampling, ctx, ctx_guidance);
const llama_token id = gpt_sampler_sample(smpl, ctx, -1);
llama_sampling_accept(ctx_sampling, ctx, id, /* apply_grammar= */ true);
gpt_sampler_accept(smpl, id, /* apply_grammar= */ true);
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, ctx_sampling->prev).c_str());
// LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, smpl->prev.to_vector()).c_str());
embd.push_back(id);
@ -789,7 +705,7 @@ int main(int argc, char ** argv) {
// push the prompt in the sampling context in order to apply repetition penalties later
// for the prompt, we don't apply grammar rules
llama_sampling_accept(ctx_sampling, ctx, embd_inp[n_consumed], /* apply_grammar= */ false);
gpt_sampler_accept(smpl, embd_inp[n_consumed], /* apply_grammar= */ false);
++n_consumed;
if ((int) embd.size() >= params.n_batch) {
@ -832,7 +748,7 @@ int main(int argc, char ** argv) {
// check for reverse prompt in the last n_prev tokens
if (!params.antiprompt.empty()) {
const int n_prev = 32;
const std::string last_output = llama_sampling_prev_str(ctx_sampling, ctx, n_prev);
const std::string last_output = gpt_sampler_prev_str(smpl, ctx, n_prev);
is_antiprompt = false;
// Check if each of the reverse prompts appears at the end of the output.
@ -854,7 +770,7 @@ int main(int argc, char ** argv) {
}
// check for reverse prompt using special tokens
llama_token last_token = llama_sampling_last(ctx_sampling);
llama_token last_token = gpt_sampler_last(smpl);
for (std::vector<llama_token> ids : antiprompt_ids) {
if (ids.size() == 1 && last_token == ids[0]) {
if (params.interactive) {
@ -871,7 +787,7 @@ int main(int argc, char ** argv) {
}
// deal with end of generation tokens in interactive mode
if (llama_token_is_eog(model, llama_sampling_last(ctx_sampling))) {
if (llama_token_is_eog(model, gpt_sampler_last(smpl))) {
LOG("found an EOG token\n");
if (params.interactive) {
@ -892,7 +808,7 @@ int main(int argc, char ** argv) {
// if current token is not EOG, we add it to current assistant message
if (params.conversation) {
auto id = llama_sampling_last(ctx_sampling);
const auto id = gpt_sampler_last(smpl);
assistant_ss << llama_token_to_piece(ctx, id, false);
}
@ -988,7 +904,7 @@ int main(int argc, char ** argv) {
if (n_past > 0) {
if (is_interacting) {
llama_sampling_reset(ctx_sampling);
gpt_sampler_reset(smpl);
}
is_interacting = false;
}
@ -1013,14 +929,15 @@ int main(int argc, char ** argv) {
llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
}
llama_print_timings(ctx);
LOG_TEE("\n");
gpt_perf_print(ctx, smpl);
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
if (ctx_guidance) { llama_free(ctx_guidance); }
gpt_sampler_free(smpl);
llama_free(ctx);
llama_free_model(model);
llama_sampling_free(ctx_sampling);
llama_backend_free();
ggml_threadpool_free(threadpool);

View File

@ -50,8 +50,8 @@ static std::vector<std::string> k_prompts = {
struct client {
~client() {
if (ctx_sampling) {
llama_sampling_free(ctx_sampling);
if (smpl) {
gpt_sampler_free(smpl);
}
}
@ -72,7 +72,7 @@ struct client {
std::string prompt;
std::string response;
struct llama_sampling_context * ctx_sampling = nullptr;
struct gpt_sampler * smpl = nullptr;
};
static void print_date_time() {
@ -161,7 +161,7 @@ int main(int argc, char ** argv) {
for (size_t i = 0; i < clients.size(); ++i) {
auto & client = clients[i];
client.id = i;
client.ctx_sampling = llama_sampling_init(params.sparams);
client.smpl = gpt_sampler_init(model, params.sparams);
}
std::vector<llama_token> tokens_system;
@ -253,7 +253,7 @@ int main(int argc, char ** argv) {
client.prompt = client.input + "\nAssistant:";
client.response = "";
llama_sampling_reset(client.ctx_sampling);
gpt_sampler_reset(client.smpl);
// do not prepend BOS because we have a system prompt!
std::vector<llama_token> tokens_prompt;
@ -341,9 +341,9 @@ int main(int argc, char ** argv) {
//printf("client %d, seq %d, token %d, pos %d, batch %d\n",
// client.id, client.seq_id, client.sampled, client.n_decoded, client.i_batch);
const llama_token id = llama_sampling_sample(client.ctx_sampling, ctx, NULL, client.i_batch - i);
const llama_token id = gpt_sampler_sample(client.smpl, ctx, client.i_batch - i);
llama_sampling_accept(client.ctx_sampling, ctx, id, true);
gpt_sampler_accept(client.smpl, id, true);
if (client.n_decoded == 1) {
// start measuring generation time after the first token to make sure all concurrent clients
@ -413,7 +413,8 @@ int main(int argc, char ** argv) {
LOG_TEE("\n");
llama_print_timings(ctx);
// TODO: print sampling/grammar timings for all clients
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
llama_batch_free(batch);

View File

@ -26,8 +26,6 @@ int main(int argc, char ** argv) {
return 1;
}
srand(params.seed == LLAMA_DEFAULT_SEED ? time(NULL) : params.seed);
int n_junk = params.n_junk;
int n_keep = params.n_keep;
int n_grp = params.grp_attn_n;
@ -80,12 +78,17 @@ int main(int argc, char ** argv) {
GGML_ASSERT(ctx_params.n_batch % n_grp == 0 && "n_batch must be divisible by n_grp");
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
if (ctx == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
}
auto sparams = llama_sampler_chain_default_params();
llama_sampler * smpl = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl, llama_sampler_init_greedy());
// tokenize the prompt
std::vector<llama_token> tokens_list;
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
@ -217,20 +220,9 @@ int main(int argc, char ** argv) {
while (n_cur <= n_len) {
// sample the next token
{
auto n_vocab = llama_n_vocab(model);
auto * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
const llama_token new_token_id = llama_sampler_sample(smpl, ctx, batch.n_tokens - 1);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// sample the most likely token
const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
llama_sampler_accept(smpl, new_token_id);
// is it an end of generation?
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
@ -267,10 +259,13 @@ int main(int argc, char ** argv) {
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
llama_print_timings(ctx);
LOG_TEE("\n");
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
fprintf(stderr, "\n");
llama_sampler_free(smpl);
llama_batch_free(batch);
llama_free(ctx);

View File

@ -76,7 +76,7 @@ static void write_logfile(
fprintf(logfile, "ppl_value: %f\n", results.ppl_value);
yaml_dump_vector_float(logfile, "probs", results.probs);
llama_dump_timing_info_yaml(logfile, ctx);
llama_perf_dump_yaml(logfile, ctx);
fclose(logfile);
}
@ -2007,13 +2007,7 @@ int main(int argc, char ** argv) {
print_build_info();
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed);
LOG_TEE("%s: seed = %u\n", __func__, params.sparams.seed);
llama_backend_init();
llama_numa_init(params.numa);
@ -2054,7 +2048,8 @@ int main(int argc, char ** argv) {
results = perplexity(ctx, params, n_ctx);
}
llama_print_timings(ctx);
LOG_TEE("\n");
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
write_logfile(ctx, params, model, results);
llama_free(ctx);

View File

@ -1,7 +1,7 @@
#define LLAMA_API_INTERNAL
#include "common.h"
#include "ggml.h"
#include "llama.h"
#include "llama-impl.h"
#include <algorithm>
#include <cassert>
@ -320,7 +320,6 @@ int main(int argc, char ** argv) {
auto cparams = llama_context_default_params();
cparams.n_ctx = 256;
cparams.seed = 1;
ctx = llama_new_context_with_model(model, cparams);

View File

@ -293,9 +293,11 @@ int main(int argc, char ** argv) {
}
}
LOG_TEE("\n");
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
// clean up
llama_batch_free(query_batch);
llama_print_timings(ctx);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();

View File

@ -3,12 +3,12 @@
#include <vector>
#include <cstdio>
#include <chrono>
int main(int argc, char ** argv) {
gpt_params params;
params.prompt = "The quick brown fox";
params.sparams.seed = 1234;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
@ -38,6 +38,13 @@ int main(int argc, char ** argv) {
return 1;
}
auto sparams = llama_sampler_chain_default_params();
llama_sampler * smpl = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl, llama_sampler_init_softmax());
llama_sampler_chain_add(smpl, llama_sampler_init_dist(params.sparams.seed));
// tokenize prompt
auto tokens = llama_tokenize(ctx, params.prompt, true);
@ -64,18 +71,11 @@ int main(int argc, char ** argv) {
printf("\nfirst run: %s", params.prompt.c_str());
for (auto i = 0; i < params.n_predict; i++) {
auto * logits = llama_get_logits(ctx);
auto n_vocab = llama_n_vocab(model);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
auto next_token = llama_sample_token(ctx, &candidates_p);
auto next_token = llama_sampler_sample(smpl, ctx, -1);
auto next_token_str = llama_token_to_piece(ctx, next_token);
llama_sampler_accept(smpl, next_token);
printf("%s", next_token_str.c_str());
result0 += next_token_str;
@ -96,6 +96,11 @@ int main(int argc, char ** argv) {
// make new context
auto * ctx2 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
llama_sampler * smpl2 = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl2, llama_sampler_init_softmax());
llama_sampler_chain_add(smpl2, llama_sampler_init_dist(params.sparams.seed));
printf("\nsecond run: %s", params.prompt.c_str());
// load state (rng, logits, embedding and kv_cache) from file
@ -124,17 +129,11 @@ int main(int argc, char ** argv) {
// second run
for (auto i = 0; i < params.n_predict; i++) {
auto * logits = llama_get_logits(ctx2);
auto n_vocab = llama_n_vocab(model);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
auto next_token = llama_sample_token(ctx2, &candidates_p);
auto next_token = llama_sampler_sample(smpl2, ctx2, -1);
auto next_token_str = llama_token_to_piece(ctx2, next_token);
llama_sampler_accept(smpl2, next_token);
printf("%s", next_token_str.c_str());
result1 += next_token_str;
@ -159,6 +158,11 @@ int main(int argc, char ** argv) {
// make new context
auto * ctx3 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
llama_sampler * smpl3 = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl3, llama_sampler_init_softmax());
llama_sampler_chain_add(smpl3, llama_sampler_init_dist(params.sparams.seed));
printf("\nsingle seq run: %s", params.prompt.c_str());
// load state (rng, logits, embedding and kv_cache) from file
@ -215,17 +219,11 @@ int main(int argc, char ** argv) {
// third run with seq 1 instead of 0
for (auto i = 0; i < params.n_predict; i++) {
auto * logits = llama_get_logits(ctx3);
auto n_vocab = llama_n_vocab(model);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
auto next_token = llama_sample_token(ctx3, &candidates_p);
auto next_token = llama_sampler_sample(smpl3, ctx3, -1);
auto next_token_str = llama_token_to_piece(ctx3, next_token);
llama_sampler_accept(smpl3, next_token);
printf("%s", next_token_str.c_str());
result2 += next_token_str;
@ -240,6 +238,10 @@ int main(int argc, char ** argv) {
printf("\n");
llama_sampler_free(smpl);
llama_sampler_free(smpl2);
llama_sampler_free(smpl3);
llama_free(ctx3);
llama_free_model(model);

View File

@ -470,8 +470,6 @@ node index.js
`frequency_penalty`: Repeat alpha frequency penalty. Default: `0.0`, which is disabled.
`penalty_prompt`: This will replace the `prompt` for the purpose of the penalty evaluation. Can be either `null`, a string or an array of numbers representing tokens. Default: `null`, which is to use the original `prompt`.
`mirostat`: Enable Mirostat sampling, controlling perplexity during text generation. Default: `0`, where `0` is disabled, `1` is Mirostat, and `2` is Mirostat 2.0.
`mirostat_tau`: Set the Mirostat target entropy, parameter tau. Default: `5.0`
@ -724,7 +722,6 @@ Example:
"stopping_word": ""
},
"penalize_nl": true,
"penalty_prompt_tokens": [],
"presence_penalty": 0.0,
"prompt": "Say hello to llama.cpp",
"repeat_last_n": 64,
@ -748,8 +745,7 @@ Example:
"tfs_z": 1.0,
"top_k": 40,
"top_p": 0.949999988079071,
"typical_p": 1.0,
"use_penalty_prompt_tokens": false
"typical_p": 1.0
}
]
```

View File

@ -3,7 +3,6 @@
#include "common.h"
#include "json-schema-to-grammar.h"
#include "llama.h"
#include "grammar-parser.h"
// Change JSON_ASSERT from assert() to GGML_ASSERT:
#define JSON_ASSERT GGML_ASSERT
@ -169,11 +168,13 @@ struct server_slot {
std::string stopping_word;
// sampling
llama_token sampled;
struct llama_sampling_params sparams;
llama_sampling_context * ctx_sampling = nullptr;
json json_schema;
struct gpt_sampler_params sparams;
struct gpt_sampler * smpl = nullptr;
llama_token sampled;
int32_t ga_i = 0; // group-attention state
int32_t ga_n = 1; // group-attention factor
int32_t ga_w = 512; // group-attention width
@ -651,8 +652,8 @@ struct server_context {
// Clear any sampling context
for (server_slot & slot : slots) {
if (slot.ctx_sampling != nullptr) {
llama_sampling_free(slot.ctx_sampling);
if (slot.smpl != nullptr) {
gpt_sampler_free(slot.smpl);
}
}
@ -883,8 +884,8 @@ struct server_context {
bool launch_slot_with_task(server_slot & slot, const server_task & task) {
slot_params default_params;
// Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
llama_sampling_params default_sparams = params.sparams;
auto & data = task.data;
auto default_sparams = params.sparams;
const auto & data = task.data;
if (data.count("__oaicompat") != 0) {
slot.oaicompat = true;
@ -901,7 +902,7 @@ struct server_context {
slot.sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
slot.sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
slot.sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
slot.sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
slot.sparams.typ_p = json_value(data, "typical_p", default_sparams.typ_p);
slot.sparams.temp = json_value(data, "temperature", default_sparams.temp);
slot.sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range);
slot.sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent);
@ -923,7 +924,8 @@ struct server_context {
if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
send_error(task, "Either \"json_schema\" or \"grammar\" can be specified, but not both", ERROR_TYPE_INVALID_REQUEST);
return false;
} else if (data.contains("json_schema") && !data.contains("grammar")) {
}
if (data.contains("json_schema") && !data.contains("grammar")) {
try {
auto schema = json_value(data, "json_schema", json::object());
slot.sparams.grammar = json_schema_to_grammar(schema);
@ -973,56 +975,11 @@ struct server_context {
}
}
// penalize user-provided tokens
{
slot.sparams.penalty_prompt_tokens.clear();
slot.sparams.use_penalty_prompt_tokens = false;
const auto & penalty_prompt = data.find("penalty_prompt");
if (penalty_prompt != data.end()) {
if (penalty_prompt->is_string()) {
const auto penalty_prompt_string = penalty_prompt->get<std::string>();
slot.sparams.penalty_prompt_tokens = llama_tokenize(model, penalty_prompt_string, false);
if (slot.params.n_predict > 0) {
slot.sparams.penalty_prompt_tokens.reserve(slot.sparams.penalty_prompt_tokens.size() + slot.params.n_predict);
}
slot.sparams.use_penalty_prompt_tokens = true;
LOG_VERBOSE("penalty_prompt_tokens", {
{"id_slot", slot.id},
{"tokens", slot.sparams.penalty_prompt_tokens},
});
}
else if (penalty_prompt->is_array()) {
const auto n_tokens = penalty_prompt->size();
slot.sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot.params.n_predict));
const int n_vocab = llama_n_vocab(model);
for (const auto & penalty_token : *penalty_prompt) {
if (penalty_token.is_number_integer()) {
const auto tok = penalty_token.get<llama_token>();
if (tok >= 0 && tok < n_vocab) {
slot.sparams.penalty_prompt_tokens.push_back(tok);
}
}
}
slot.sparams.use_penalty_prompt_tokens = true;
LOG_VERBOSE("penalty_prompt_tokens", {
{"id_slot", slot.id},
{"tokens", slot.sparams.penalty_prompt_tokens},
});
}
}
}
{
slot.sparams.logit_bias.clear();
if (json_value(data, "ignore_eos", false) && has_eos_token) {
slot.sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
slot.sparams.logit_bias.push_back({llama_token_eos(model), -INFINITY});
}
const auto & logit_bias = data.find("logit_bias");
@ -1043,12 +1000,12 @@ struct server_context {
if (el[0].is_number_integer()) {
llama_token tok = el[0].get<llama_token>();
if (tok >= 0 && tok < n_vocab) {
slot.sparams.logit_bias[tok] = bias;
slot.sparams.logit_bias.push_back({tok, bias});
}
} else if (el[0].is_string()) {
auto toks = llama_tokenize(model, el[0].get<std::string>(), false);
for (auto tok : toks) {
slot.sparams.logit_bias[tok] = bias;
slot.sparams.logit_bias.push_back({tok, bias});
}
}
}
@ -1070,26 +1027,27 @@ struct server_context {
}
{
const auto & samplers_sequence = data.find("samplers");
if (samplers_sequence != data.end() && samplers_sequence->is_array()) {
const auto & samplers = data.find("samplers");
if (samplers != data.end() && samplers->is_array()) {
std::vector<std::string> sampler_names;
for (const auto & sampler_name : *samplers_sequence) {
if (sampler_name.is_string()) {
sampler_names.emplace_back(sampler_name);
for (const auto & name : *samplers) {
if (name.is_string()) {
sampler_names.emplace_back(name);
}
}
slot.sparams.samplers_sequence = llama_sampling_types_from_names(sampler_names, false);
slot.sparams.samplers = gpt_sampler_types_from_names(sampler_names, false);
} else {
slot.sparams.samplers_sequence = default_sparams.samplers_sequence;
slot.sparams.samplers = default_sparams.samplers;
}
}
{
if (slot.ctx_sampling != nullptr) {
llama_sampling_free(slot.ctx_sampling);
if (slot.smpl != nullptr) {
gpt_sampler_free(slot.smpl);
}
slot.ctx_sampling = llama_sampling_init(slot.sparams);
if (slot.ctx_sampling == nullptr) {
slot.smpl = gpt_sampler_init(model, slot.sparams);
if (slot.smpl == nullptr) {
// for now, the only error that may happen here is invalid grammar
send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
return false;
@ -1178,11 +1136,6 @@ struct server_context {
slot.generated_text += token_str;
slot.has_next_token = true;
if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1) {
// we can change penalty_prompt_tokens because it is always created from scratch each request
slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok);
}
// check if there is incomplete UTF-8 character at the end
bool incomplete = false;
for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i) {
@ -1300,13 +1253,10 @@ struct server_context {
}
json get_formated_generation(const server_slot & slot) const {
const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() && eos_bias->second < 0.0f && std::isinf(eos_bias->second);
std::vector<std::string> samplers_sequence;
samplers_sequence.reserve(slot.sparams.samplers_sequence.size());
for (const auto & sampler_type : slot.sparams.samplers_sequence) {
samplers_sequence.emplace_back(llama_sampling_type_to_str(sampler_type));
std::vector<std::string> samplers;
samplers.reserve(slot.sparams.samplers.size());
for (const auto & sampler : slot.sparams.samplers) {
samplers.emplace_back(gpt_sampler_type_to_str(sampler));
}
return json {
@ -1321,13 +1271,11 @@ struct server_context {
{"top_p", slot.sparams.top_p},
{"min_p", slot.sparams.min_p},
{"tfs_z", slot.sparams.tfs_z},
{"typical_p", slot.sparams.typical_p},
{"typical_p", slot.sparams.typ_p},
{"repeat_last_n", slot.sparams.penalty_last_n},
{"repeat_penalty", slot.sparams.penalty_repeat},
{"presence_penalty", slot.sparams.penalty_present},
{"frequency_penalty", slot.sparams.penalty_freq},
{"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens},
{"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens},
{"mirostat", slot.sparams.mirostat},
{"mirostat_tau", slot.sparams.mirostat_tau},
{"mirostat_eta", slot.sparams.mirostat_eta},
@ -1336,13 +1284,13 @@ struct server_context {
{"max_tokens", slot.params.n_predict}, // User configured n_predict
{"n_keep", slot.params.n_keep},
{"n_discard", slot.params.n_discard},
{"ignore_eos", ignore_eos},
{"ignore_eos", slot.sparams.ignore_eos},
{"stream", slot.params.stream},
{"logit_bias", slot.sparams.logit_bias},
//{"logit_bias", slot.sparams.logit_bias},
{"n_probs", slot.sparams.n_probs},
{"min_keep", slot.sparams.min_keep},
{"grammar", slot.sparams.grammar},
{"samplers", samplers_sequence}
{"samplers", samplers},
};
}
@ -2136,7 +2084,7 @@ struct server_context {
GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
}
llama_sampling_reset(slot.ctx_sampling);
gpt_sampler_reset(slot.smpl);
if (!slot.params.cache_prompt) {
slot.n_past_se = 0;
@ -2149,7 +2097,7 @@ struct server_context {
// push the prompt into the sampling context (do not apply grammar)
for (int i = 0; i < slot.n_past; ++i) {
llama_sampling_accept(slot.ctx_sampling, ctx, slot.cache_tokens[i], false);
gpt_sampler_accept(slot.smpl, slot.cache_tokens[i], false);
}
}
}
@ -2202,7 +2150,7 @@ struct server_context {
slot.n_past_se = 0;
slot.ga_i = 0;
// TODO: is the system prompt ever in the sampling context?
llama_sampling_reset(slot.ctx_sampling);
gpt_sampler_reset(slot.smpl);
}
// remove the non-common part from the cache
@ -2375,18 +2323,18 @@ struct server_context {
slot.release();
slot.i_batch = -1;
continue; // continue loop of slots
} else {
}
// prompt evaluated for next-token prediction
slot.state = SLOT_STATE_GENERATING;
}
} else if (slot.state != SLOT_STATE_GENERATING) {
continue; // continue loop of slots
}
completion_token_output result;
const llama_token id = llama_sampling_sample(slot.ctx_sampling, ctx, NULL, slot.i_batch - i);
const llama_token id = gpt_sampler_sample(slot.smpl, ctx, slot.i_batch - i);
llama_sampling_accept(slot.ctx_sampling, ctx, id, true);
gpt_sampler_accept(slot.smpl, id, true);
slot.n_decoded += 1;
if (slot.n_decoded == 1) {
@ -2395,35 +2343,16 @@ struct server_context {
metrics.on_prompt_eval(slot);
}
llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
result.tok = id;
const size_t n_probs = std::min(cur_p.size, (size_t) slot.sparams.n_probs);
if (n_probs > 0) {
const size_t n_valid = slot.ctx_sampling->n_valid;
const auto * cur_p = gpt_sampler_get_candidates(slot.smpl);
// Make sure at least n_probs top tokens are at the front of the vector:
if (slot.sparams.temp == 0.0f && n_probs > n_valid) {
llama_sample_top_k(ctx, &cur_p, n_probs, 0);
}
if (slot.sparams.temp == 0.0f) {
// With greedy sampling the probabilities have possibly not been calculated.
for (size_t i = 0; i < n_probs; ++i) {
for (size_t i = 0; i < (size_t) slot.sparams.n_probs; ++i) {
result.probs.push_back({
cur_p.data[i].id,
i == 0 ? 1.0f : 0.0f
cur_p->data[i].id,
i >= cur_p->size ? 0.0f : cur_p->data[i].p,
});
}
} else {
for (size_t i = 0; i < n_probs; ++i) {
result.probs.push_back({
cur_p.data[i].id,
i >= n_valid ? 0.0f : cur_p.data[i].p // Tokens filtered out due to e.g. top_k have 0 probability.
});
}
}
}
if (!process_token(result, slot)) {
// release slot because of stop condition

View File

@ -55,6 +55,14 @@ int main(int argc, char ** argv) {
return 1;
}
auto sparams = llama_sampler_chain_default_params();
sparams.no_perf = false;
llama_sampler * smpl = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl, llama_sampler_init_greedy());
// tokenize the prompt
std::vector<llama_token> tokens_list;
@ -110,20 +118,9 @@ int main(int argc, char ** argv) {
while (n_cur <= n_predict) {
// sample the next token
{
auto n_vocab = llama_n_vocab(model);
auto * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
const llama_token new_token_id = llama_sampler_sample(smpl, ctx, batch.n_tokens - 1);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// sample the most likely token
const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
llama_sampler_accept(smpl, new_token_id);
// is it an end of generation?
if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
@ -160,12 +157,14 @@ int main(int argc, char ** argv) {
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
llama_print_timings(ctx);
LOG_TEE("\n");
llama_perf_print(smpl, LLAMA_PERF_TYPE_SAMPLER_CHAIN);
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
fprintf(stderr, "\n");
llama_batch_free(batch);
llama_sampler_free(smpl);
llama_free(ctx);
llama_free_model(model);

View File

@ -21,7 +21,7 @@ struct seq_draft {
std::vector<llama_token> tokens;
std::vector<std::vector<llama_token_data>> dists;
struct llama_sampling_context * ctx_sampling;
struct gpt_sampler * smpl = nullptr;
};
int main(int argc, char ** argv) {
@ -43,10 +43,7 @@ int main(int argc, char ** argv) {
// probability threshold for splitting a draft branch (only for n_seq_dft > 1)
const float p_split = params.p_split;
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
std::default_random_engine rng(params.seed);
std::default_random_engine rng(params.sparams.seed);
std::uniform_real_distribution<> u_dist;
#ifndef LOG_DISABLE_LOGS
@ -179,19 +176,17 @@ int main(int argc, char ** argv) {
// used to determine end of generation
bool has_eos = false;
// target model sampling context
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
// target model sampling context (reuse the llama_context's sampling instance)
struct gpt_sampler * smpl = gpt_sampler_init(model_tgt, params.sparams);
struct llama_sampler * softmax = llama_sampler_init_softmax();
// draft sequence data
std::vector<seq_draft> drafts(n_seq_dft);
params.sparams.grammar.clear(); // the draft samplers will copy the target sampler's grammar
if (params.sparams.temp == 0) {
params.sparams.temp = -1.0f; // force greedy sampling with probs for the draft model
}
for (int s = 0; s < n_seq_dft; ++s) {
drafts[s].ctx_sampling = llama_sampling_init(params.sparams);
// allocate gpt_sampler for each draft sequence
drafts[s].smpl = gpt_sampler_init(model_dft, params.sparams);
}
llama_batch batch_dft = llama_batch_init(params.n_ctx, 0, 1);
@ -233,12 +228,12 @@ int main(int argc, char ** argv) {
bool accept = false;
if (params.sparams.temp > 0) {
// stochastic verification
gpt_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft], true);
llama_token_data_array dist_tgt = llama_sampling_prepare(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft], true, NULL);
llama_sample_softmax(ctx_tgt, &dist_tgt);
float p_tgt = 0, p_dft = 0;
auto & dist_tgt = *gpt_sampler_get_candidates(smpl);
// GGML_ASSERT(dist_tgt.size() == dist_dft.size());
float p_tgt = 0.0f;
float p_dft = 0.0f;
while (active_seqs.size() > 0) {
// randomly select a sequence to verify from active sequences
@ -257,9 +252,13 @@ int main(int argc, char ** argv) {
}
continue;
}
LOG("verifying sequence #%d at pos #%d from %d active sequence(s)\n", s, i_dft, (int) active_seqs.size());
float r = u_dist(rng);
llama_token_data_array dist_dft = { drafts[s].dists[i_dft].data() , drafts[s].dists[i_dft].size(), true };
llama_token_data_array dist_dft = { drafts[s].dists[i_dft].data() , drafts[s].dists[i_dft].size(), LLAMA_TOKEN_NULL, true };
//GGML_ASSERT(dist_tgt.size <= dist_dft.size);
// acquire the token probabilities assigned by the draft and target models
for (size_t i = 0; i < dist_tgt.size; i++) {
if (dist_tgt.data[i].id == drafts[s].tokens[i_dft]) {
@ -278,7 +277,7 @@ int main(int argc, char ** argv) {
accept = true;
token_id = drafts[s].tokens[i_dft];
token_str = llama_token_to_piece(ctx_tgt, token_id);
llama_sampling_accept(ctx_sampling, ctx_tgt, token_id, true);
gpt_sampler_accept(smpl, token_id, true);
LOG("draft token %d of sequence %d (%d, '%s') accepted\n", i_dft, s, token_id, token_str.c_str());
break;
@ -289,7 +288,6 @@ int main(int argc, char ** argv) {
// calculate residual probability
GGML_ASSERT(dist_tgt.sorted);
GGML_ASSERT(dist_dft.sorted);
float sum_probs = 0.0f;
// sort dist by id
std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) {
@ -299,10 +297,18 @@ int main(int argc, char ** argv) {
return a.id < b.id;
});
float sum_probs = 0.0f;
for (size_t i = 0; i < dist_tgt.size; i++) {
if (i < dist_dft.size) {
dist_tgt.data[i].p = std::max(0.0f, dist_tgt.data[i].p - dist_dft.data[i].p);
} else {
dist_tgt.data[i].p = std::max(0.0f, dist_tgt.data[i].p);
}
sum_probs += dist_tgt.data[i].p;
}
for (size_t i = 0; i < dist_tgt.size; i++) {
dist_tgt.data[i].p /= sum_probs;
}
@ -332,21 +338,29 @@ int main(int argc, char ** argv) {
// all drafted tokens were rejected
// sample from the target model
LOG("all drafted tokens were rejected, sampling from residual distribution\n");
token_id = llama_sample_token(ctx_tgt, &dist_tgt);
llama_sampling_accept(ctx_sampling, ctx_tgt, token_id, true);
token_str = llama_token_to_piece(ctx_tgt, token_id);
std::vector<float> probs(dist_tgt.size);
for (size_t i = 0; i < dist_tgt.size; ++i) {
probs[i] = dist_tgt.data[i].p;
}
std::discrete_distribution<> dist(probs.begin(), probs.end());
const int idx = dist(rng);
token_id = dist_tgt.data[idx].id;
gpt_sampler_accept(smpl, token_id, true);
token_str = llama_token_to_piece(ctx_tgt, token_id);
}
} else {
// greedy verification
// sample from the target model
LOG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
token_id = llama_sampling_sample(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft]);
token_id = gpt_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft]);
llama_sampling_accept(ctx_sampling, ctx_tgt, token_id, true);
gpt_sampler_accept(smpl, token_id, true);
//LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, ctx_sampling->prev).c_str());
//LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, smpl->prev).c_str());
token_str = llama_token_to_piece(ctx_tgt, token_id);
@ -434,7 +448,10 @@ int main(int argc, char ** argv) {
break;
}
llama_sampling_cp(ctx_sampling, drafts[0].ctx_sampling);
if (drafts[0].smpl) {
gpt_sampler_free(drafts[0].smpl);
}
drafts[0].smpl = gpt_sampler_clone(smpl);
int n_seq_cur = 1;
int n_past_cur = n_past_dft;
@ -463,20 +480,20 @@ int main(int argc, char ** argv) {
continue;
}
llama_sampling_sample(drafts[s].ctx_sampling, ctx_dft, NULL, drafts[s].i_batch_dft);
gpt_sampler_sample(drafts[s].smpl, ctx_dft, drafts[s].i_batch_dft, true);
const auto & cur_p = drafts[s].ctx_sampling->cur;
const auto * cur_p = gpt_sampler_get_candidates(drafts[s].smpl);
for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p.size()); ++k) {
for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p->size); ++k) {
LOG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
k, s, i, cur_p[k].id, cur_p[k].p, llama_token_to_piece(ctx_dft, cur_p[k].id).c_str());
k, s, i, cur_p->data[k].id, cur_p->data[k].p, llama_token_to_piece(ctx_dft, cur_p->data[k].id).c_str());
}
std::vector<int> sa(1, s);
// attempt to split the branch if the probability is high enough
for (int f = 1; f < 8; ++f) {
if (n_seq_cur < n_seq_dft && cur_p[f].p > p_split) {
if (n_seq_cur < n_seq_dft && cur_p->data[f].p > p_split) {
LOG("splitting seq %3d into %3d\n", s, n_seq_cur);
llama_kv_cache_seq_rm(ctx_dft, n_seq_cur, -1, -1);
@ -503,7 +520,10 @@ int main(int argc, char ** argv) {
drafts[n_seq_cur].i_batch_dft = drafts[s].i_batch_dft;
drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt;
llama_sampling_cp(drafts[s].ctx_sampling, drafts[n_seq_cur].ctx_sampling);
if (drafts[n_seq_cur].smpl) {
gpt_sampler_free(drafts[n_seq_cur].smpl);
}
drafts[n_seq_cur].smpl = gpt_sampler_clone(drafts[s].smpl);
sa.push_back(n_seq_cur);
@ -515,15 +535,15 @@ int main(int argc, char ** argv) {
// add drafted token for each sequence
for (int is = 0; is < (int) sa.size(); ++is) {
const llama_token id = cur_p[is].id;
const llama_token id = cur_p->data[is].id;
const int s = sa[is];
llama_sampling_accept(drafts[s].ctx_sampling, ctx_dft, id, true);
gpt_sampler_accept(drafts[s].smpl, id, true);
drafts[s].tokens.push_back(id);
// save cur_p.data into drafts[s].dists
drafts[s].dists.push_back(cur_p);
drafts[s].dists.push_back({cur_p->data, cur_p->data + cur_p->size});
// add unique drafted tokens to the target batch
drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens);
@ -593,17 +613,19 @@ int main(int argc, char ** argv) {
LOG_TEE("n_accept = %d\n", n_accept);
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
LOG_TEE("\ndraft:\n");
llama_print_timings(ctx_dft);
LOG_TEE("\ndraft:\n\n");
// TODO: print sampling/grammar timings for all drafts
llama_perf_print(ctx_dft, LLAMA_PERF_TYPE_CONTEXT);
LOG_TEE("\ntarget:\n");
llama_print_timings(ctx_tgt);
LOG_TEE("\ntarget:\n\n");
gpt_perf_print(ctx_tgt, smpl);
llama_sampling_free(ctx_sampling);
gpt_sampler_free(smpl);
for (int s = 0; s < n_seq_dft; ++s) {
llama_sampling_free(drafts[s].ctx_sampling);
gpt_sampler_free(drafts[s].smpl);
}
llama_sampler_free(softmax);
llama_batch_free(batch_dft);
llama_free(ctx_tgt);

View File

@ -33,12 +33,15 @@
#define LLAMA_DEFAULT_SEED 0xFFFFFFFF
// TODO: use everywhere in the implementation
#define LLAMA_TOKEN_NULL -1
#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
#define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
#define LLAMA_SESSION_VERSION 8
#define LLAMA_SESSION_VERSION 9
#define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
#define LLAMA_STATE_SEQ_VERSION 2
@ -53,8 +56,10 @@ extern "C" {
// TODO: show sample usage
//
// struct llama_vocab; // TODO: add in the future
struct llama_model;
struct llama_context;
struct llama_sampler;
typedef int32_t llama_pos;
typedef int32_t llama_token;
@ -201,6 +206,7 @@ extern "C" {
LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
};
// TODO: simplify (https://github.com/ggerganov/llama.cpp/pull/9294#pullrequestreview-2286561979)
typedef struct llama_token_data {
llama_token id; // token id
float logit; // log-odds of the token
@ -208,8 +214,10 @@ extern "C" {
} llama_token_data;
typedef struct llama_token_data_array {
// TODO: consider SoA
llama_token_data * data;
size_t size;
int64_t selected; // this is the index in the data array (i.e. not the token id)
bool sorted;
} llama_token_data_array;
@ -302,7 +310,6 @@ extern "C" {
// NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
// https://github.com/ggerganov/llama.cpp/pull/7544
struct llama_context_params {
uint32_t seed; // RNG seed, -1 for random
uint32_t n_ctx; // text context, 0 = from model
uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
uint32_t n_ubatch; // physical maximum batch size
@ -330,11 +337,13 @@ extern "C" {
enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]
// Keep the booleans together to avoid misalignment during copy-by-value.
// Keep the booleans together and at the end of the struct to avoid misalignment during copy-by-value.
// TODO: move at the end of the struct
bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
bool embeddings; // if true, extract embeddings (together with logits)
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
//bool no_perf; // whether to measure performance timings, TODO: implement
// Abort callback
// if it returns true, execution of llama_decode() will be aborted
@ -358,56 +367,14 @@ extern "C" {
void * kv_overrides; // pointer to vector containing overrides
} llama_model_quantize_params;
// grammar types
struct llama_grammar;
typedef struct llama_logit_bias {
llama_token token;
float bias;
} llama_logit_bias;
// grammar element type
enum llama_gretype {
// end of rule definition
LLAMA_GRETYPE_END = 0,
// start of alternate definition for rule
LLAMA_GRETYPE_ALT = 1,
// non-terminal element: reference to rule
LLAMA_GRETYPE_RULE_REF = 2,
// terminal element: character (code point)
LLAMA_GRETYPE_CHAR = 3,
// inverse char(s) ([^a], [^a-b] [^abc])
LLAMA_GRETYPE_CHAR_NOT = 4,
// modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
// be an inclusive range ([a-z])
LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
// modifies a preceding LLAMA_GRETYPE_CHAR or
// LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
LLAMA_GRETYPE_CHAR_ALT = 6,
// any character (.)
LLAMA_GRETYPE_CHAR_ANY = 7,
};
typedef struct llama_grammar_element {
enum llama_gretype type;
uint32_t value; // Unicode code point or rule ID
} llama_grammar_element;
// performance timing information
struct llama_timings {
double t_start_ms;
double t_end_ms;
double t_load_ms;
double t_sample_ms;
double t_p_eval_ms;
double t_eval_ms;
int32_t n_sample;
int32_t n_p_eval;
int32_t n_eval;
};
typedef struct llama_sampler_chain_params {
bool no_perf; // whether to measure performance timings
} llama_sampler_chain_params;
// used in chat template
typedef struct llama_chat_message {
@ -419,8 +386,10 @@ extern "C" {
struct llama_lora_adapter;
// Helpers for getting default parameters
// TODO: update API to start accepting pointers to params structs (https://github.com/ggerganov/llama.cpp/discussions/9172)
LLAMA_API struct llama_model_params llama_model_default_params(void);
LLAMA_API struct llama_context_params llama_context_default_params(void);
LLAMA_API struct llama_sampler_chain_params llama_sampler_chain_default_params(void);
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
// Initialize the llama + ggml backend
@ -447,6 +416,7 @@ extern "C" {
LLAMA_API void llama_free_model(struct llama_model * model);
// TODO: rename to llama_init_from_model
LLAMA_API struct llama_context * llama_new_context_with_model(
struct llama_model * model,
struct llama_context_params params);
@ -462,23 +432,22 @@ extern "C" {
LLAMA_API bool llama_supports_mlock (void);
LLAMA_API bool llama_supports_gpu_offload(void);
LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
// Get the model's RoPE frequency scaling factor
LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
@ -706,7 +675,7 @@ extern "C" {
//
// Returns the *actual* size in bytes of the state
// (rng, logits, embedding and kv_cache)
// (logits, embedding and kv_cache)
// Only use when saving the state, not when restoring it, otherwise the size may be too small.
LLAMA_API size_t llama_state_get_size(struct llama_context * ctx);
LLAMA_API DEPRECATED(size_t llama_get_state_size(struct llama_context * ctx),
@ -1009,121 +978,110 @@ extern "C" {
int32_t length);
//
// Grammar
// Sampling API
//
// Sample usage:
//
// // prepare the sampling chain at the start
// auto sparams = llama_sampler_chain_default_params();
//
// llama_sampler * smpl = llama_sampler_chain_init(sparams);
//
// llama_sampler_chain_add(smpl, llama_sampler_init_top_k(50));
// llama_sampler_chain_add(smpl, llama_sampler_init_top_p(0.9, 1));
// llama_sampler_chain_add(smpl, llama_sampler_init_temp (0.8));
//
// // typically, the chain should end with a sampler such as "greedy", "dist" or "mirostat"
// // this sampler will be responsible to select the actual token
// llama_sampler_chain_add(smpl, llama_sampler_init_dist(seed));
//
// ...
//
// // decoding loop:
// while (...) {
// ...
//
// llama_decode(ctx, batch);
//
// // sample from the logits of the last token in the batch
// const llama_token id = llama_sampler_sample(smpl, ctx, -1);
//
// // accepting the token updates the internal state of certain samplers (e.g. grammar, repetition, etc.)
// llama_sampler_accept(smpl, id);
// ...
// }
//
// llama_sampler_free(smpl);
//
// TODO: In the future, llama_sampler will be utilized to offload the sampling to the backends (e.g. GPU).
// TODO: in the future, the entire sampling API that uses llama_model should start using llama_vocab
//
/// Initialize a llama_grammar.
///
/// @param rules The rule elements of the grammar to initialize.
/// @param n_rules The number of rules.
/// @param start_rule_index The index of the root rule (the starting point of the grammar).
/// @return The initialized llama_grammar or nullptr if initialization failed.
LLAMA_API struct llama_grammar * llama_grammar_init(
const llama_grammar_element ** rules,
size_t n_rules,
size_t start_rule_index);
typedef void * llama_sampler_context_t;
LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
// user code can implement the interface below in order to create custom llama_sampler
struct llama_sampler_i {
const char * (*name) (const struct llama_sampler * smpl); // can be NULL
void (*accept)( struct llama_sampler * smpl, llama_token token); // can be NULL
void (*apply) ( struct llama_sampler * smpl, llama_token_data_array * cur_p); // required
void (*reset) ( struct llama_sampler * smpl); // can be NULL
struct llama_sampler * (*clone) (const struct llama_sampler * smpl); // can be NULL if ctx is NULL
void (*free) ( struct llama_sampler * smpl); // can be NULL if ctx is NULL
LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
// TODO: API for internal libllama usage for appending the sampling to an existing ggml_cgraph
//void (*apply_ggml) (struct llama_sampler * smpl, ...);
};
/// @details Apply constraints from grammar
LLAMA_API void llama_grammar_sample(
const struct llama_grammar * grammar,
const struct llama_context * ctx,
llama_token_data_array * candidates);
LLAMA_API DEPRECATED(void llama_sample_grammar(
struct llama_context * ctx,
llama_token_data_array * candidates,
const struct llama_grammar * grammar),
"use llama_grammar_sample instead");
struct llama_sampler {
struct llama_sampler_i * iface;
llama_sampler_context_t ctx;
};
/// @details Accepts the sampled token into the grammar
LLAMA_API void llama_grammar_accept_token(
struct llama_grammar * grammar,
struct llama_context * ctx,
llama_token token);
// mirror of llama_sampler_i:
LLAMA_API const char * llama_sampler_name (const struct llama_sampler * smpl);
LLAMA_API void llama_sampler_accept( struct llama_sampler * smpl, llama_token token);
LLAMA_API void llama_sampler_apply ( struct llama_sampler * smpl, llama_token_data_array * cur_p);
LLAMA_API void llama_sampler_reset ( struct llama_sampler * smpl);
LLAMA_API struct llama_sampler * llama_sampler_clone (const struct llama_sampler * smpl);
// important: do not free if the sampler has been added to a llama_sampler_chain (via llama_sampler_chain_add)
LLAMA_API void llama_sampler_free ( struct llama_sampler * smpl);
//
// Sampling functions
//
// llama_sampler_chain
// a type of llama_sampler that can chain multiple samplers one after another
// Sets the current rng seed.
LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
LLAMA_API struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params);
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
LLAMA_API void llama_sample_repetition_penalties(
struct llama_context * ctx,
llama_token_data_array * candidates,
const llama_token * last_tokens,
size_t penalty_last_n,
float penalty_repeat,
float penalty_freq,
float penalty_present);
// important: takes ownership of the sampler object and will free it when llama_sampler_free is called
LLAMA_API void llama_sampler_chain_add( struct llama_sampler * chain, struct llama_sampler * smpl);
LLAMA_API struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i);
LLAMA_API int llama_sampler_chain_n (const struct llama_sampler * chain);
/// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
/// @param logits Logits extracted from the original generation context.
/// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
/// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
LLAMA_API void llama_sample_apply_guidance(
struct llama_context * ctx,
float * logits,
float * logits_guidance,
float scale);
// available samplers:
LLAMA_API struct llama_sampler * llama_sampler_init_greedy (void);
LLAMA_API struct llama_sampler * llama_sampler_init_dist (uint32_t seed);
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
LLAMA_API void llama_sample_softmax(
struct llama_context * ctx,
llama_token_data_array * candidates);
LLAMA_API struct llama_sampler * llama_sampler_init_softmax (void);
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_API void llama_sample_top_k(
struct llama_context * ctx,
llama_token_data_array * candidates,
int32_t k,
size_t min_keep);
LLAMA_API struct llama_sampler * llama_sampler_init_top_k (int32_t k);
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_API void llama_sample_top_p(
struct llama_context * ctx,
llama_token_data_array * candidates,
float p,
size_t min_keep);
LLAMA_API struct llama_sampler * llama_sampler_init_top_p (float p, size_t min_keep);
/// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
LLAMA_API void llama_sample_min_p(
struct llama_context * ctx,
llama_token_data_array * candidates,
float p,
size_t min_keep);
LLAMA_API struct llama_sampler * llama_sampler_init_min_p (float p, size_t min_keep);
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
LLAMA_API void llama_sample_tail_free(
struct llama_context * ctx,
llama_token_data_array * candidates,
float z,
size_t min_keep);
LLAMA_API struct llama_sampler * llama_sampler_init_tail_free (float z, size_t min_keep);
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
LLAMA_API void llama_sample_typical(
struct llama_context * ctx,
llama_token_data_array * candidates,
float p,
size_t min_keep);
LLAMA_API struct llama_sampler * llama_sampler_init_typical (float p, size_t min_keep);
LLAMA_API struct llama_sampler * llama_sampler_init_temp (float t);
/// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
LLAMA_API void llama_sample_entropy(
struct llama_context * ctx,
llama_token_data_array * candidates_p,
float min_temp,
float max_temp,
float exponent_val);
LLAMA_API void llama_sample_temp(
struct llama_context * ctx,
llama_token_data_array * candidates,
float temp);
/// @details Dynamic temperature implementation (a.k.a. entropy) described in the paper https://arxiv.org/abs/2309.02772.
LLAMA_API struct llama_sampler * llama_sampler_init_temp_ext (float t, float delta, float exponent);
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
@ -1131,36 +1089,57 @@ extern "C" {
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_API llama_token llama_sample_token_mirostat(
struct llama_context * ctx,
llama_token_data_array * candidates,
LLAMA_API struct llama_sampler * llama_sampler_init_mirostat(
int32_t n_vocab,
uint32_t seed,
float tau,
float eta,
int32_t m,
float * mu);
int32_t m);
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_API llama_token llama_sample_token_mirostat_v2(
struct llama_context * ctx,
llama_token_data_array * candidates,
LLAMA_API struct llama_sampler * llama_sampler_init_mirostat_v2(
uint32_t seed,
float tau,
float eta,
float * mu);
float eta);
/// @details Selects the token with the highest probability.
/// Does not compute the token probabilities. Use llama_sample_softmax() instead.
LLAMA_API llama_token llama_sample_token_greedy(
struct llama_context * ctx,
llama_token_data_array * candidates);
LLAMA_API struct llama_sampler * llama_sampler_init_grammar(
const struct llama_model * model,
const char * grammar_str,
const char * grammar_root);
/// @details Randomly selects a token from the candidates based on their probabilities using the RNG of ctx.
LLAMA_API llama_token llama_sample_token(
struct llama_context * ctx,
llama_token_data_array * candidates);
LLAMA_API struct llama_sampler * llama_sampler_init_penalties(
int32_t n_vocab, // llama_n_vocab()
llama_token special_eos_id, // llama_token_eos()
llama_token linefeed_id, // llama_token_nl()
int32_t penalty_last_n, // last n tokens to penalize (0 = disable penalty, -1 = context size)
float penalty_repeat, // 1.0 = disabled
float penalty_freq, // 0.0 = disabled
float penalty_present, // 0.0 = disabled
bool penalize_nl, // consider newlines as a repeatable token
bool ignore_eos); // ignore the end-of-sequence token
LLAMA_API struct llama_sampler * llama_sampler_init_logit_bias(
int32_t n_vocab,
int32_t n_logit_bias,
const llama_logit_bias * logit_bias);
// Shorthand for:
//
// const auto * logits = llama_get_logits_ith(ctx, idx);
// llama_token_data_array cur_p = { ... init from logits ... };
// llama_sampler_apply(smpl, &cur_p);
// return cur_p.data[cur_p.selected].id;
//
// At this point, this is mostly a convenience function.
//
LLAMA_API llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx);
// TODO: extend in the future
//LLAMA_API void llama_decode_with_sampler(struct llama_context * ctx, struct llama_sampler * smpl, struct llama_batch batch, ...);
//
// Model split
@ -1176,12 +1155,6 @@ extern "C" {
// Returns the split_prefix length.
LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
// Performance information
LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
LLAMA_API void llama_print_timings(struct llama_context * ctx);
LLAMA_API void llama_reset_timings(struct llama_context * ctx);
// Print system information
LLAMA_API const char * llama_print_system_info(void);
@ -1189,65 +1162,24 @@ extern "C" {
// If this is not called, or NULL is supplied, everything is output on stderr.
LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
//
// Performance utils
//
// NOTE: Used by llama.cpp examples, avoid using in third-party apps. Instead, do your own performance measurements.
//
enum llama_perf_type {
LLAMA_PERF_TYPE_CONTEXT = 0,
LLAMA_PERF_TYPE_SAMPLER_CHAIN = 1,
};
LLAMA_API void llama_perf_print(const void * ctx, enum llama_perf_type type);
LLAMA_API void llama_perf_reset( void * ctx, enum llama_perf_type type);
LLAMA_API void llama_perf_dump_yaml(FILE * stream, const struct llama_context * ctx);
#ifdef __cplusplus
}
#endif
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
#ifdef LLAMA_API_INTERNAL
#include <random>
#include <string>
#include <vector>
struct ggml_tensor;
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
struct llama_context * ctx
);
struct llama_partial_utf8 {
uint32_t value; // bit value so far (unshifted)
int n_remain; // num bytes remaining; -1 indicates invalid sequence
};
struct llama_grammar_candidate {
size_t index;
const uint32_t * code_points;
llama_partial_utf8 partial_utf8;
};
using llama_grammar_rule = std::vector< llama_grammar_element>;
using llama_grammar_stack = std::vector<const llama_grammar_element *>;
using llama_grammar_rules = std::vector<llama_grammar_rule>;
using llama_grammar_stacks = std::vector<llama_grammar_stack>;
using llama_grammar_candidates = std::vector<llama_grammar_candidate>;
const llama_grammar_rules & llama_grammar_get_rules (const struct llama_grammar * grammar);
llama_grammar_stacks & llama_grammar_get_stacks( struct llama_grammar * grammar);
void llama_grammar_accept(
const llama_grammar_rules & rules,
const llama_grammar_stacks & stacks,
const uint32_t chr,
llama_grammar_stacks & new_stacks);
std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
const llama_grammar_rules & rules,
const llama_grammar_stack & stack,
const llama_grammar_candidates & candidates);
std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
const std::string & src,
llama_partial_utf8 partial_start);
// Randomly selects a token from the candidates based on their probabilities using given std::mt19937.
// This is a temporary workaround in order to fix race conditions when sampling with multiple sequences.
llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng);
#endif // LLAMA_API_INTERNAL
#endif // LLAMA_H

View File

@ -3,11 +3,31 @@
#include "llama-vocab.h"
#include "llama-sampling.h"
#include <cmath>
#include <algorithm>
#include <stdexcept>
// Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
// pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
//
// helpers
//
// NOTE: assumes valid utf8 (but checks for overrun)
static std::pair<uint32_t, const char *> decode_utf8(const char * src) {
static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
uint8_t first_byte = static_cast<uint8_t>(*src);
uint8_t highbits = first_byte >> 4;
int len = lookup[highbits];
uint8_t mask = (1 << (8 - len)) - 1;
uint32_t value = first_byte & mask;
const char * end = src + len; // may overrun!
const char * pos = src + 1;
for ( ; pos < end && *pos; pos++) {
value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
}
return std::make_pair(value, pos);
}
static std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
const std::string & src,
llama_partial_utf8 partial_start) {
static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
@ -67,12 +87,510 @@ std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
}
const llama_grammar_rules & llama_grammar_get_rules(const struct llama_grammar * grammar) {
return grammar->rules;
static bool is_digit_char(char c) {
return '0' <= c && c <= '9';
}
llama_grammar_stacks & llama_grammar_get_stacks(struct llama_grammar * grammar) {
return grammar->stacks;
static bool is_word_char(char c) {
return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '-' || is_digit_char(c);
}
static std::pair<uint32_t, const char *> parse_hex(const char * src, int size) {
const char * pos = src;
const char * end = src + size;
uint32_t value = 0;
for ( ; pos < end && *pos; pos++) {
value <<= 4;
char c = *pos;
if ('a' <= c && c <= 'f') {
value += c - 'a' + 10;
} else if ('A' <= c && c <= 'F') {
value += c - 'A' + 10;
} else if ('0' <= c && c <= '9') {
value += c - '0';
} else {
break;
}
}
if (pos != end) {
throw std::runtime_error("expecting " + std::to_string(size) + " hex chars at " + src);
}
return std::make_pair(value, pos);
}
static const char * parse_space(const char * src, bool newline_ok) {
const char * pos = src;
while (*pos == ' ' || *pos == '\t' || *pos == '#' ||
(newline_ok && (*pos == '\r' || *pos == '\n'))) {
if (*pos == '#') {
while (*pos && *pos != '\r' && *pos != '\n') {
pos++;
}
} else {
pos++;
}
}
return pos;
}
static const char * parse_name(const char * src) {
const char * pos = src;
while (is_word_char(*pos)) {
pos++;
}
if (pos == src) {
throw std::runtime_error(std::string("expecting name at ") + src);
}
return pos;
}
static const char * parse_int(const char * src) {
const char * pos = src;
while (is_digit_char(*pos)) {
pos++;
}
if (pos == src) {
throw std::runtime_error(std::string("expecting integer at ") + src);
}
return pos;
}
static std::pair<uint32_t, const char *> parse_char(const char * src) {
if (*src == '\\') {
switch (src[1]) {
case 'x': return parse_hex(src + 2, 2);
case 'u': return parse_hex(src + 2, 4);
case 'U': return parse_hex(src + 2, 8);
case 't': return std::make_pair('\t', src + 2);
case 'r': return std::make_pair('\r', src + 2);
case 'n': return std::make_pair('\n', src + 2);
case '\\':
case '"':
case '[':
case ']':
return std::make_pair(src[1], src + 2);
default:
throw std::runtime_error(std::string("unknown escape at ") + src);
}
} else if (*src) {
return decode_utf8(src);
}
throw std::runtime_error("unexpected end of input");
}
static void print_grammar_char(FILE * file, uint32_t c) {
if (0x20 <= c && c <= 0x7f) {
fprintf(file, "%c", static_cast<char>(c));
} else {
// cop out of encoding UTF-8
fprintf(file, "<U+%04X>", c);
}
}
static bool is_char_element(llama_grammar_element elem) {
switch (elem.type) {
case LLAMA_GRETYPE_CHAR: return true;
case LLAMA_GRETYPE_CHAR_NOT: return true;
case LLAMA_GRETYPE_CHAR_ALT: return true;
case LLAMA_GRETYPE_CHAR_RNG_UPPER: return true;
case LLAMA_GRETYPE_CHAR_ANY: return true;
default: return false;
}
}
static void print_rule_binary(FILE * file, const llama_grammar_rule & rule) {
for (auto elem : rule) {
switch (elem.type) {
case LLAMA_GRETYPE_END: fprintf(file, "END"); break;
case LLAMA_GRETYPE_ALT: fprintf(file, "ALT"); break;
case LLAMA_GRETYPE_RULE_REF: fprintf(file, "RULE_REF"); break;
case LLAMA_GRETYPE_CHAR: fprintf(file, "CHAR"); break;
case LLAMA_GRETYPE_CHAR_NOT: fprintf(file, "CHAR_NOT"); break;
case LLAMA_GRETYPE_CHAR_RNG_UPPER: fprintf(file, "CHAR_RNG_UPPER"); break;
case LLAMA_GRETYPE_CHAR_ALT: fprintf(file, "CHAR_ALT"); break;
case LLAMA_GRETYPE_CHAR_ANY: fprintf(file, "CHAR_ANY"); break;
}
switch (elem.type) {
case LLAMA_GRETYPE_END:
case LLAMA_GRETYPE_ALT:
case LLAMA_GRETYPE_RULE_REF:
fprintf(file, "(%u) ", elem.value);
break;
case LLAMA_GRETYPE_CHAR:
case LLAMA_GRETYPE_CHAR_NOT:
case LLAMA_GRETYPE_CHAR_RNG_UPPER:
case LLAMA_GRETYPE_CHAR_ALT:
case LLAMA_GRETYPE_CHAR_ANY:
fprintf(file, "(\"");
print_grammar_char(file, elem.value);
fprintf(file, "\") ");
break;
}
}
fprintf(file, "\n");
}
static void print_rule(
FILE * file,
uint32_t rule_id,
const llama_grammar_rule & rule,
const std::map<uint32_t, std::string> & symbol_id_names) {
if (rule.empty() || rule.back().type != LLAMA_GRETYPE_END) {
throw std::runtime_error(
"malformed rule, does not end with LLAMA_GRETYPE_END: " + std::to_string(rule_id));
}
fprintf(file, "%s ::= ", symbol_id_names.at(rule_id).c_str());
for (size_t i = 0, end = rule.size() - 1; i < end; i++) {
llama_grammar_element elem = rule[i];
switch (elem.type) {
case LLAMA_GRETYPE_END:
throw std::runtime_error(
"unexpected end of rule: " + std::to_string(rule_id) + "," +
std::to_string(i));
case LLAMA_GRETYPE_ALT:
fprintf(file, "| ");
break;
case LLAMA_GRETYPE_RULE_REF:
fprintf(file, "%s ", symbol_id_names.at(elem.value).c_str());
break;
case LLAMA_GRETYPE_CHAR:
fprintf(file, "[");
print_grammar_char(file, elem.value);
break;
case LLAMA_GRETYPE_CHAR_NOT:
fprintf(file, "[^");
print_grammar_char(file, elem.value);
break;
case LLAMA_GRETYPE_CHAR_RNG_UPPER:
if (i == 0 || !is_char_element(rule[i - 1])) {
throw std::runtime_error(
"LLAMA_GRETYPE_CHAR_RNG_UPPER without preceding char: " +
std::to_string(rule_id) + "," + std::to_string(i));
}
fprintf(file, "-");
print_grammar_char(file, elem.value);
break;
case LLAMA_GRETYPE_CHAR_ALT:
if (i == 0 || !is_char_element(rule[i - 1])) {
throw std::runtime_error(
"LLAMA_GRETYPE_CHAR_ALT without preceding char: " +
std::to_string(rule_id) + "," + std::to_string(i));
}
print_grammar_char(file, elem.value);
break;
case LLAMA_GRETYPE_CHAR_ANY:
fprintf(file, ".");
break;
}
if (is_char_element(elem)) {
switch (rule[i + 1].type) {
case LLAMA_GRETYPE_CHAR_ALT:
case LLAMA_GRETYPE_CHAR_RNG_UPPER:
case LLAMA_GRETYPE_CHAR_ANY:
break;
default:
fprintf(file, "] ");
}
}
}
fprintf(file, "\n");
}
//
// implementation
//
uint32_t llama_grammar_parser::get_symbol_id(const char * src, size_t len) {
uint32_t next_id = static_cast<uint32_t>(symbol_ids.size());
auto result = symbol_ids.emplace(std::string(src, len), next_id);
return result.first->second;
}
uint32_t llama_grammar_parser::generate_symbol_id(const std::string & base_name) {
uint32_t next_id = static_cast<uint32_t>(symbol_ids.size());
symbol_ids[base_name + '_' + std::to_string(next_id)] = next_id;
return next_id;
}
void llama_grammar_parser::add_rule(uint32_t rule_id, const llama_grammar_rule & rule) {
if (rules.size() <= rule_id) {
rules.resize(rule_id + 1);
}
rules[rule_id] = rule;
}
const char * llama_grammar_parser::parse_alternates(
const char * src,
const std::string & rule_name,
uint32_t rule_id,
bool is_nested) {
llama_grammar_rule rule;
const char * pos = parse_sequence(src, rule_name, rule, is_nested);
while (*pos == '|') {
rule.push_back({LLAMA_GRETYPE_ALT, 0});
pos = parse_space(pos + 1, true);
pos = parse_sequence(pos, rule_name, rule, is_nested);
}
rule.push_back({LLAMA_GRETYPE_END, 0});
add_rule(rule_id, rule);
return pos;
}
const char * llama_grammar_parser::parse_sequence(
const char * src,
const std::string & rule_name,
llama_grammar_rule & rule,
bool is_nested) {
size_t last_sym_start = rule.size();
const char * pos = src;
auto handle_repetitions = [&](int min_times, int max_times) {
if (last_sym_start == rule.size()) {
throw std::runtime_error(std::string("expecting preceding item to */+/?/{ at ") + pos);
}
// apply transformation to previous symbol (last_sym_start to end) according to
// the following rewrite rules:
// S{m,n} --> S S S (m times) S'(n-m)
// S'(x) ::= S S'(x-1) |
// (... n-m definitions of these S' rules ...)
// S'(1) ::= S |
// S{m,} --> S S S (m times) S'
// S' ::= S S' |
// S* --> S{0,}
// --> S' ::= S S' |
// S+ --> S{1,}
// --> S S'
// S' ::= S S' |
// S? --> S{0,1}
// --> S'
// S' ::= S |
llama_grammar_rule prev_rule(rule.begin() + last_sym_start, rule.end());
if (min_times == 0) {
rule.resize(last_sym_start);
} else {
// Repeat the previous elements (min_times - 1) times
for (int i = 1; i < min_times; i++) {
rule.insert(rule.end(), prev_rule.begin(), prev_rule.end());
}
}
uint32_t last_rec_rule_id = 0;
auto n_opt = max_times < 0 ? 1 : max_times - min_times;
llama_grammar_rule rec_rule(prev_rule);
for (int i = 0; i < n_opt; i++) {
rec_rule.resize(prev_rule.size());
uint32_t rec_rule_id = generate_symbol_id( rule_name);
if (i > 0 || max_times < 0) {
rec_rule.push_back({LLAMA_GRETYPE_RULE_REF, max_times < 0 ? rec_rule_id : last_rec_rule_id});
}
rec_rule.push_back({LLAMA_GRETYPE_ALT, 0});
rec_rule.push_back({LLAMA_GRETYPE_END, 0});
add_rule( rec_rule_id, rec_rule);
last_rec_rule_id = rec_rule_id;
}
if (n_opt > 0) {
rule.push_back({LLAMA_GRETYPE_RULE_REF, last_rec_rule_id});
}
};
while (*pos) {
if (*pos == '"') { // literal string
pos++;
last_sym_start = rule.size();
while (*pos != '"') {
if (!*pos) {
throw std::runtime_error("unexpected end of input");
}
auto char_pair = parse_char(pos);
pos = char_pair.second;
rule.push_back({LLAMA_GRETYPE_CHAR, char_pair.first});
}
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '[') { // char range(s)
pos++;
enum llama_gretype start_type = LLAMA_GRETYPE_CHAR;
if (*pos == '^') {
pos++;
start_type = LLAMA_GRETYPE_CHAR_NOT;
}
last_sym_start = rule.size();
while (*pos != ']') {
if (!*pos) {
throw std::runtime_error("unexpected end of input");
}
auto char_pair = parse_char(pos);
pos = char_pair.second;
enum llama_gretype type = last_sym_start < rule.size()
? LLAMA_GRETYPE_CHAR_ALT
: start_type;
rule.push_back({type, char_pair.first});
if (pos[0] == '-' && pos[1] != ']') {
if (!pos[1]) {
throw std::runtime_error("unexpected end of input");
}
auto endchar_pair = parse_char(pos + 1);
pos = endchar_pair.second;
rule.push_back({LLAMA_GRETYPE_CHAR_RNG_UPPER, endchar_pair.first});
}
}
pos = parse_space(pos + 1, is_nested);
} else if (is_word_char(*pos)) { // rule reference
const char * name_end = parse_name(pos);
uint32_t ref_rule_id = get_symbol_id(pos, name_end - pos);
pos = parse_space(name_end, is_nested);
last_sym_start = rule.size();
rule.push_back({LLAMA_GRETYPE_RULE_REF, ref_rule_id});
} else if (*pos == '(') { // grouping
// parse nested alternates into synthesized rule
pos = parse_space(pos + 1, true);
uint32_t sub_rule_id = generate_symbol_id(rule_name);
pos = parse_alternates(pos, rule_name, sub_rule_id, true);
last_sym_start = rule.size();
// output reference to synthesized rule
rule.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id});
if (*pos != ')') {
throw std::runtime_error(std::string("expecting ')' at ") + pos);
}
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '.') { // any char
last_sym_start = rule.size();
rule.push_back({LLAMA_GRETYPE_CHAR_ANY, 0});
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '*') {
pos = parse_space(pos + 1, is_nested);
handle_repetitions(0, -1);
} else if (*pos == '+') {
pos = parse_space(pos + 1, is_nested);
handle_repetitions(1, -1);
} else if (*pos == '?') {
pos = parse_space(pos + 1, is_nested);
handle_repetitions(0, 1);
} else if (*pos == '{') {
pos = parse_space(pos + 1, is_nested);
if (!is_digit_char(*pos)) {
throw std::runtime_error(std::string("expecting an int at ") + pos);
}
const char * int_end = parse_int(pos);
int min_times = std::stoul(std::string(pos, int_end - pos));
pos = parse_space(int_end, is_nested);
int max_times = -1;
if (*pos == '}') {
max_times = min_times;
pos = parse_space(pos + 1, is_nested);
} else if (*pos == ',') {
pos = parse_space(pos + 1, is_nested);
if (is_digit_char(*pos)) {
const char * int_end = parse_int(pos);
max_times = std::stoul(std::string(pos, int_end - pos));
pos = parse_space(int_end, is_nested);
}
if (*pos != '}') {
throw std::runtime_error(std::string("expecting '}' at ") + pos);
}
pos = parse_space(pos + 1, is_nested);
} else {
throw std::runtime_error(std::string("expecting ',' at ") + pos);
}
handle_repetitions(min_times, max_times);
} else {
break;
}
}
return pos;
}
const char * llama_grammar_parser::parse_rule(const char * src) {
const char * name_end = parse_name(src);
const char * pos = parse_space(name_end, false);
size_t name_len = name_end - src;
uint32_t rule_id = get_symbol_id(src, name_len);
const std::string name(src, name_len);
if (!(pos[0] == ':' && pos[1] == ':' && pos[2] == '=')) {
throw std::runtime_error(std::string("expecting ::= at ") + pos);
}
pos = parse_space(pos + 3, true);
pos = parse_alternates(pos, name, rule_id, false);
if (*pos == '\r') {
pos += pos[1] == '\n' ? 2 : 1;
} else if (*pos == '\n') {
pos++;
} else if (*pos) {
throw std::runtime_error(std::string("expecting newline or end at ") + pos);
}
return parse_space(pos, true);
}
bool llama_grammar_parser::parse(const char * src) {
try {
const char * pos = parse_space(src, true);
while (*pos) {
pos = parse_rule(pos);
}
// Validate the state to ensure that all rules are defined
for (const auto & rule : rules) {
if (rule.empty()) {
throw std::runtime_error("Undefined rule");
}
for (const auto & elem : rule) {
if (elem.type == LLAMA_GRETYPE_RULE_REF) {
// Ensure that the rule at that location exists
if (elem.value >= rules.size() || rules[elem.value].empty()) {
// Get the name of the rule that is missing
for (const auto & kv : symbol_ids) {
if (kv.second == elem.value) {
throw std::runtime_error("Undefined rule identifier '" + kv.first + "'");
}
}
}
}
}
}
} catch (const std::exception & err) {
fprintf(stderr, "%s: error parsing grammar: %s\n", __func__, err.what());
rules.clear();
return false;
}
return true;
}
void llama_grammar_parser::print(FILE * file) {
try {
std::map<uint32_t, std::string> symbol_id_names;
for (const auto & kv : symbol_ids) {
symbol_id_names[kv.second] = kv.first;
}
for (size_t i = 0, end = rules.size(); i < end; i++) {
// fprintf(file, "%zu: ", i);
// print_rule_binary(file, rules[i]);
print_rule(file, uint32_t(i), rules[i], symbol_id_names);
// fprintf(file, "\n");
}
} catch (const std::exception & err) {
fprintf(stderr, "\n%s: error printing grammar: %s\n", __func__, err.what());
}
}
llama_grammar_stack llama_grammar_parser::c_rules() const {
llama_grammar_stack ret;
ret.reserve(rules.size());
for (const auto & rule : rules) {
ret.push_back(rule.data());
}
return ret;
}
// returns true iff pos points to the end of one of the definitions of a rule
@ -89,7 +607,6 @@ static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos)
static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
const llama_grammar_element * pos,
const uint32_t chr) {
bool found = false;
bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY;
@ -225,36 +742,6 @@ static void llama_grammar_advance_stack(
}
}
// takes a set of possible pushdown stacks on a grammar, which are required to
// be positioned at a character range (see `llama_grammar_advance_stack`), and
// produces the N possible stacks if the given char is accepted at those
// positions
void llama_grammar_accept(
const llama_grammar_rules & rules,
const llama_grammar_stacks & stacks,
const uint32_t chr,
llama_grammar_stacks & new_stacks) {
new_stacks.clear();
for (const auto & stack : stacks) {
if (stack.empty()) {
continue;
}
auto match = llama_grammar_match_char(stack.back(), chr);
if (match.first) {
const llama_grammar_element * pos = match.second;
// update top of stack to next element, if any
llama_grammar_stack new_stack(stack.begin(), stack.end() - 1);
if (!llama_grammar_is_end_of_sequence(pos)) {
new_stack.push_back(pos);
}
llama_grammar_advance_stack(rules, new_stack, new_stacks);
}
}
}
static llama_grammar_candidates llama_grammar_reject_candidates(
const llama_grammar_rules & rules,
const llama_grammar_stacks & stacks,
@ -270,9 +757,98 @@ static llama_grammar_candidates llama_grammar_reject_candidates(
for (size_t i = 1, size = stacks.size(); i < size; ++i) {
rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
}
return rejects;
}
static bool llama_grammar_detect_left_recursion(
const llama_grammar_rules & rules,
size_t rule_index,
std::vector<bool> * rules_visited,
std::vector<bool> * rules_in_progress,
std::vector<bool> * rules_may_be_empty) {
if ((*rules_in_progress)[rule_index]) {
return true;
}
(*rules_in_progress)[rule_index] = true;
const llama_grammar_rule & rule = rules[rule_index];
// First check if the rule might produce the empty string. This could be done combined with the second
// step but it's more readable as two steps.
bool at_rule_start = true;
for (size_t i = 0; i < rule.size(); i++) {
if (llama_grammar_is_end_of_sequence(&rule[i])) {
if (at_rule_start) {
(*rules_may_be_empty)[rule_index] = true;
break;
}
at_rule_start = true;
} else {
at_rule_start = false;
}
}
// Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may
// be empty)
bool recurse_into_nonterminal = true;
for (size_t i = 0; i < rule.size(); i++) {
if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) {
if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) {
return true;
}
if (!((*rules_may_be_empty)[(size_t)rule[i].value])) {
recurse_into_nonterminal = false;
}
} else if (llama_grammar_is_end_of_sequence(&rule[i])) {
recurse_into_nonterminal = true;
} else {
recurse_into_nonterminal = false;
}
}
(*rules_in_progress)[rule_index] = false;
(*rules_visited)[rule_index] = true;
return false;
}
const llama_grammar_rules & llama_grammar_get_rules(const struct llama_grammar * grammar) {
return grammar->rules;
}
llama_grammar_stacks & llama_grammar_get_stacks(struct llama_grammar * grammar) {
return grammar->stacks;
}
void llama_grammar_accept(
const llama_grammar_rules & rules,
const llama_grammar_stacks & stacks,
const uint32_t chr,
llama_grammar_stacks & stacks_new) {
stacks_new.clear();
stacks_new.reserve(stacks.size());
for (const auto & stack : stacks) {
if (stack.empty()) {
continue;
}
auto match = llama_grammar_match_char(stack.back(), chr);
if (match.first) {
const llama_grammar_element * pos = match.second;
// update top of stack to next element, if any
llama_grammar_stack new_stack(stack.begin(), stack.end() - 1);
if (!llama_grammar_is_end_of_sequence(pos)) {
new_stack.push_back(pos);
}
llama_grammar_advance_stack(rules, new_stack, stacks_new);
}
}
}
llama_grammar_candidates llama_grammar_reject_candidates_for_stack(
const llama_grammar_rules & rules,
const llama_grammar_stack & stack,
@ -328,63 +904,10 @@ llama_grammar_candidates llama_grammar_reject_candidates_for_stack(
return rejects;
}
static bool llama_grammar_detect_left_recursion(
const llama_grammar_rules & rules,
size_t rule_index,
std::vector<bool> * rules_visited,
std::vector<bool> * rules_in_progress,
std::vector<bool> * rules_may_be_empty) {
if ((*rules_in_progress)[rule_index]) {
return true;
}
(*rules_in_progress)[rule_index] = true;
const llama_grammar_rule & rule = rules[rule_index];
// First check if the rule might produce the empty string. This could be done combined with the second
// step but it's more readable as two steps.
bool at_rule_start = true;
for (size_t i = 0; i < rule.size(); i++) {
if (llama_grammar_is_end_of_sequence(&rule[i])) {
if (at_rule_start) {
(*rules_may_be_empty)[rule_index] = true;
break;
}
at_rule_start = true;
} else {
at_rule_start = false;
}
}
// Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may
// be empty)
bool recurse_into_nonterminal = true;
for (size_t i = 0; i < rule.size(); i++) {
if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) {
if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) {
return true;
}
if (!((*rules_may_be_empty)[(size_t)rule[i].value])) {
recurse_into_nonterminal = false;
}
} else if (llama_grammar_is_end_of_sequence(&rule[i])) {
recurse_into_nonterminal = true;
} else {
recurse_into_nonterminal = false;
}
}
(*rules_in_progress)[rule_index] = false;
(*rules_visited)[rule_index] = true;
return false;
}
//
// grammar - external
//
////////////////////
struct llama_grammar * llama_grammar_init_impl(
const struct llama_vocab * vocab,
const llama_grammar_element ** rules,
size_t n_rules,
size_t start_rule_index) {
@ -438,22 +961,104 @@ struct llama_grammar * llama_grammar_init_impl(
// Important: vec_rules has to be moved here, not copied, because stacks contains
// pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
// then the pointers would be invalidated when the local vec_rules goes out of scope.
return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
return new llama_grammar { vocab, std::move(vec_rules), std::move(stacks), {}, };
}
struct llama_grammar * llama_grammar_init_impl(const struct llama_vocab * vocab, const char * grammar_str, const char * grammar_root) {
llama_grammar_parser parser;
// if there is a grammar, parse it
if (!parser.parse(grammar_str)) {
return nullptr;
}
// will be empty (default) if there are parse errors
if (parser.rules.empty()) {
fprintf(stderr, "%s: failed to parse grammar\n", __func__);
return nullptr;
}
// Ensure that there is a "root" node.
if (parser.symbol_ids.find("root") == parser.symbol_ids.end()) {
fprintf(stderr, "%s: grammar does not contain a 'root' symbol\n", __func__);
return nullptr;
}
std::vector<const llama_grammar_element *> grammar_rules(parser.c_rules());
const size_t n_rules = grammar_rules.size();
const size_t start_rule_index = parser.symbol_ids.at(grammar_root);
const llama_grammar_element * pos;
// copy rule definitions into vectors
llama_grammar_rules vec_rules(n_rules);
for (size_t i = 0; i < n_rules; i++) {
for (pos = grammar_rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
vec_rules[i].push_back(*pos);
}
vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
}
// Check for left recursion
std::vector<bool> rules_visited(n_rules);
std::vector<bool> rules_in_progress(n_rules);
std::vector<bool> rules_may_be_empty(n_rules);
for (size_t i = 0; i < n_rules; i++) {
if (rules_visited[i]) {
continue;
}
if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) {
LLAMA_LOG_ERROR("unsupported grammar, left recursion detected for nonterminal at index %zu", i);
return nullptr;
}
}
// loop over alternates of start rule to build initial stacks
llama_grammar_stacks stacks;
pos = vec_rules[start_rule_index].data();
do {
llama_grammar_stack stack;
if (!llama_grammar_is_end_of_sequence(pos)) {
// if alternate is nonempty, add to stack
stack.push_back(pos);
}
llama_grammar_advance_stack(vec_rules, stack, stacks);
while (!llama_grammar_is_end_of_sequence(pos)) {
// scan to end of alternate def
pos++;
}
if (pos->type == LLAMA_GRETYPE_ALT) {
// there's another alternate def of this rule to process
pos++;
} else {
break;
}
} while (true);
// Important: vec_rules has to be moved here, not copied, because stacks contains
// pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
// then the pointers would be invalidated when the local vec_rules goes out of scope.
return new llama_grammar { vocab, std::move(vec_rules), std::move(stacks), {}, };
}
void llama_grammar_free_impl(struct llama_grammar * grammar) {
if (grammar == nullptr) {
return;
}
delete grammar;
}
struct llama_grammar * llama_grammar_copy_impl(const struct llama_grammar * grammar) {
llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
struct llama_grammar * llama_grammar_clone_impl(const struct llama_grammar & grammar) {
llama_grammar * result = new llama_grammar { grammar.vocab, grammar.rules, grammar.stacks, grammar.partial_utf8, };
// redirect elements in stacks to point to new rules
for (size_t is = 0; is < result->stacks.size(); is++) {
for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
for (size_t ir0 = 0; ir0 < grammar.rules.size(); ir0++) {
for (size_t ir1 = 0; ir1 < grammar.rules[ir0].size(); ir1++) {
if (grammar.stacks[is][ie] == &grammar.rules[ir0][ir1]) {
result->stacks[is][ie] = &result->rules[ir0][ir1];
}
}
@ -464,14 +1069,11 @@ struct llama_grammar * llama_grammar_copy_impl(const struct llama_grammar * gram
return result;
}
void llama_grammar_sample_impl(const struct llama_grammar * grammar, const struct llama_vocab * vocab, const struct llama_sampling * smpl, llama_token_data_array * candidates) {
GGML_ASSERT(grammar);
GGML_ASSERT(vocab);
int64_t t_start_sample_us = ggml_time_us();
void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_data_array * cur_p) {
GGML_ASSERT(grammar.vocab != nullptr);
bool allow_eog = false;
for (const auto & stack : grammar->stacks) {
for (const auto & stack : grammar.stacks) {
if (stack.empty()) {
allow_eog = true;
break;
@ -479,40 +1081,38 @@ void llama_grammar_sample_impl(const struct llama_grammar * grammar, const struc
}
std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
candidates_decoded.reserve(candidates->size);
candidates_decoded.reserve(cur_p->size);
llama_grammar_candidates candidates_grammar;
candidates_grammar.reserve(candidates->size);
candidates_grammar.reserve(cur_p->size);
for (size_t i = 0; i < candidates->size; ++i) {
const llama_token id = candidates->data[i].id;
const std::string & piece = vocab->cache_token_to_piece.at(id);
for (size_t i = 0; i < cur_p->size; ++i) {
const llama_token id = cur_p->data[i].id;
const std::string & piece = grammar.vocab->cache_token_to_piece.at(id);
if (llama_token_is_eog_impl(*vocab, id)) {
if (llama_token_is_eog_impl(*grammar.vocab, id)) {
if (!allow_eog) {
candidates->data[i].logit = -INFINITY;
cur_p->data[i].logit = -INFINITY;
}
} else if (piece.empty() || piece[0] == 0) {
candidates->data[i].logit = -INFINITY;
cur_p->data[i].logit = -INFINITY;
} else {
candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
candidates_decoded.push_back(decode_utf8(piece, grammar.partial_utf8));
candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
}
}
const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
const auto rejects = llama_grammar_reject_candidates(grammar.rules, grammar.stacks, candidates_grammar);
for (const auto & reject : rejects) {
candidates->data[reject.index].logit = -INFINITY;
cur_p->data[reject.index].logit = -INFINITY;
}
}
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
}
void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token) {
GGML_ASSERT(grammar.vocab != nullptr);
void llama_grammar_accept_token_impl(struct llama_grammar * grammar, const struct llama_vocab * vocab, const struct llama_sampling * smpl, llama_token token) {
const int64_t t_start_sample_us = ggml_time_us();
if (llama_token_is_eog_impl(*vocab, token)) {
for (const auto & stack : grammar->stacks) {
if (llama_token_is_eog_impl(*grammar.vocab, token)) {
for (const auto & stack : grammar.stacks) {
if (stack.empty()) {
return;
}
@ -520,20 +1120,19 @@ void llama_grammar_accept_token_impl(struct llama_grammar * grammar, const struc
GGML_ABORT("fatal error");
}
const std::string & piece = vocab->cache_token_to_piece.at(token);
const std::string & piece = grammar.vocab->cache_token_to_piece.at(token);
// Note terminating 0 in decoded string
const auto decoded = decode_utf8(piece, grammar->partial_utf8);
const auto decoded = decode_utf8(piece, grammar.partial_utf8);
const auto & code_points = decoded.first;
llama_grammar_stacks tmp_new_stacks;
llama_grammar_stacks stacks_new;
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
grammar->stacks = tmp_new_stacks;
llama_grammar_accept(grammar.rules, grammar.stacks, *it, stacks_new);
grammar.stacks = std::move(stacks_new);
}
grammar->partial_utf8 = decoded.second;
GGML_ASSERT(!grammar->stacks.empty());
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
grammar.partial_utf8 = decoded.second;
GGML_ASSERT(!grammar.stacks.empty());
}

View File

@ -2,11 +2,115 @@
#include "llama-impl.h"
#include <map>
struct llama_vocab;
struct llama_sampling;
// grammar element type
enum llama_gretype {
// end of rule definition
LLAMA_GRETYPE_END = 0,
// start of alternate definition for rule
LLAMA_GRETYPE_ALT = 1,
// non-terminal element: reference to rule
LLAMA_GRETYPE_RULE_REF = 2,
// terminal element: character (code point)
LLAMA_GRETYPE_CHAR = 3,
// inverse char(s) ([^a], [^a-b] [^abc])
LLAMA_GRETYPE_CHAR_NOT = 4,
// modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
// be an inclusive range ([a-z])
LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
// modifies a preceding LLAMA_GRETYPE_CHAR or
// LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
LLAMA_GRETYPE_CHAR_ALT = 6,
// any character (.)
LLAMA_GRETYPE_CHAR_ANY = 7,
};
typedef struct llama_grammar_element {
enum llama_gretype type;
uint32_t value; // Unicode code point or rule ID
} llama_grammar_element;
struct llama_partial_utf8 {
uint32_t value; // bit value so far (unshifted)
int n_remain; // num bytes remaining; -1 indicates invalid sequence
};
struct llama_grammar_candidate {
size_t index;
const uint32_t * code_points;
llama_partial_utf8 partial_utf8;
};
using llama_grammar_rule = std::vector< llama_grammar_element>;
using llama_grammar_stack = std::vector<const llama_grammar_element *>;
using llama_grammar_rules = std::vector<llama_grammar_rule>;
using llama_grammar_stacks = std::vector<llama_grammar_stack>;
using llama_grammar_candidates = std::vector<llama_grammar_candidate>;
const llama_grammar_rules & llama_grammar_get_rules (const struct llama_grammar * grammar);
llama_grammar_stacks & llama_grammar_get_stacks( struct llama_grammar * grammar);
// takes a set of possible pushdown stacks on a grammar, which are required to
// be positioned at a character range (see `llama_grammar_advance_stack`), and
// produces the N possible stacks if the given char is accepted at those
// positions
void llama_grammar_accept(
const llama_grammar_rules & rules,
const llama_grammar_stacks & stacks,
uint32_t chr,
llama_grammar_stacks & stacks_new);
std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
const llama_grammar_rules & rules,
const llama_grammar_stack & stack,
const llama_grammar_candidates & candidates);
struct llama_grammar_parser {
std::map<std::string, uint32_t> symbol_ids;
llama_grammar_rules rules;
llama_grammar_stack c_rules() const;
uint32_t get_symbol_id(const char * src, size_t len);
uint32_t generate_symbol_id(const std::string & base_name);
void add_rule(uint32_t rule_id, const llama_grammar_rule & rule);
const char * parse_alternates(
const char * src,
const std::string & rule_name,
uint32_t rule_id,
bool is_nested);
const char * parse_sequence(
const char * src,
const std::string & rule_name,
llama_grammar_rule & rule,
bool is_nested);
const char * parse_rule(const char * src);
bool parse(const char * src);
void print(FILE * file);
};
struct llama_grammar {
const llama_grammar_rules rules;
// note: allow null vocab for testing (not great)
const llama_vocab * vocab;
const llama_grammar_rules rules; // TODO: shared ptr
llama_grammar_stacks stacks;
// buffer for partially generated UTF-8 sequence from accepted tokens
@ -17,23 +121,24 @@ struct llama_grammar {
// internal API
//
// note: needed for tests (not great)
struct llama_grammar * llama_grammar_init_impl(
const struct llama_vocab * vocab,
const llama_grammar_element ** rules,
size_t n_rules,
size_t start_rule_index);
struct llama_grammar * llama_grammar_init_impl(const struct llama_vocab * vocab, const char * grammar_str, const char * grammar_root);
void llama_grammar_free_impl(struct llama_grammar * grammar);
struct llama_grammar * llama_grammar_copy_impl(const struct llama_grammar * grammar);
struct llama_grammar * llama_grammar_clone_impl(const struct llama_grammar & grammar);
void llama_grammar_sample_impl(
const struct llama_grammar * grammar,
const struct llama_vocab * vocab,
const struct llama_sampling * smpl,
llama_token_data_array * candidates);
// TODO: move the API below as member functions of llama_grammar
void llama_grammar_apply_impl(
const struct llama_grammar & grammar,
llama_token_data_array * cur_p);
void llama_grammar_accept_token_impl(
struct llama_grammar * grammar,
const struct llama_vocab * vocab,
const struct llama_sampling * smpl,
void llama_grammar_accept_impl(
struct llama_grammar & grammar,
llama_token token);

View File

@ -1,8 +1,11 @@
#pragma once
#define LLAMA_API_INTERNAL
#include "llama.h"
#include <string>
#include <vector>
#include <stdexcept>
#ifdef __GNUC__
#ifdef __MINGW32__
#define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
@ -29,6 +32,20 @@ void llama_log_callback_default(ggml_log_level level, const char * text, void *
// helpers
//
struct time_meas {
time_meas(int64_t & t_acc, bool disable = false) : t_start_us(disable ? -1 : ggml_time_us()), t_acc(t_acc) {}
~time_meas() {
if (t_start_us >= 0) {
t_acc += ggml_time_us() - t_start_us;
}
}
const int64_t t_start_us;
int64_t & t_acc;
};
static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
if (search.empty()) {
return;
@ -45,3 +62,113 @@ static void replace_all(std::string & s, const std::string & search, const std::
builder.append(s, last_pos, std::string::npos);
s = std::move(builder);
}
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
struct llama_context * ctx
);
// the ring buffer works similarly to std::deque, but with a fixed capacity
template<typename T>
struct ring_buffer {
ring_buffer(size_t cap) : capacity(cap), data(cap) {}
T & front() {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[first];
}
const T & front() const {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[first];
}
T & back() {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[pos];
}
const T & back() const {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[pos];
}
void push_back(const T & value) {
if (sz == capacity) {
// advance the start when buffer is full
first = (first + 1) % capacity;
} else {
sz++;
}
data[pos] = value;
pos = (pos + 1) % capacity;
}
T pop_front() {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
T value = data[first];
first = (first + 1) % capacity;
sz--;
return value;
}
//T & operator[](size_t i) {
// if (i >= sz) {
// throw std::runtime_error("ring buffer: index out of bounds");
// }
// return data[(first + i) % capacity];
//}
//const T & at(size_t i) const {
// if (i >= sz) {
// throw std::runtime_error("ring buffer: index out of bounds");
// }
// return data[(first + i) % capacity];
//}
const T & rat(size_t i) const {
if (i >= sz) {
throw std::runtime_error("ring buffer: index out of bounds");
}
return data[(first + sz - i - 1) % capacity];
}
std::vector<T> to_vector() const {
std::vector<T> result;
result.reserve(sz);
for (size_t i = 0; i < sz; i++) {
result.push_back(data[(first + i) % capacity]);
}
return result;
}
void clear() {
// here only reset the status of the buffer
sz = 0;
first = 0;
pos = 0;
}
bool empty() const {
return sz == 0;
}
size_t size() const {
return sz;
}
size_t capacity = 0;
size_t sz = 0;
size_t first = 0;
size_t pos = 0;
std::vector<T> data;
};

File diff suppressed because it is too large Load Diff

View File

@ -1,56 +1,39 @@
#pragma once
#include "llama-impl.h"
// TODO: rename llama-sampling.h/.cpp to llama-sampler.h/.cpp ?
struct llama_sampling {
llama_sampling(int32_t n_vocab) : n_vocab(n_vocab) {}
#include "llama-grammar.h"
std::mt19937 rng;
#include <unordered_map>
int32_t n_vocab = 0;
struct llama_vocab;
struct llama_grammar;
mutable int64_t t_sample_us = 0;
mutable int32_t n_sample = 0;
// sampler chain
void reset_timings() const {
t_sample_us = 0;
n_sample = 0;
}
struct llama_sampler_chain {
llama_sampler_chain_params params;
std::vector<struct llama_sampler *> samplers;
// timing
mutable int64_t t_sample_us;
mutable int32_t n_sample;
};
//
// internal API
//
using llama_token_cnt = std::unordered_map<llama_token, int>;
void llama_set_rng_seed_impl(struct llama_sampling * smpl, uint32_t seed);
void llama_sample_softmax_impl (struct llama_sampling * smpl, llama_token_data_array * candidates);
void llama_sample_top_k_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, int32_t k, size_t min_keep);
void llama_sample_top_p_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep);
void llama_sample_min_p_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep);
void llama_sample_tail_free_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float z, size_t min_keep);
void llama_sample_typical_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep);
void llama_sample_entropy_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float min_temp, float max_temp, float exponent_val);
void llama_sample_temp_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float temp);
void llama_sample_repetition_penalties_impl(
struct llama_sampling * smpl,
llama_token_data_array * candidates,
const llama_token * last_tokens,
size_t penalty_last_n,
// TODO: tmp exposed until test-sampling is fixed
void llama_sampler_penalties_impl(
llama_token_data_array * cur_p,
const llama_token_cnt & token_count,
float penalty_repeat,
float penalty_freq,
float penalty_present);
void llama_sample_apply_guidance_impl(
struct llama_sampling * smpl,
float * logits,
float * logits_guidance,
float scale);
llama_token llama_sample_token_mirostat_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu);
llama_token llama_sample_token_mirostat_v2_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float tau, float eta, float * mu);
llama_token llama_sample_token_greedy_impl (struct llama_sampling * smpl, llama_token_data_array * candidates);
llama_token llama_sample_token_with_rng_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, std::mt19937 & rng);
llama_token llama_sample_token_impl (struct llama_sampling * smpl, llama_token_data_array * candidates);
struct llama_sampler * llama_sampler_init_grammar_impl(
const struct llama_vocab & vocab,
const char * grammar_str,
const char * grammar_root);

View File

@ -18,6 +18,8 @@ struct llama_vocab {
tattr attr;
};
uint32_t n_vocab = 0; // TODO: not great because has to keep in sync with hparams.n_vocab
enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
@ -62,8 +64,6 @@ struct llama_vocab {
int find_bpe_rank(const std::string & token_left, const std::string & token_right) const;
};
const struct llama_vocab * llama_get_vocab(const struct llama_context * ctx);
//
// internal API
//
@ -76,6 +76,7 @@ std::vector<llama_vocab::id> llama_tokenize_internal(
bool add_special,
bool parse_special = false);
// TODO: move the API below as member functions of llama_vocab
llama_token llama_byte_to_token_impl(const llama_vocab & vocab, uint8_t ch);
const char * llama_token_get_text_impl(const struct llama_vocab & vocab, llama_token token);

View File

@ -1,6 +1,5 @@
#include "llama-impl.h"
#include "llama-vocab.h"
#include "llama-grammar.h"
#include "llama-sampling.h"
#include "unicode.h"
@ -3179,7 +3178,6 @@ struct llama_sbatch {
struct llama_context {
llama_context(const llama_model & model)
: model(model)
, sampling(llama_n_vocab(&model))
, t_start_us(model.t_start_us)
, t_load_us(model.t_load_us) {}
@ -3196,7 +3194,6 @@ struct llama_context {
const struct llama_model & model;
struct llama_cparams cparams;
struct llama_sampling sampling;
struct llama_sbatch sbatch;
struct llama_kv_cache kv_self;
struct llama_control_vector cvec;
@ -3217,16 +3214,16 @@ struct llama_context {
bool has_evaluated_once = false;
int64_t t_start_us;
int64_t t_load_us;
int64_t t_p_eval_us = 0;
int64_t t_eval_us = 0;
mutable int64_t t_start_us;
mutable int64_t t_load_us;
mutable int64_t t_p_eval_us = 0;
mutable int64_t t_eval_us = 0;
int64_t t_compute_start_us = 0;
int64_t n_queued_tokens = 0;
mutable int64_t t_compute_start_us = 0;
mutable int64_t n_queued_tokens = 0;
int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
int32_t n_eval = 0; // number of eval calls
mutable int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
mutable int32_t n_eval = 0; // number of eval calls
// host buffer for the model output (logits and embeddings)
ggml_backend_buffer_t buf_output = nullptr;
@ -6251,6 +6248,7 @@ static void llm_load_vocab(
const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
vocab.n_vocab = n_vocab;
vocab.id_to_token.resize(n_vocab);
for (uint32_t i = 0; i < n_vocab; i++) {
@ -17892,7 +17890,6 @@ struct llama_model_params llama_model_default_params() {
struct llama_context_params llama_context_default_params() {
struct llama_context_params result = {
/*.seed =*/ LLAMA_DEFAULT_SEED,
/*.n_ctx =*/ 512,
/*.n_batch =*/ 2048,
/*.n_ubatch =*/ 512,
@ -17925,6 +17922,14 @@ struct llama_context_params llama_context_default_params() {
return result;
}
struct llama_sampler_chain_params llama_sampler_chain_default_params() {
struct llama_sampler_chain_params result = {
/*.no_perf =*/ true,
};
return result;
}
struct llama_model_quantize_params llama_model_quantize_default_params() {
struct llama_model_quantize_params result = {
/*.nthread =*/ 0,
@ -18178,10 +18183,6 @@ struct llama_context * llama_new_context_with_model(
cparams.causal_attn = params.attention_type == LLAMA_ATTENTION_TYPE_CAUSAL;
}
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
@ -18192,8 +18193,8 @@ struct llama_context * llama_new_context_with_model(
ctx->abort_callback = params.abort_callback;
ctx->abort_callback_data = params.abort_callback_data;
ctx->sampling.rng = std::mt19937(params.seed);
ctx->logits_all = params.logits_all;
// build worst-case graph for encoder if a model contains encoder
ctx->is_encoding = llama_model_has_encoder(model);
@ -18473,14 +18474,6 @@ void llama_free(struct llama_context * ctx) {
delete ctx;
}
const struct llama_model * llama_get_model(const struct llama_context * ctx) {
return &ctx->model;
}
const struct llama_vocab * llama_get_vocab(const struct llama_context * ctx) {
return &ctx->model.vocab;
}
uint32_t llama_n_ctx(const struct llama_context * ctx) {
return ctx->cparams.n_ctx;
}
@ -18501,6 +18494,30 @@ enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
return model->vocab.type;
}
int32_t llama_n_vocab(const struct llama_model * model) {
return model->hparams.n_vocab;
}
int32_t llama_n_ctx_train(const struct llama_model * model) {
return model->hparams.n_ctx_train;
}
int32_t llama_n_embd(const struct llama_model * model) {
return model->hparams.n_embd;
}
int32_t llama_n_layer(const struct llama_model * model) {
return model->hparams.n_layer;
}
const struct llama_model * llama_get_model(const struct llama_context * ctx) {
return &ctx->model;
}
enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
return ctx->cparams.pooling_type;
}
enum llama_rope_type llama_rope_type(const struct llama_model * model) {
switch (model->arch) {
// these models do not use RoPE
@ -18564,26 +18581,6 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
return LLAMA_ROPE_TYPE_NONE;
}
enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
return ctx->cparams.pooling_type;
}
int32_t llama_n_vocab(const struct llama_model * model) {
return model->hparams.n_vocab;
}
int32_t llama_n_ctx_train(const struct llama_model * model) {
return model->hparams.n_ctx_train;
}
int32_t llama_n_embd(const struct llama_model * model) {
return model->hparams.n_embd;
}
int32_t llama_n_layer(const struct llama_model * model) {
return model->hparams.n_layer;
}
float llama_rope_freq_scale_train(const struct llama_model * model) {
return model->hparams.rope_freq_scale_train;
}
@ -19000,14 +18997,14 @@ struct llama_data_write {
// TODO: add more model-specific info which should prevent loading the session file if not identical
}
void write_rng(const std::mt19937 & rng) {
std::ostringstream rng_ss;
rng_ss << rng;
//void write_rng(const std::mt19937 & rng) {
// std::ostringstream rng_ss;
// rng_ss << rng;
const std::string & rng_str = rng_ss.str();
// const std::string & rng_str = rng_ss.str();
write_string(rng_str);
}
// write_string(rng_str);
//}
void write_output_ids(struct llama_context * ctx) {
llama_output_reorder(ctx);
@ -19227,17 +19224,17 @@ struct llama_data_read {
// TODO: add more info which needs to be identical but which is not verified otherwise
}
void read_rng(std::mt19937 & rng) {
std::string rng_str;
read_string(rng_str);
//void read_rng(std::mt19937 & rng) {
// std::string rng_str;
// read_string(rng_str);
std::istringstream rng_ss(rng_str);
rng_ss >> rng;
// std::istringstream rng_ss(rng_str);
// rng_ss >> rng;
if (rng_ss.fail()) {
throw std::runtime_error("failed to load RNG state");
}
}
// if (rng_ss.fail()) {
// throw std::runtime_error("failed to load RNG state");
// }
//}
void read_output_ids(struct llama_context * ctx) {
std::vector<int32_t> output_pos;
@ -19667,8 +19664,6 @@ static size_t llama_state_get_data_internal(struct llama_context * ctx, llama_da
data_ctx.write_model_info(ctx);
data_ctx.write_rng(ctx->sampling.rng);
// copy outputs
data_ctx.write_output_ids(ctx);
data_ctx.write_logits(ctx);
@ -19706,9 +19701,6 @@ static size_t llama_state_set_data_internal(struct llama_context * ctx, llama_da
data_ctx.read_model_info(ctx);
// set rng
data_ctx.read_rng(ctx->sampling.rng);
// set outputs
data_ctx.read_output_ids(ctx);
data_ctx.read_logits(ctx);
@ -20111,8 +20103,9 @@ float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
#ifndef NDEBUG
GGML_ABORT("fatal error");
#endif
#else
return nullptr;
#endif
}
}
@ -20160,8 +20153,9 @@ float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
#ifndef NDEBUG
GGML_ABORT("fatal error");
#endif
#else
return nullptr;
#endif
}
}
@ -20594,124 +20588,18 @@ int32_t llama_chat_apply_template(
return res;
}
//
// grammar
//
struct llama_grammar * llama_grammar_init(
const llama_grammar_element ** rules,
size_t n_rules,
size_t start_rule_index) {
return llama_grammar_init_impl(rules, n_rules, start_rule_index);
}
void llama_grammar_free(struct llama_grammar * grammar) {
llama_grammar_free_impl(grammar);
}
struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
return llama_grammar_copy_impl(grammar);
}
void llama_grammar_sample(
const struct llama_grammar * grammar,
const struct llama_context * ctx,
llama_token_data_array * candidates) {
llama_grammar_sample_impl(grammar, &ctx->model.vocab, &ctx->sampling, candidates);
}
void llama_sample_grammar(
struct llama_context * ctx,
llama_token_data_array * candidates,
const struct llama_grammar * grammar) {
llama_grammar_sample(grammar, ctx, candidates);
}
void llama_grammar_accept_token(
struct llama_grammar * grammar,
struct llama_context * ctx,
llama_token token) {
llama_grammar_accept_token_impl(grammar, &ctx->model.vocab, &ctx->sampling, token);
}
//
// sampling
//
void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
llama_set_rng_seed_impl(&ctx->sampling, seed);
// TODO: remove indirection when vocab becomes accesible in llama-sampling.cpp
struct llama_sampler * llama_sampler_init_grammar(const struct llama_model * model, const char * grammar_str, const char * grammar_root) {
return llama_sampler_init_grammar_impl(model->vocab, grammar_str, grammar_root);
}
void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
llama_sample_softmax_impl(ctx ? &ctx->sampling : nullptr, candidates);
}
void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
llama_sample_top_k_impl(ctx ? &ctx->sampling : nullptr, candidates, k, min_keep);
}
void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
llama_sample_top_p_impl(ctx ? &ctx->sampling : nullptr, candidates, p, min_keep);
}
void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
llama_sample_min_p_impl(ctx ? &ctx->sampling : nullptr, candidates, p, min_keep);
}
void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
llama_sample_tail_free_impl(ctx ? &ctx->sampling : nullptr, candidates, z, min_keep);
}
void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
llama_sample_typical_impl(ctx ? &ctx->sampling : nullptr, candidates, p, min_keep);
}
void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
llama_sample_entropy_impl(ctx ? &ctx->sampling : nullptr, candidates_p, min_temp, max_temp, exponent_val);
}
void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
llama_sample_temp_impl(ctx ? &ctx->sampling : nullptr, candidates_p, temp);
}
void llama_sample_repetition_penalties(
struct llama_context * ctx,
llama_token_data_array * candidates,
const llama_token * last_tokens,
size_t penalty_last_n,
float penalty_repeat,
float penalty_freq,
float penalty_present) {
llama_sample_repetition_penalties_impl(ctx ? &ctx->sampling : nullptr, candidates, last_tokens, penalty_last_n, penalty_repeat, penalty_freq, penalty_present);
}
void llama_sample_apply_guidance(
struct llama_context * ctx,
float * logits,
float * logits_guidance,
float scale) {
llama_sample_apply_guidance_impl(&ctx->sampling, logits, logits_guidance, scale);
}
llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
return llama_sample_token_mirostat_impl(&ctx->sampling, candidates, tau, eta, m, mu);
}
llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
return llama_sample_token_mirostat_v2_impl(ctx ? &ctx->sampling : nullptr, candidates, tau, eta, mu);
}
llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
return llama_sample_token_greedy_impl(ctx ? &ctx->sampling : nullptr, candidates);
}
llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
return llama_sample_token_with_rng_impl(&ctx->sampling, candidates, rng);
}
llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
return llama_sample_token_with_rng_impl(&ctx->sampling, candidates, ctx->sampling.rng);
}
//
// model split
//
int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
@ -20737,45 +20625,6 @@ int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int
return 0;
}
struct llama_timings llama_get_timings(struct llama_context * ctx) {
struct llama_timings result = {
/*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
/*.t_end_ms =*/ 1.00 * ggml_time_ms(),
/*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
/*.t_sample_ms =*/ 1e-3 * ctx->sampling.t_sample_us,
/*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
/*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
/*.n_sample =*/ std::max(1, ctx->sampling.n_sample),
/*.n_p_eval =*/ std::max(0, ctx->n_p_eval),
/*.n_eval =*/ std::max(1, ctx->n_eval),
};
return result;
}
void llama_print_timings(struct llama_context * ctx) {
const llama_timings timings = llama_get_timings(ctx);
LLAMA_LOG_INFO("\n");
LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
}
void llama_reset_timings(struct llama_context * ctx) {
ctx->t_start_us = ggml_time_us();
ctx->t_eval_us = ctx->n_eval = 0;
ctx->t_p_eval_us = ctx->n_p_eval = 0;
ctx->sampling.reset_timings();
}
const char * llama_print_system_info(void) {
static std::string s;
@ -20804,7 +20653,68 @@ const char * llama_print_system_info(void) {
return s.c_str();
}
void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
void llama_perf_print(const void * ctx, enum llama_perf_type type) {
switch (type) {
case LLAMA_PERF_TYPE_CONTEXT:
{
const auto * p = (const struct llama_context *) ctx;
const double t_start_ms = 1e-3 * p->t_start_us;
const double t_end_ms = 1.00 * ggml_time_ms();
const double t_load_ms = 1e-3 * p->t_load_us;
const double t_p_eval_ms = 1e-3 * p->t_p_eval_us;
const double t_eval_ms = 1e-3 * p->t_eval_us;
const int32_t n_p_eval = std::max(0, p->n_p_eval);
const int32_t n_eval = std::max(1, p->n_eval);
LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, t_load_ms);
LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, t_p_eval_ms, n_p_eval, t_p_eval_ms / n_p_eval, 1e3 / t_p_eval_ms * n_p_eval);
LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, t_eval_ms, n_eval, t_eval_ms / n_eval, 1e3 / t_eval_ms * n_eval);
LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (t_end_ms - t_start_ms), (n_p_eval + n_eval));
} break;
case LLAMA_PERF_TYPE_SAMPLER_CHAIN:
{
const auto * smpl = (const struct llama_sampler *) ctx;
const auto * p = (const struct llama_sampler_chain *) smpl->ctx;
const double t_sampler_ms = 1e-3 * p->t_sample_us;
const int32_t n_sampler = std::max(0, p->n_sample);
LLAMA_LOG_INFO("%s: sampling time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, t_sampler_ms, n_sampler, t_sampler_ms / n_sampler, 1e3 / t_sampler_ms * n_sampler);
} break;
default:
GGML_ABORT("invalid perf type");
}
}
void llama_perf_reset(void * ctx, enum llama_perf_type type) {
switch (type) {
case LLAMA_PERF_TYPE_CONTEXT:
{
auto * p = (struct llama_context *) ctx;
p->t_start_us = ggml_time_us();
p->t_eval_us = p->n_eval = 0;
p->t_p_eval_us = p->n_p_eval = 0;
} break;
case LLAMA_PERF_TYPE_SAMPLER_CHAIN:
{
auto * smpl = (struct llama_sampler *) ctx;
auto * p = (struct llama_sampler_chain *) smpl->ctx;
p->t_sample_us = p->n_sample = 0;
} break;
default:
GGML_ABORT("invalid perf type");
}
}
void llama_perf_dump_yaml(FILE * stream, const llama_context * ctx) {
fprintf(stream, "\n");
fprintf(stream, "###########\n");
fprintf(stream, "# Timings #\n");
@ -20815,21 +20725,15 @@ void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
1.0e-3 * ctx->t_eval_us / ctx->n_eval);
fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
1.0e-3 * ctx->sampling.t_sample_us / ctx->sampling.n_sample);
fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->sampling.n_sample);
fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->sampling.t_sample_us);
fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
1.0e6 * ctx->n_eval / ctx->t_eval_us);
fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
1.0e6 * ctx->sampling.n_sample / ctx->sampling.t_sample_us);
}
// For internal test use

View File

@ -2,13 +2,10 @@
#undef NDEBUG
#endif
#define LLAMA_API_INTERNAL
#include "ggml.h"
#include "llama.h"
#include "grammar-parser.h"
#include "json-schema-to-grammar.h"
#include "unicode.h"
#include "llama-grammar.h"
#include "json-schema-to-grammar.h"
#include <cassert>
#include <string>
#include <vector>
@ -16,19 +13,7 @@
using json = nlohmann::ordered_json;
static llama_grammar * build_grammar(const std::string & grammar_str) {
auto parsed_grammar = grammar_parser::parse(grammar_str.c_str());
// Ensure we parsed correctly
assert(!parsed_grammar.rules.empty());
// Ensure we have a root node
assert(!(parsed_grammar.symbol_ids.find("root") == parsed_grammar.symbol_ids.end()));
std::vector<const llama_grammar_element*> grammar_rules(parsed_grammar.c_rules());
llama_grammar* grammar = llama_grammar_init(
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
return grammar;
return llama_grammar_init_impl(nullptr, grammar_str.c_str(), "root");
}
static bool test_build_grammar_fails(const std::string & grammar_str) {
@ -45,25 +30,23 @@ static bool test_build_grammar_fails(const std::string & grammar_str) {
}
static bool match_string(const std::string & input, llama_grammar * grammar) {
auto decoded = decode_utf8(input, {});
const auto & code_points = decoded.first;
const auto cpts = unicode_cpts_from_utf8(input);
const llama_grammar_rules & rules = llama_grammar_get_rules (grammar);
llama_grammar_stacks & cur_stacks = llama_grammar_get_stacks(grammar);
llama_grammar_stacks & stacks_cur = llama_grammar_get_stacks(grammar);
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
const llama_grammar_stacks prev_stacks = llama_grammar_get_stacks(grammar); // copy
for (const auto & cpt : cpts) {
const llama_grammar_stacks stacks_prev = llama_grammar_get_stacks(grammar); // copy
llama_grammar_accept(rules, prev_stacks, *it, cur_stacks);
llama_grammar_accept(rules, stacks_prev, cpt, stacks_cur);
if (cur_stacks.empty()) {
if (stacks_cur.empty()) {
// no stacks means that the grammar failed to match at this point
return false;
}
}
for (const auto & stack : cur_stacks) {
for (const auto & stack : stacks_cur) {
if (stack.empty()) {
// An empty stack means that the grammar has been completed
return true;
@ -77,12 +60,12 @@ static void test(const std::string & test_desc, const std::string & grammar_str,
fprintf(stderr, "⚫ Testing %s\n%s\n", test_desc.c_str(), grammar_str.c_str());
fflush(stderr);
auto grammar = build_grammar(grammar_str);
auto * grammar = build_grammar(grammar_str);
// Save the original grammar stacks so that we can reset after every new string we want to test
const llama_grammar_stacks original_stacks = llama_grammar_get_stacks(grammar);
const llama_grammar_stacks stacks_org = llama_grammar_get_stacks(grammar);
llama_grammar_stacks & cur_stacks = llama_grammar_get_stacks(grammar);
llama_grammar_stacks & stacks_cur = llama_grammar_get_stacks(grammar);
fprintf(stderr, " 🔵 Valid strings:\n");
@ -119,7 +102,7 @@ static void test(const std::string & test_desc, const std::string & grammar_str,
assert(matched);
// Reset the grammar stacks
cur_stacks = original_stacks;
stacks_cur = stacks_org;
}
fprintf(stderr, " 🟠 Invalid strings:\n");
@ -139,11 +122,11 @@ static void test(const std::string & test_desc, const std::string & grammar_str,
assert(!matched);
// Reset the grammar stacks
cur_stacks = original_stacks;
stacks_cur = stacks_org;
}
// Clean up allocated memory
llama_grammar_free(grammar);
llama_grammar_free_impl(grammar);
}
static void test_grammar(const std::string & test_desc, const std::string & grammar_str, const std::vector<std::string> & passing_strings, const std::vector<std::string> & failing_strings) {
test(test_desc + ". Grammar: " + grammar_str, grammar_str, passing_strings, failing_strings);
@ -683,7 +666,8 @@ static void test_failure_missing_root() {
term ::= number
number ::= [0-9]+)""";
grammar_parser::parse_state parsed_grammar = grammar_parser::parse(grammar_str.c_str());
llama_grammar_parser parsed_grammar;
parsed_grammar.parse(grammar_str.c_str());
// Ensure we parsed correctly
assert(!parsed_grammar.rules.empty());
@ -705,7 +689,8 @@ static void test_failure_missing_reference() {
fprintf(stderr, " Expected error: ");
grammar_parser::parse_state parsed_grammar = grammar_parser::parse(grammar_str.c_str());
llama_grammar_parser parsed_grammar;
parsed_grammar.parse(grammar_str.c_str());
// Ensure we did NOT parsed correctly
assert(parsed_grammar.rules.empty());

View File

@ -3,7 +3,7 @@
#endif
#include "llama.h"
#include "grammar-parser.h"
#include "llama-grammar.h"
#include <cassert>
@ -22,7 +22,8 @@ static const char * type_str(llama_gretype type) {
static void verify_parsing(const char *grammar_bytes, const std::vector<std::pair<std::string, uint32_t>> expected, const std::vector<llama_grammar_element> &expected_rules) {
uint32_t index = 0;
grammar_parser::parse_state parsed_grammar = grammar_parser::parse(grammar_bytes);
llama_grammar_parser parsed_grammar;
parsed_grammar.parse(grammar_bytes);
std::map<uint32_t, std::string> symbol_names;
for (auto it = parsed_grammar.symbol_ids.begin(); it != parsed_grammar.symbol_ids.end(); ++it) {
@ -131,7 +132,8 @@ static void verify_parsing(const char *grammar_bytes, const std::vector<std::pai
static void verify_failure(const char * grammar_bytes) {
fprintf(stderr, "Testing expected failure:%s\n", grammar_bytes);
auto result = grammar_parser::parse(grammar_bytes);
llama_grammar_parser result;
result.parse(grammar_bytes);
assert(result.rules.empty() && "should have failed");
}

View File

@ -2,14 +2,15 @@
#undef NDEBUG
#endif
#include "json-schema-to-grammar.h"
#include "llama-grammar.h"
#include <cassert>
#include <fstream>
#include <sstream>
#include <regex>
#include "json-schema-to-grammar.h"
#include "grammar-parser.h"
static std::string trim(const std::string & source) {
std::string s(source);
s.erase(0,s.find_first_not_of(" \n\r\t"));
@ -40,7 +41,8 @@ struct TestCase {
}
void verify_expectation_parseable() const {
try {
auto state = grammar_parser::parse(expected_grammar.c_str());
llama_grammar_parser state;
state.parse(expected_grammar.c_str());
if (state.symbol_ids.find("root") == state.symbol_ids.end()) {
throw std::runtime_error("Grammar failed to parse:\n" + expected_grammar);
}

View File

@ -2,16 +2,15 @@
#undef NDEBUG
#endif
#define LLAMA_API_INTERNAL
#include "llama.h"
#include "grammar-parser.h"
#include "llama-grammar.h"
#include <cassert>
#include <stdexcept>
int main()
{
grammar_parser::parse_state parsed_grammar;
llama_grammar_parser parsed_grammar;
std::vector<std::pair<std::string, uint32_t>> expected = {
{"expr", 2},
@ -117,7 +116,7 @@ int main()
llama_grammar * grammar = NULL;
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
grammar = llama_grammar_init(grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
grammar = llama_grammar_init_impl(nullptr, grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
if (grammar == nullptr)
{
throw std::runtime_error("Failed to initialize llama_grammar");
@ -174,13 +173,13 @@ int main()
}};
auto index = 0;
for (auto stack : llama_grammar_get_stacks(grammar))
for (const llama_grammar_stack & stack : llama_grammar_get_stacks(grammar))
{
// compare stack to expected_stack
for (uint32_t i = 0; i < stack.size(); i++)
{
auto element = stack[i];
auto expected_element = expected_stacks[index][i];
const llama_grammar_element * element = stack[i];
const llama_grammar_element & expected_element = expected_stacks[index][i];
// pretty print error message before asserting
if (expected_element.type != element->type || expected_element.value != element->value)
@ -403,6 +402,8 @@ int main()
delete[] candidate.code_points;
candidate.code_points = nullptr;
}
llama_grammar_free(grammar);
llama_grammar_free_impl(grammar);
return 0;
}

View File

@ -1,5 +1,6 @@
#include "ggml.h"
#include "llama.h"
#include "llama-sampling.h"
#ifdef NDEBUG
#undef NDEBUG
@ -10,181 +11,197 @@
#include <string>
#include <vector>
static void dump(const llama_token_data_array * candidates) {
for (size_t i = 0; i < candidates->size; i++) {
printf("%d: %f (%f)\n", candidates->data[i].id, candidates->data[i].p, candidates->data[i].logit);
static void dump(const llama_token_data_array * cur_p) {
for (size_t i = 0; i < cur_p->size; i++) {
printf("%d: %f (%f)\n", cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit);
}
}
#define DUMP(__candidates) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__candidates)); printf("-\n"); } while(0)
#define DUMP(__cur_p) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__cur_p)); printf("-\n"); } while(0)
#define APPLY(__cnstr, __cur_p) do { \
auto * cnstr = (__cnstr); \
llama_sampler_apply(cnstr, (__cur_p)); \
llama_sampler_free(cnstr); \
} while(0)
static void test_top_k(const std::vector<float> & probs, const std::vector<float> & expected_probs, int k) {
const size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
std::vector<llama_token_data> cur;
cur.reserve(n_vocab);
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
const float logit = logf(probs[token_id]);
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
llama_sample_softmax(nullptr, &candidates_p);
DUMP(&candidates_p);
llama_sample_top_k(nullptr, &candidates_p, k, 1);
DUMP(&candidates_p);
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
APPLY(llama_sampler_init_softmax(), &cur_p);
DUMP(&cur_p);
APPLY(llama_sampler_init_top_k(k), &cur_p);
DUMP(&cur_p);
GGML_ASSERT(candidates_p.size == expected_probs.size());
for (size_t i = 0; i < candidates_p.size; i++) {
GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-5);
GGML_ASSERT(cur_p.size == expected_probs.size());
for (size_t i = 0; i < cur_p.size; i++) {
GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-5);
}
}
static void test_top_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
const size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
std::vector<llama_token_data> cur;
cur.reserve(n_vocab);
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
const float logit = logf(probs[token_id]);
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
llama_sample_softmax(nullptr, &candidates_p);
DUMP(&candidates_p);
llama_sample_top_p(nullptr, &candidates_p, p, 1);
DUMP(&candidates_p);
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
APPLY(llama_sampler_init_softmax(), &cur_p);
DUMP(&cur_p);
APPLY(llama_sampler_init_top_p(p, 1), &cur_p);
DUMP(&cur_p);
GGML_ASSERT(candidates_p.size == expected_probs.size());
for (size_t i = 0; i < candidates_p.size; i++) {
GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
GGML_ASSERT(cur_p.size == expected_probs.size());
for (size_t i = 0; i < cur_p.size; i++) {
GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
}
}
static void test_tfs(const std::vector<float> & probs, const std::vector<float> & expected_probs, float z) {
const size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
std::vector<llama_token_data> cur;
cur.reserve(n_vocab);
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
const float logit = logf(probs[token_id]);
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
DUMP(&candidates_p);
llama_sample_tail_free(nullptr, &candidates_p, z, 1);
DUMP(&candidates_p);
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
DUMP(&cur_p);
APPLY(llama_sampler_init_tail_free(z, 1), &cur_p);
DUMP(&cur_p);
GGML_ASSERT(candidates_p.size == expected_probs.size());
for (size_t i = 0; i < candidates_p.size; i++) {
GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
GGML_ASSERT(cur_p.size == expected_probs.size());
for (size_t i = 0; i < cur_p.size; i++) {
GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
}
}
static void test_min_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
const size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
std::vector<llama_token_data> cur;
cur.reserve(n_vocab);
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
const float logit = logf(probs[token_id]);
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
DUMP(&candidates_p);
llama_sample_min_p(nullptr, &candidates_p, p, 1);
DUMP(&candidates_p);
llama_sample_softmax(nullptr, &candidates_p);
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
DUMP(&cur_p);
APPLY(llama_sampler_init_min_p(p, 1), &cur_p);
DUMP(&cur_p);
APPLY(llama_sampler_init_softmax(), &cur_p);
GGML_ASSERT(candidates_p.size == expected_probs.size());
for (size_t i = 0; i < candidates_p.size; i++) {
GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
GGML_ASSERT(cur_p.size == expected_probs.size());
for (size_t i = 0; i < cur_p.size; i++) {
GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
}
}
static void test_typical(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
const size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
std::vector<llama_token_data> cur;
cur.reserve(n_vocab);
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
const float logit = logf(probs[token_id]);
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
DUMP(&candidates_p);
llama_sample_typical(nullptr, &candidates_p, p, 1);
DUMP(&candidates_p);
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
DUMP(&cur_p);
APPLY(llama_sampler_init_typical(p, 1), &cur_p);
DUMP(&cur_p);
GGML_ASSERT(candidates_p.size == expected_probs.size());
for (size_t i = 0; i < candidates_p.size; i++) {
GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
GGML_ASSERT(cur_p.size == expected_probs.size());
for (size_t i = 0; i < cur_p.size; i++) {
GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
}
}
static void test_repetition_penalties(
static void test_penalties(
const std::vector<float> & probs, const std::vector<llama_token> & last_tokens,
const std::vector<float> & expected_probs, float repeat_penalty, float alpha_frequency, float alpha_presence
) {
GGML_ASSERT(probs.size() == expected_probs.size());
const size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
std::vector<llama_token_data> cur;
cur.reserve(n_vocab);
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
const float logit = logf(probs[token_id]);
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
llama_sample_softmax(nullptr, &candidates_p);
DUMP(&candidates_p);
llama_sample_repetition_penalties(nullptr, &candidates_p, (const llama_token *) last_tokens.data(), last_tokens.size(), repeat_penalty, alpha_frequency, alpha_presence);
llama_sample_softmax(nullptr, &candidates_p);
DUMP(&candidates_p);
llama_token_cnt token_count;
for (size_t i = 0; i < last_tokens.size(); i++) {
token_count[last_tokens[i]]++;
}
GGML_ASSERT(candidates_p.size == expected_probs.size());
for (size_t i = 0; i < candidates_p.size; i++) {
GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
APPLY(llama_sampler_init_softmax(), &cur_p);
DUMP(&cur_p);
llama_sampler_penalties_impl(&cur_p, token_count, repeat_penalty, alpha_frequency, alpha_presence); // TODO: avoid
APPLY(llama_sampler_init_softmax(), &cur_p);
DUMP(&cur_p);
GGML_ASSERT(cur_p.size == expected_probs.size());
for (size_t i = 0; i < cur_p.size; i++) {
GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
}
}
static void test_sampler_queue(
const size_t n_vocab, const std::string samplers_sequence, const int top_k, const float top_p, const float min_p
static void test_sampler_queue(const size_t n_vocab, const std::string & samplers_sequence, const int top_k, const float top_p, const float min_p
) {
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
std::vector<llama_token_data> cur;
cur.reserve(n_vocab);
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
const float logit = logf(token_id);
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
llama_token min_token_id = 0;
const llama_token max_token_id = n_vocab-1;
for (auto s : samplers_sequence) {
switch (s){
case 'k': llama_sample_top_k (nullptr, &candidates_p, top_k, 1); break;
case 'k': APPLY(llama_sampler_init_top_k(top_k), &cur_p); break;
case 'f': GGML_ABORT("tail_free test not implemented");
case 'y': GGML_ABORT("typical test not implemented");
case 'p': llama_sample_top_p (nullptr, &candidates_p, top_p, 1); break;
case 'm': llama_sample_min_p (nullptr, &candidates_p, min_p, 1); break;
case 'p': APPLY(llama_sampler_init_top_p(top_p, 1), &cur_p); break;
case 'm': APPLY(llama_sampler_init_min_p(min_p, 1), &cur_p); break;
case 't': GGML_ABORT("temperature test not implemented");
default : GGML_ABORT("Unknown sampler");
}
llama_sample_softmax(nullptr, &candidates_p); // make sure tokens are sorted for tests
APPLY(llama_sampler_init_softmax(), &cur_p); // make sure tokens are sorted for tests
const int size = candidates_p.size;
const int size = cur_p.size;
if (s == 'k') {
const int expected_size = std::min(size, top_k);
min_token_id = std::max(min_token_id, (llama_token)(n_vocab - top_k));
GGML_ASSERT(size == expected_size);
GGML_ASSERT(candidates_p.data[0].id == max_token_id);
GGML_ASSERT(candidates_p.data[expected_size-1].id == min_token_id);
GGML_ASSERT(cur_p.data[0].id == max_token_id);
GGML_ASSERT(cur_p.data[expected_size-1].id == min_token_id);
} else if (s == 'p') {
const int softmax_divisor = n_vocab * (n_vocab-1) / 2 - min_token_id * (min_token_id-1) / 2;
const int softmax_numerator_target = ceilf(top_p * softmax_divisor);
@ -206,8 +223,8 @@ static void test_sampler_queue(
}
GGML_ASSERT(size == expected_size);
GGML_ASSERT(candidates_p.data[0].id == max_token_id);
GGML_ASSERT(candidates_p.data[expected_size-1].id == min_token_id);
GGML_ASSERT(cur_p.data[0].id == max_token_id);
GGML_ASSERT(cur_p.data[expected_size-1].id == min_token_id);
} else if (s == 'm') {
int expected_size = ceilf((1.0f-min_p) * n_vocab);
expected_size = std::max(expected_size, 1);
@ -219,8 +236,8 @@ static void test_sampler_queue(
min_token_id = std::min(min_token_id, (llama_token)(n_vocab - 1));
GGML_ASSERT(size == expected_size);
GGML_ASSERT(candidates_p.data[0].id == max_token_id);
GGML_ASSERT(candidates_p.data[expected_size-1].id == min_token_id);
GGML_ASSERT(cur_p.data[0].id == max_token_id);
GGML_ASSERT(cur_p.data[expected_size-1].id == min_token_id);
} else {
GGML_ABORT("fatal error");
}
@ -259,13 +276,13 @@ int main(void) {
test_typical({0.97f, 0.01f, 0.01f, 0.01f}, {0.97f}, 0.5f);
test_typical({0.4f, 0.2f, 0.2f, 0.2f}, {0.2f, 0.2f, 0.2f}, 0.5f);
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.25f, 0.25f, 0.25f, 0.25f, 0}, 50.0f, 0.0f, 0.0f);
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f);
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f);
test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.25f, 0.25f, 0.25f, 0.25f, 0}, 50.0f, 0.0f, 0.0f);
test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f);
test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f);
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.249997f, 0.249997f, 0.249997f, 0.249997f, 0.000011f}, 1.0f, 5.0f, 5.0f);
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.499966f, 0.499966f, 0.000023f, 0.000023f, 0.000023f}, 1.0f, 5.0f, 5.0f);
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.499977f, 0.499977f, 0.000023f, 0.000023f, 0.000000f}, 1.0f, 5.0f, 5.0f);
test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.249997f, 0.249997f, 0.249997f, 0.249997f, 0.000011f}, 1.0f, 5.0f, 5.0f);
test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.499966f, 0.499966f, 0.000023f, 0.000023f, 0.000023f}, 1.0f, 5.0f, 5.0f);
test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.499977f, 0.499977f, 0.000023f, 0.000023f, 0.000000f}, 1.0f, 5.0f, 5.0f);
test_sampler_queue(10000, "k", 10000, 1.0f, 1.0f);
test_sampler_queue(10000, "k", 1, 1.0f, 1.0f);