mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 10:54:36 +00:00
Merge 1e7e3384e1
into 09fe2e7613
This commit is contained in:
commit
e160b0608d
28
.github/workflows/build.yml
vendored
28
.github/workflows/build.yml
vendored
@ -60,8 +60,7 @@ jobs:
|
||||
-DLLAMA_CURL=ON \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DGGML_RPC=ON \
|
||||
-DBUILD_SHARED_LIBS=OFF
|
||||
-DGGML_RPC=ON
|
||||
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
- name: Test
|
||||
@ -123,8 +122,7 @@ jobs:
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DGGML_METAL=OFF \
|
||||
-DGGML_RPC=ON \
|
||||
-DBUILD_SHARED_LIBS=OFF
|
||||
-DGGML_RPC=ON
|
||||
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
- name: Test
|
||||
@ -181,7 +179,7 @@ jobs:
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF
|
||||
cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON -DGGML_RPC=ON
|
||||
cmake --build . --config Release -j $(nproc)
|
||||
|
||||
- name: Test
|
||||
@ -651,23 +649,23 @@ jobs:
|
||||
matrix:
|
||||
include:
|
||||
- build: 'noavx-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX=OFF -DGGML_AVX2=OFF -DGGML_FMA=OFF -DBUILD_SHARED_LIBS=ON'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX=OFF -DGGML_AVX2=OFF -DGGML_FMA=OFF'
|
||||
- build: 'avx2-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=ON'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON'
|
||||
- build: 'avx-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX2=OFF -DBUILD_SHARED_LIBS=ON'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX2=OFF'
|
||||
- build: 'avx512-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX512=ON -DBUILD_SHARED_LIBS=ON'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX512=ON'
|
||||
- build: 'openblas-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BLAS=ON -DBUILD_SHARED_LIBS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
|
||||
- build: 'kompute-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON -DBUILD_SHARED_LIBS=ON'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON'
|
||||
- build: 'vulkan-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_VULKAN=ON -DBUILD_SHARED_LIBS=ON'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_VULKAN=ON'
|
||||
- build: 'llvm-arm64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON'
|
||||
- build: 'msvc-arm64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-msvc.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-msvc.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=O'
|
||||
- build: 'llvm-arm64-opencl-adreno'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON'
|
||||
|
||||
@ -914,7 +912,7 @@ jobs:
|
||||
shell: cmd
|
||||
run: |
|
||||
call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
|
||||
cmake -S . -B build -G "Ninja Multi-Config" -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_CUDA=ON -DBUILD_SHARED_LIBS=ON -DGGML_RPC=ON
|
||||
cmake -S . -B build -G "Ninja Multi-Config" -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_CUDA=ON -DGGML_RPC=ON
|
||||
set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1
|
||||
cmake --build build --config Release -j %NINJA_JOBS% -t ggml
|
||||
cmake --build build --config Release
|
||||
|
@ -922,14 +922,14 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
common_lora_adapter_container loaded_la;
|
||||
loaded_la.path = la.path;
|
||||
loaded_la.scale = la.scale;
|
||||
loaded_la.adapter = llama_lora_adapter_init(model, la.path.c_str());
|
||||
loaded_la.adapter.reset(llama_lora_adapter_init(model, la.path.c_str()));
|
||||
if (loaded_la.adapter == nullptr) {
|
||||
LOG_ERR("%s: failed to apply lora adapter '%s'\n", __func__, la.path.c_str());
|
||||
llama_free(lctx);
|
||||
llama_free_model(model);
|
||||
return iparams;
|
||||
}
|
||||
iparams.lora_adapters.push_back(loaded_la); // copy to list of loaded adapters
|
||||
iparams.lora_adapters.emplace_back(std::move(loaded_la)); // copy to list of loaded adapters
|
||||
}
|
||||
if (!params.lora_init_without_apply) {
|
||||
common_lora_adapters_apply(lctx, iparams.lora_adapters);
|
||||
@ -993,8 +993,8 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
llama_perf_context_reset(lctx);
|
||||
}
|
||||
|
||||
iparams.model = model;
|
||||
iparams.context = lctx;
|
||||
iparams.model.reset(model);
|
||||
iparams.context.reset(lctx);
|
||||
|
||||
return iparams;
|
||||
}
|
||||
@ -1003,7 +1003,7 @@ void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_l
|
||||
llama_lora_adapter_clear(ctx);
|
||||
for (auto & la : lora_adapters) {
|
||||
if (la.scale != 0.0f) {
|
||||
llama_lora_adapter_set(ctx, la.adapter, la.scale);
|
||||
llama_lora_adapter_set(ctx, la.adapter.get(), la.scale);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -2,7 +2,7 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "llama.h"
|
||||
#include "llama-cpp.h"
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
@ -30,7 +30,7 @@ struct common_lora_adapter_info {
|
||||
};
|
||||
|
||||
struct common_lora_adapter_container : common_lora_adapter_info {
|
||||
struct llama_lora_adapter * adapter;
|
||||
llama_lora_adapter_ptr adapter;
|
||||
};
|
||||
|
||||
using llama_tokens = std::vector<llama_token>;
|
||||
@ -479,8 +479,9 @@ std::string fs_get_cache_file(const std::string & filename);
|
||||
//
|
||||
|
||||
struct common_init_result {
|
||||
struct llama_model * model = nullptr;
|
||||
struct llama_context * context = nullptr;
|
||||
llama_model_ptr model;
|
||||
llama_context_ptr context;
|
||||
|
||||
std::vector<common_lora_adapter_container> lora_adapters;
|
||||
};
|
||||
|
||||
@ -637,6 +638,10 @@ common_control_vector_data common_control_vector_load(const std::vector<common_c
|
||||
// Split utils
|
||||
//
|
||||
|
||||
static const char * const LLM_KV_SPLIT_NO = "split.no";
|
||||
static const char * const LLM_KV_SPLIT_COUNT = "split.count";
|
||||
static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
|
||||
namespace {
|
||||
|
||||
const char * const LLM_KV_SPLIT_NO = "split.no";
|
||||
const char * const LLM_KV_SPLIT_COUNT = "split.count";
|
||||
const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
|
||||
|
||||
}
|
||||
|
@ -434,12 +434,12 @@ static void print_matrix(struct ggml_tensor * probs) {
|
||||
}
|
||||
}
|
||||
|
||||
struct llama_file {
|
||||
struct my_llama_file {
|
||||
// use FILE * so we don't have to re-open the file to mmap
|
||||
FILE * fp;
|
||||
size_t size;
|
||||
|
||||
llama_file(const char * fname, const char * mode) {
|
||||
my_llama_file(const char * fname, const char * mode) {
|
||||
fp = std::fopen(fname, mode);
|
||||
if (fp == NULL) {
|
||||
size = 0;
|
||||
@ -500,7 +500,7 @@ struct llama_file {
|
||||
return std::string(chars.data(), len);
|
||||
}
|
||||
|
||||
~llama_file() {
|
||||
~my_llama_file() {
|
||||
if (fp) {
|
||||
std::fclose(fp);
|
||||
}
|
||||
@ -508,7 +508,7 @@ struct llama_file {
|
||||
};
|
||||
|
||||
static bool is_ggml_file(const char * filename) {
|
||||
llama_file file(filename, "rb");
|
||||
my_llama_file file(filename, "rb");
|
||||
if (file.size < 4) {
|
||||
return false;
|
||||
}
|
||||
@ -576,7 +576,7 @@ static void load_vocab(const char * filename, const Config * config, struct my_l
|
||||
} else {
|
||||
// assume llama2.c vocabulary
|
||||
LOG_INF("%s: Assuming llama2.c vocabulary since %s is not a gguf file\n", __func__, filename);
|
||||
llama_file file(filename, "rb");
|
||||
my_llama_file file(filename, "rb");
|
||||
if (!file.fp) {
|
||||
die_fmt("%s: %s", strerror(errno), filename);
|
||||
}
|
||||
|
@ -415,12 +415,13 @@ int main(int argc, char ** argv) {
|
||||
// load the model to get hparams
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
llama_model * model = llama_init.model.get();
|
||||
llama_context * ctx = llama_init.context.get();
|
||||
|
||||
// int n_ctx = llama_n_ctx(ctx);
|
||||
int n_layers = llama_n_layer(model);
|
||||
int n_embd = llama_n_embd(model);
|
||||
|
||||
// get model hint param (a.k.a model arch name)
|
||||
char model_hint[128];
|
||||
llama_model_meta_val_str(model, "general.architecture", model_hint, 128);
|
||||
@ -474,8 +475,6 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// done with the model, we can now free it to make gain some memory
|
||||
printf("Done evaluate prompts, unload model...\n");
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
bool use_pca = params.cvector_dimre_method == DIMRE_METHOD_PCA;
|
||||
|
||||
|
@ -97,8 +97,9 @@ int main(int argc, char ** argv) {
|
||||
// load the model
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
llama_model * model = llama_init.model.get();
|
||||
llama_context * ctx = llama_init.context.get();
|
||||
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: unable to load model\n", __func__);
|
||||
return 1;
|
||||
@ -316,8 +317,6 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// clean up
|
||||
llama_batch_free(batch);
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
|
@ -162,8 +162,9 @@ int main(int argc, char ** argv) {
|
||||
// init
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
llama_model * model = llama_init.model.get();
|
||||
llama_context * ctx = llama_init.context.get();
|
||||
|
||||
if (model == nullptr || ctx == nullptr) {
|
||||
LOG_ERR("%s : failed to init\n", __func__);
|
||||
return 1;
|
||||
@ -184,9 +185,6 @@ int main(int argc, char ** argv) {
|
||||
LOG("\n");
|
||||
llama_perf_context_print(ctx);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
|
@ -2,15 +2,14 @@
|
||||
#include "common.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstdlib>
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <climits>
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <stdexcept>
|
||||
|
||||
#if defined(_WIN32)
|
||||
|
@ -430,9 +430,10 @@ static void process_logits(
|
||||
|
||||
static bool compute_imatrix(llama_context * ctx, const common_params & params) {
|
||||
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
|
||||
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
|
||||
|
||||
auto tim1 = std::chrono::high_resolution_clock::now();
|
||||
LOG_INF("%s: tokenizing the input ..\n", __func__);
|
||||
|
||||
@ -618,8 +619,9 @@ int main(int argc, char ** argv) {
|
||||
// init
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
llama_model * model = llama_init.model.get();
|
||||
llama_context * ctx = llama_init.context.get();
|
||||
|
||||
if (model == nullptr || ctx == nullptr) {
|
||||
LOG_ERR("%s : failed to init\n", __func__);
|
||||
return 1;
|
||||
@ -655,9 +657,6 @@ int main(int argc, char ** argv) {
|
||||
LOG("\n");
|
||||
llama_perf_context_print(ctx);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
|
@ -131,8 +131,8 @@ int main(int argc, char ** argv) {
|
||||
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
model = llama_init.model;
|
||||
ctx = llama_init.context;
|
||||
model = llama_init.model.get();
|
||||
ctx = llama_init.context.get();
|
||||
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: unable to load model\n", __func__);
|
||||
@ -581,9 +581,6 @@ int main(int argc, char ** argv) {
|
||||
LOG("\n");
|
||||
common_perf_print(ctx, smpl);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
common_sampler_free(smpl);
|
||||
llama_backend_free();
|
||||
|
||||
|
@ -58,8 +58,8 @@ int main(int argc, char ** argv) {
|
||||
// load the target model
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
llama_model * model = llama_init.model.get();
|
||||
llama_context * ctx = llama_init.context.get();
|
||||
|
||||
// Tokenize the prompt
|
||||
std::vector<llama_token> inp;
|
||||
@ -474,9 +474,6 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_batch_free(batch);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
LOG("\n\n");
|
||||
|
@ -1,14 +1,9 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "ngram-cache.h"
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cstdint>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
int main(int argc, char ** argv){
|
||||
@ -25,16 +20,16 @@ int main(int argc, char ** argv){
|
||||
// load the model
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
llama_model_ptr & model = llama_init.model;
|
||||
llama_context_ptr & ctx = llama_init.context;
|
||||
|
||||
GGML_ASSERT(model != nullptr);
|
||||
|
||||
// tokenize the prompt
|
||||
std::vector<llama_token> inp;
|
||||
inp = common_tokenize(ctx, params.prompt, true, true);
|
||||
inp = common_tokenize(ctx.get(), params.prompt, true, true);
|
||||
fprintf(stderr, "%s: tokenization done\n", __func__);
|
||||
|
||||
|
||||
common_ngram_cache ngram_cache;
|
||||
common_ngram_cache_update(ngram_cache, LLAMA_NGRAM_STATIC, LLAMA_NGRAM_STATIC, inp, inp.size(), true);
|
||||
fprintf(stderr, "%s: hashing done, writing file to %s\n", __func__, params.lookup_cache_static.c_str());
|
||||
|
@ -30,12 +30,11 @@ int main(int argc, char ** argv){
|
||||
// load the model
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
llama_context_ptr & ctx = llama_init.context;
|
||||
|
||||
// tokenize the prompt
|
||||
std::vector<llama_token> inp;
|
||||
inp = common_tokenize(ctx, params.prompt, true, true);
|
||||
inp = common_tokenize(ctx.get(), params.prompt, true, true);
|
||||
|
||||
common_ngram_cache ngram_cache_context;
|
||||
common_ngram_cache ngram_cache_dynamic;
|
||||
@ -66,7 +65,7 @@ int main(int argc, char ** argv){
|
||||
}
|
||||
|
||||
const int n_input = inp.size();
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
const int n_ctx = llama_n_ctx(ctx.get());
|
||||
|
||||
int n_drafted = 0;
|
||||
int n_accept = 0;
|
||||
@ -150,9 +149,6 @@ int main(int argc, char ** argv){
|
||||
LOG_INF("n_accept = %d\n", n_accept);
|
||||
LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
LOG("\n\n");
|
||||
|
@ -33,8 +33,8 @@ int main(int argc, char ** argv){
|
||||
// load the model
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
llama_model * model = llama_init.model.get();
|
||||
llama_context * ctx = llama_init.context.get();
|
||||
|
||||
// tokenize the prompt
|
||||
std::vector<llama_token> inp;
|
||||
@ -243,9 +243,6 @@ int main(int argc, char ** argv){
|
||||
|
||||
llama_batch_free(batch_tgt);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
LOG("\n\n");
|
||||
|
@ -145,18 +145,18 @@ int main(int argc, char ** argv) {
|
||||
llama_context * ctx = nullptr;
|
||||
common_sampler * smpl = nullptr;
|
||||
|
||||
std::vector<common_chat_msg> chat_msgs;
|
||||
|
||||
g_model = &model;
|
||||
g_ctx = &ctx;
|
||||
g_smpl = &smpl;
|
||||
|
||||
std::vector<common_chat_msg> chat_msgs;
|
||||
|
||||
// load the model and apply lora adapter, if any
|
||||
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
model = llama_init.model;
|
||||
ctx = llama_init.context;
|
||||
model = llama_init.model.get();
|
||||
ctx = llama_init.context.get();
|
||||
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: error: unable to load model\n", __func__);
|
||||
@ -889,9 +889,6 @@ int main(int argc, char ** argv) {
|
||||
|
||||
common_sampler_free(smpl);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
ggml_threadpool_free_fn(threadpool);
|
||||
|
@ -132,8 +132,8 @@ int main(int argc, char ** argv) {
|
||||
// load the target model
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
llama_model * model = llama_init.model.get();
|
||||
llama_context * ctx = llama_init.context.get();
|
||||
|
||||
// load the prompts from an external file if there are any
|
||||
if (params.prompt.empty()) {
|
||||
@ -416,9 +416,6 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_batch_free(batch);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
LOG("\n\n");
|
||||
|
@ -1987,8 +1987,9 @@ int main(int argc, char ** argv) {
|
||||
// load the model and apply lora adapter, if any
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
llama_model * model = llama_init.model.get();
|
||||
llama_context * ctx = llama_init.context.get();
|
||||
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: unable to load model\n", __func__);
|
||||
return 1;
|
||||
@ -2023,9 +2024,6 @@ int main(int argc, char ** argv) {
|
||||
LOG("\n");
|
||||
llama_perf_context_print(ctx);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
|
@ -1,7 +1,7 @@
|
||||
#include "common.h"
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "llama-impl.h"
|
||||
#include "llama-context.h"
|
||||
#include "common.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
@ -9,11 +9,9 @@
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <map>
|
||||
#include <numeric>
|
||||
#include <regex>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include <thread>
|
||||
#include <mutex>
|
||||
@ -330,13 +328,13 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
const auto &tensors = llama_internal_get_tensor_map(ctx);
|
||||
const auto & tensors = llama_internal_get_tensor_map(ctx);
|
||||
|
||||
// check layer tensors
|
||||
int included_layers = 0;
|
||||
int64_t max_nelements = 0;
|
||||
bool is_f16 = false;
|
||||
for (const auto& kv_tensor : tensors) {
|
||||
for (const auto & kv_tensor : tensors) {
|
||||
if (!layer_included(params, kv_tensor.first)) {
|
||||
continue;
|
||||
}
|
||||
@ -371,8 +369,8 @@ int main(int argc, char ** argv) {
|
||||
if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), i) == params.include_types.end()) {
|
||||
continue;
|
||||
}
|
||||
const auto * qfns = ggml_get_type_traits(type);
|
||||
const auto * qfns_cpu = ggml_get_type_traits_cpu(type);
|
||||
const auto * qfns = ggml_get_type_traits(type);
|
||||
const auto * qfns_cpu = ggml_get_type_traits_cpu(type);
|
||||
if (qfns_cpu->from_float && qfns->to_float) {
|
||||
if (params.verbose) {
|
||||
printf("testing %s ...\n", ggml_type_name(type));
|
||||
@ -382,7 +380,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
error_stats global_stats {};
|
||||
|
||||
for (const auto& kv_tensor : tensors) {
|
||||
for (const auto & kv_tensor : tensors) {
|
||||
if (!layer_included(params, kv_tensor.first)) {
|
||||
continue;
|
||||
}
|
||||
|
@ -151,8 +151,8 @@ int main(int argc, char ** argv) {
|
||||
// load the model
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
llama_model * model = llama_init.model.get();
|
||||
llama_context * ctx = llama_init.context.get();
|
||||
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: unable to load model\n", __func__);
|
||||
@ -298,7 +298,5 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// clean up
|
||||
llama_batch_free(query_batch);
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
llama_backend_free();
|
||||
}
|
||||
|
@ -30,8 +30,8 @@ int main(int argc, char ** argv) {
|
||||
// init
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
llama_model * model = llama_init.model.get();
|
||||
llama_context * ctx = llama_init.context.get();
|
||||
|
||||
if (model == nullptr || ctx == nullptr) {
|
||||
fprintf(stderr, "%s : failed to init\n", __func__);
|
||||
@ -89,8 +89,6 @@ int main(int argc, char ** argv) {
|
||||
if (llama_decode(ctx, batch)) {
|
||||
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
||||
llama_batch_free(batch);
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
return 1;
|
||||
}
|
||||
n_past += 1;
|
||||
@ -98,11 +96,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
printf("\n\n");
|
||||
|
||||
// free old context
|
||||
llama_free(ctx);
|
||||
|
||||
// make new context
|
||||
auto * ctx2 = llama_new_context_with_model(model, common_context_params_to_llama(params));
|
||||
llama_context * ctx2 = llama_new_context_with_model(model, common_context_params_to_llama(params));
|
||||
|
||||
llama_sampler * smpl2 = llama_sampler_chain_init(sparams);
|
||||
|
||||
@ -123,8 +118,6 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if (read != llama_state_set_data(ctx2, state_mem.data(), state_mem.size())) {
|
||||
fprintf(stderr, "\n%s : failed to read state\n", __func__);
|
||||
llama_free(ctx2);
|
||||
llama_free_model(model);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -148,8 +141,6 @@ int main(int argc, char ** argv) {
|
||||
if (llama_decode(ctx2, batch)) {
|
||||
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
||||
llama_batch_free(batch);
|
||||
llama_free(ctx2);
|
||||
llama_free_model(model);
|
||||
return 1;
|
||||
}
|
||||
n_past += 1;
|
||||
@ -157,15 +148,13 @@ int main(int argc, char ** argv) {
|
||||
|
||||
printf("\n\n");
|
||||
|
||||
llama_free(ctx2);
|
||||
|
||||
if (result0 != result1) {
|
||||
fprintf(stderr, "\n%s : error : the 2 generations are different\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// make new context
|
||||
auto * ctx3 = llama_new_context_with_model(model, common_context_params_to_llama(params));
|
||||
llama_context * ctx3 = llama_new_context_with_model(model, common_context_params_to_llama(params));
|
||||
|
||||
llama_sampler * smpl3 = llama_sampler_chain_init(sparams);
|
||||
|
||||
@ -186,8 +175,6 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if (read != llama_state_set_data(ctx3, state_mem.data(), state_mem.size())) {
|
||||
fprintf(stderr, "\n%s : failed to read state\n", __func__);
|
||||
llama_free(ctx3);
|
||||
llama_free_model(model);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -204,8 +191,6 @@ int main(int argc, char ** argv) {
|
||||
const size_t ncopy = llama_state_seq_get_data(ctx3, seq_store.data(), seq_store.size(), 0);
|
||||
if (ncopy != seq_store.size()) {
|
||||
fprintf(stderr, "\n%s : seq copy data length %zd does not match expected length %zd\n", __func__, ncopy, seq_store.size());
|
||||
llama_free(ctx3);
|
||||
llama_free_model(model);
|
||||
return 1;
|
||||
}
|
||||
fprintf(stderr, "%s : seq 0 copied, %zd bytes\n", __func__, ncopy);
|
||||
@ -218,8 +203,6 @@ int main(int argc, char ** argv) {
|
||||
const size_t nset = llama_state_seq_set_data(ctx3, seq_store.data(), seq_store.size(), 1);
|
||||
if (nset != seq_store.size()) {
|
||||
fprintf(stderr, "\n%s : seq set data length %zd does not match expected length %zd\n", __func__, nset, seq_store.size());
|
||||
llama_free(ctx3);
|
||||
llama_free_model(model);
|
||||
return 1;
|
||||
}
|
||||
fprintf(stderr, "%s : seq 1 restored, %zd bytes\n", __func__, nset);
|
||||
@ -239,8 +222,6 @@ int main(int argc, char ** argv) {
|
||||
if (llama_decode(ctx3, batch)) {
|
||||
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
||||
llama_batch_free(batch);
|
||||
llama_free(ctx3);
|
||||
llama_free_model(model);
|
||||
return 1;
|
||||
}
|
||||
n_past += 1;
|
||||
@ -253,8 +234,6 @@ int main(int argc, char ** argv) {
|
||||
llama_sampler_free(smpl3);
|
||||
|
||||
llama_batch_free(batch);
|
||||
llama_free(ctx3);
|
||||
llama_free_model(model);
|
||||
|
||||
if (result0 != result2) {
|
||||
fprintf(stderr, "\n%s : error : the seq restore generation is different\n", __func__);
|
||||
|
@ -1497,11 +1497,16 @@ struct server_response {
|
||||
struct server_context {
|
||||
common_params params_base;
|
||||
|
||||
common_init_result llama_init;
|
||||
common_init_result llama_init_dft;
|
||||
|
||||
llama_model * model = nullptr;
|
||||
llama_context * ctx = nullptr;
|
||||
|
||||
std::vector<common_lora_adapter_container> loras;
|
||||
|
||||
llama_model * model_dft = nullptr;
|
||||
|
||||
llama_context_params cparams_dft;
|
||||
|
||||
llama_batch batch = {};
|
||||
@ -1525,21 +1530,6 @@ struct server_context {
|
||||
float slot_prompt_similarity = 0.0f;
|
||||
|
||||
~server_context() {
|
||||
if (ctx) {
|
||||
llama_free(ctx);
|
||||
ctx = nullptr;
|
||||
}
|
||||
|
||||
if (model) {
|
||||
llama_free_model(model);
|
||||
model = nullptr;
|
||||
}
|
||||
|
||||
if (model_dft) {
|
||||
llama_free_model(model_dft);
|
||||
model_dft = nullptr;
|
||||
}
|
||||
|
||||
// Clear any sampling context
|
||||
for (server_slot & slot : slots) {
|
||||
common_sampler_free(slot.smpl);
|
||||
@ -1562,11 +1552,12 @@ struct server_context {
|
||||
|
||||
params_base = params;
|
||||
|
||||
common_init_result llama_init = common_init_from_params(params_base);
|
||||
llama_init = common_init_from_params(params_base);
|
||||
|
||||
model = llama_init.model;
|
||||
ctx = llama_init.context;
|
||||
loras = llama_init.lora_adapters;
|
||||
model = llama_init.model.get();
|
||||
ctx = llama_init.context.get();
|
||||
|
||||
loras = std::move(llama_init.lora_adapters);
|
||||
|
||||
if (model == nullptr) {
|
||||
SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
|
||||
@ -1589,25 +1580,22 @@ struct server_context {
|
||||
params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
|
||||
params_dft.n_parallel = 1;
|
||||
|
||||
common_init_result llama_init_dft = common_init_from_params(params_dft);
|
||||
llama_init_dft = common_init_from_params(params_dft);
|
||||
|
||||
model_dft = llama_init_dft.model;
|
||||
model_dft = llama_init_dft.model.get();
|
||||
|
||||
if (model_dft == nullptr) {
|
||||
SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!common_speculative_are_compatible(ctx, llama_init_dft.context)) {
|
||||
if (!common_speculative_are_compatible(ctx, llama_init_dft.context.get())) {
|
||||
SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str());
|
||||
|
||||
llama_free (llama_init_dft.context);
|
||||
llama_free_model(llama_init_dft.model);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
const int n_ctx_dft = llama_n_ctx(llama_init_dft.context);
|
||||
const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
|
||||
|
||||
cparams_dft = common_context_params_to_llama(params_dft);
|
||||
cparams_dft.n_batch = n_ctx_dft;
|
||||
@ -1615,9 +1603,6 @@ struct server_context {
|
||||
// force F16 KV cache for the draft model for extra performance
|
||||
cparams_dft.type_k = GGML_TYPE_F16;
|
||||
cparams_dft.type_v = GGML_TYPE_F16;
|
||||
|
||||
// the context is not needed - we will create one for each slot
|
||||
llama_free(llama_init_dft.context);
|
||||
}
|
||||
|
||||
return true;
|
||||
|
@ -34,7 +34,7 @@ int main(int argc, char ** argv) {
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
llama_model * model_tgt = NULL;
|
||||
llama_model * model_dft = NULL;
|
||||
//llama_model * model_dft = NULL;
|
||||
|
||||
llama_context * ctx_tgt = NULL;
|
||||
llama_context * ctx_dft = NULL;
|
||||
@ -42,8 +42,8 @@ int main(int argc, char ** argv) {
|
||||
// load the target model
|
||||
common_init_result llama_init_tgt = common_init_from_params(params);
|
||||
|
||||
model_tgt = llama_init_tgt.model;
|
||||
ctx_tgt = llama_init_tgt.context;
|
||||
model_tgt = llama_init_tgt.model.get();
|
||||
ctx_tgt = llama_init_tgt.context.get();
|
||||
|
||||
// load the draft model
|
||||
params.devices = params.speculative.devices;
|
||||
@ -59,8 +59,8 @@ int main(int argc, char ** argv) {
|
||||
params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads;
|
||||
common_init_result llama_init_dft = common_init_from_params(params);
|
||||
|
||||
model_dft = llama_init_dft.model;
|
||||
ctx_dft = llama_init_dft.context;
|
||||
//model_dft = llama_init_dft.model.get();
|
||||
ctx_dft = llama_init_dft.context.get();
|
||||
|
||||
if (!common_speculative_are_compatible(ctx_tgt, ctx_dft)) {
|
||||
return 1;
|
||||
@ -251,12 +251,6 @@ int main(int argc, char ** argv) {
|
||||
common_sampler_free(smpl);
|
||||
common_speculative_free(spec);
|
||||
|
||||
llama_free(ctx_tgt);
|
||||
llama_free_model(model_tgt);
|
||||
|
||||
llama_free(ctx_dft);
|
||||
llama_free_model(model_dft);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
LOG("\n\n");
|
||||
|
@ -72,8 +72,9 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// load the target model
|
||||
common_init_result llama_init_tgt = common_init_from_params(params);
|
||||
model_tgt = llama_init_tgt.model;
|
||||
ctx_tgt = llama_init_tgt.context;
|
||||
|
||||
model_tgt = llama_init_tgt.model.get();
|
||||
ctx_tgt = llama_init_tgt.context.get();
|
||||
|
||||
// load the draft model
|
||||
params.devices = params.speculative.devices;
|
||||
@ -85,8 +86,9 @@ int main(int argc, char ** argv) {
|
||||
|
||||
params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads;
|
||||
common_init_result llama_init_dft = common_init_from_params(params);
|
||||
model_dft = llama_init_dft.model;
|
||||
ctx_dft = llama_init_dft.context;
|
||||
|
||||
model_dft = llama_init_dft.model.get();
|
||||
ctx_dft = llama_init_dft.context.get();
|
||||
|
||||
const bool vocab_type_tgt = llama_vocab_type(model_tgt);
|
||||
LOG_DBG("vocab_type tgt: %d\n", vocab_type_tgt);
|
||||
@ -631,12 +633,6 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_batch_free(batch_dft);
|
||||
|
||||
llama_free(ctx_tgt);
|
||||
llama_free_model(model_tgt);
|
||||
|
||||
llama_free(ctx_dft);
|
||||
llama_free_model(model_dft);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
LOG("\n\n");
|
||||
|
@ -458,8 +458,9 @@ int main(int argc, char ** argv) {
|
||||
llama_context * ctx_cts = NULL;
|
||||
|
||||
common_init_result llama_init_ttc = common_init_from_params(params);
|
||||
model_ttc = llama_init_ttc.model;
|
||||
ctx_ttc = llama_init_ttc.context;
|
||||
|
||||
model_ttc = llama_init_ttc.model.get();
|
||||
ctx_ttc = llama_init_ttc.context.get();
|
||||
|
||||
// TODO: refactor in a common struct
|
||||
params.model = params.vocoder.model;
|
||||
@ -470,8 +471,9 @@ int main(int argc, char ** argv) {
|
||||
params.embedding = true;
|
||||
|
||||
common_init_result llama_init_cts = common_init_from_params(params);
|
||||
model_cts = llama_init_cts.model;
|
||||
ctx_cts = llama_init_cts.context;
|
||||
|
||||
model_cts = llama_init_cts.model.get();
|
||||
ctx_cts = llama_init_cts.context.get();
|
||||
|
||||
std::vector<common_sampler *> smpl(n_parallel);
|
||||
for (int i = 0; i < n_parallel; ++i) {
|
||||
@ -920,12 +922,6 @@ lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|14
|
||||
|
||||
LOG_INF("%s: audio written to file '%s'\n", __func__, fname.c_str());
|
||||
|
||||
llama_free(ctx_ttc);
|
||||
llama_free_model(model_ttc);
|
||||
|
||||
llama_free(ctx_cts);
|
||||
llama_free_model(model_cts);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
|
@ -20,6 +20,11 @@ struct llama_sampler_deleter {
|
||||
void operator()(llama_sampler * sampler) { llama_sampler_free(sampler); }
|
||||
};
|
||||
|
||||
struct llama_lora_adapter_deleter {
|
||||
void operator()(llama_lora_adapter * lora_adapter) { llama_lora_adapter_free(lora_adapter); }
|
||||
};
|
||||
|
||||
typedef std::unique_ptr<llama_model, llama_model_deleter> llama_model_ptr;
|
||||
typedef std::unique_ptr<llama_context, llama_context_deleter> llama_context_ptr;
|
||||
typedef std::unique_ptr<llama_sampler, llama_sampler_deleter> llama_sampler_ptr;
|
||||
typedef std::unique_ptr<llama_lora_adapter, llama_lora_adapter_deleter> llama_lora_adapter_ptr;
|
||||
|
@ -385,6 +385,7 @@ extern "C" {
|
||||
} llama_chat_message;
|
||||
|
||||
// lora adapter
|
||||
// TODO: rename to llama_adapter_lora
|
||||
struct llama_lora_adapter;
|
||||
|
||||
// Helpers for getting default parameters
|
||||
@ -416,6 +417,7 @@ extern "C" {
|
||||
const char * path_model,
|
||||
struct llama_model_params params);
|
||||
|
||||
// TODO: rename to llama_model_free
|
||||
LLAMA_API void llama_free_model(struct llama_model * model);
|
||||
|
||||
// TODO: rename to llama_init_from_model
|
||||
@ -501,14 +503,19 @@ extern "C" {
|
||||
const char * fname_out,
|
||||
const llama_model_quantize_params * params);
|
||||
|
||||
//
|
||||
// Adapters
|
||||
//
|
||||
|
||||
// Load a LoRA adapter from file
|
||||
// The loaded adapter will be associated to the given model, and will be free when the model is deleted
|
||||
// TODO: rename to llama_adapter_lora_init
|
||||
LLAMA_API struct llama_lora_adapter * llama_lora_adapter_init(
|
||||
struct llama_model * model,
|
||||
const char * path_lora);
|
||||
|
||||
// Add a loaded LoRA adapter to given context
|
||||
// This will not modify model's weight
|
||||
// TODO: rename to llama_set_adapter_lora
|
||||
LLAMA_API int32_t llama_lora_adapter_set(
|
||||
struct llama_context * ctx,
|
||||
struct llama_lora_adapter * adapter,
|
||||
@ -516,16 +523,18 @@ extern "C" {
|
||||
|
||||
// Remove a specific LoRA adapter from given context
|
||||
// Return -1 if the adapter is not present in the context
|
||||
// TODO: rename to llama_rm_adapter_lora
|
||||
LLAMA_API int32_t llama_lora_adapter_remove(
|
||||
struct llama_context * ctx,
|
||||
struct llama_lora_adapter * adapter);
|
||||
|
||||
// Remove all LoRA adapters from given context
|
||||
LLAMA_API void llama_lora_adapter_clear(
|
||||
struct llama_context * ctx);
|
||||
// TODO: rename to llama_clear_adapter_lora
|
||||
LLAMA_API void llama_lora_adapter_clear(struct llama_context * ctx);
|
||||
|
||||
// Manually free a LoRA adapter
|
||||
// Note: loaded adapters will be free when the associated model is deleted
|
||||
// TODO: rename to llama_adapter_lora_free
|
||||
LLAMA_API void llama_lora_adapter_free(struct llama_lora_adapter * adapter);
|
||||
|
||||
// Apply a loaded control vector to a llama_context, or if data is NULL, clear
|
||||
@ -534,6 +543,7 @@ extern "C" {
|
||||
// to an n_embd x n_layers buffer starting from layer 1.
|
||||
// il_start and il_end are the layer range the vector should apply to (both inclusive)
|
||||
// See llama_control_vector_load in common to load a control vector.
|
||||
// TODO: rename to llama_adapter_cvec_apply
|
||||
LLAMA_API int32_t llama_control_vector_apply(
|
||||
struct llama_context * lctx,
|
||||
const float * data,
|
||||
@ -546,6 +556,8 @@ extern "C" {
|
||||
// KV cache
|
||||
//
|
||||
|
||||
// TODO: remove llama_kv_cache_view_* API
|
||||
|
||||
// Information associated with an individual cell in the KV cache view.
|
||||
struct llama_kv_cache_view_cell {
|
||||
// The position for this cell. Takes KV cache shifts into account.
|
||||
@ -592,8 +604,11 @@ extern "C" {
|
||||
LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
|
||||
|
||||
// Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
|
||||
// TODO: change signature to llama_kv_cache_view_update(struct llama_kv_cache_view * view, const struct llama_context * ctx)
|
||||
LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
|
||||
|
||||
///
|
||||
|
||||
// Returns the number of tokens in the KV cache (slow, use only for debug)
|
||||
// If a KV cell has multiple sequences assigned to it, it will be counted multiple times
|
||||
LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
|
||||
@ -663,6 +678,9 @@ extern "C" {
|
||||
struct llama_context * ctx,
|
||||
llama_seq_id seq_id);
|
||||
|
||||
// TODO: the llama_kv_cache_defrag and llama_kv_cache_update API tightly couples llama_context with llama_kv_cache
|
||||
// how to avoid this?
|
||||
|
||||
// Defragment the KV cache
|
||||
// This will be applied:
|
||||
// - lazily on next llama_decode()
|
||||
|
@ -9,9 +9,19 @@ llama_add_compile_flags()
|
||||
add_library(llama
|
||||
../include/llama.h
|
||||
llama.cpp
|
||||
llama-vocab.cpp
|
||||
llama-adapter.cpp
|
||||
llama-arch.cpp
|
||||
llama-batch.cpp
|
||||
llama-chat.cpp
|
||||
llama-context.cpp
|
||||
llama-hparams.cpp
|
||||
llama-impl.cpp
|
||||
llama-grammar.cpp
|
||||
llama-kv-cache.cpp
|
||||
llama-mmap.cpp
|
||||
llama-model.cpp
|
||||
llama-sampling.cpp
|
||||
llama-vocab.cpp
|
||||
unicode.h
|
||||
unicode.cpp
|
||||
unicode-data.cpp
|
||||
|
319
src/llama-adapter.cpp
Normal file
319
src/llama-adapter.cpp
Normal file
@ -0,0 +1,319 @@
|
||||
#include "llama-adapter.h"
|
||||
|
||||
#include "llama-model.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
#include <cassert>
|
||||
#include <stdexcept>
|
||||
|
||||
// vec
|
||||
|
||||
struct ggml_tensor * llama_control_vector::tensor_for(int il) const {
|
||||
if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return tensors[il];
|
||||
}
|
||||
|
||||
struct ggml_tensor * llama_control_vector::apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const {
|
||||
ggml_tensor * layer_dir = tensor_for(il);
|
||||
if (layer_dir != nullptr) {
|
||||
cur = ggml_add(ctx, cur, layer_dir);
|
||||
}
|
||||
|
||||
return cur;
|
||||
}
|
||||
|
||||
static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
GGML_ASSERT(cvec.tensors.empty());
|
||||
GGML_ASSERT(cvec.ctxs.empty());
|
||||
GGML_ASSERT(cvec.bufs.empty());
|
||||
|
||||
// create a context for each buffer type
|
||||
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
|
||||
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
|
||||
auto it = ctx_map.find(buft);
|
||||
if (it == ctx_map.end()) {
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ hparams.n_layer*ggml_tensor_overhead(),
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
|
||||
ggml_context * ctx = ggml_init(params);
|
||||
if (!ctx) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
ctx_map[buft] = ctx;
|
||||
cvec.ctxs.emplace_back(ctx);
|
||||
|
||||
return ctx;
|
||||
}
|
||||
|
||||
return it->second;
|
||||
};
|
||||
|
||||
// make tensors
|
||||
cvec.tensors.reserve(hparams.n_layer);
|
||||
cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
|
||||
for (size_t il = 1; il < hparams.n_layer; il++) {
|
||||
ggml_backend_buffer_type_t buft = llama_model_select_buft(model, il);
|
||||
ggml_context * ctx = ctx_for_buft(buft);
|
||||
if (!ctx) {
|
||||
LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
|
||||
return false;
|
||||
}
|
||||
ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
|
||||
cvec.tensors.push_back(tensor);
|
||||
}
|
||||
|
||||
// allocate tensors / buffers and zero
|
||||
cvec.bufs.reserve(ctx_map.size());
|
||||
for (auto it : ctx_map) {
|
||||
ggml_backend_buffer_type_t buft = it.first;
|
||||
ggml_context * ctx = it.second;
|
||||
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
|
||||
if (!buf) {
|
||||
LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
|
||||
return false;
|
||||
}
|
||||
ggml_backend_buffer_clear(buf, 0);
|
||||
cvec.bufs.emplace_back(buf);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int32_t llama_control_vector_apply(
|
||||
struct llama_control_vector & cvec,
|
||||
const llama_model & model,
|
||||
const float * data,
|
||||
size_t len,
|
||||
int32_t n_embd,
|
||||
int32_t il_start,
|
||||
int32_t il_end) {
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
if (data == nullptr) {
|
||||
// disable the current control vector (but leave allocated for later)
|
||||
cvec.layer_start = -1;
|
||||
cvec.layer_end = -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (n_embd != (int) hparams.n_embd) {
|
||||
LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (cvec.tensors.empty()) {
|
||||
if (!llama_control_vector_init(cvec, model)) {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
cvec.layer_start = il_start;
|
||||
cvec.layer_end = il_end;
|
||||
|
||||
for (size_t il = 1; il < hparams.n_layer; il++) {
|
||||
assert(cvec.tensors[il] != nullptr);
|
||||
|
||||
const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
|
||||
if (off + n_embd <= len) {
|
||||
ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// lora
|
||||
|
||||
llama_lora_weight * llama_lora_adapter::get_weight(struct ggml_tensor * w) {
|
||||
const std::string name(w->name);
|
||||
|
||||
const auto pos = ab_map.find(name);
|
||||
if (pos != ab_map.end()) {
|
||||
return &pos->second;
|
||||
}
|
||||
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void llama_lora_adapter_free(struct llama_lora_adapter * adapter) {
|
||||
delete adapter;
|
||||
}
|
||||
|
||||
void llama_lora_adapter_init_impl(struct llama_model & model, const char * path_lora, struct llama_lora_adapter & adapter) {
|
||||
LLAMA_LOG_INFO("%s: loading lora adapter from '%s' ...\n", __func__, path_lora);
|
||||
|
||||
ggml_context * ctx_init;
|
||||
struct gguf_init_params meta_gguf_params = {
|
||||
/* .no_alloc = */ true,
|
||||
/* .ctx = */ &ctx_init,
|
||||
};
|
||||
|
||||
gguf_context_ptr ctx_gguf { gguf_init_from_file(path_lora, meta_gguf_params) };
|
||||
if (!ctx_gguf) {
|
||||
throw std::runtime_error("failed to load lora adapter file from " + std::string(path_lora));
|
||||
}
|
||||
|
||||
ggml_context_ptr ctx { ctx_init };
|
||||
|
||||
// check metadata
|
||||
{
|
||||
auto get_kv_str = [&](const std::string & key) -> std::string {
|
||||
int id = gguf_find_key(ctx_gguf.get(), key.c_str());
|
||||
return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf.get(), id));
|
||||
};
|
||||
auto get_kv_f32 = [&](const std::string & key) -> float {
|
||||
int id = gguf_find_key(ctx_gguf.get(), key.c_str());
|
||||
return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf.get(), id);
|
||||
};
|
||||
LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
|
||||
|
||||
auto general_type = get_kv_str(llm_kv(LLM_KV_GENERAL_TYPE));
|
||||
if (general_type != "adapter") {
|
||||
throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type);
|
||||
}
|
||||
|
||||
auto general_arch_str = get_kv_str(llm_kv(LLM_KV_GENERAL_ARCHITECTURE));
|
||||
auto general_arch = llm_arch_from_string(general_arch_str);
|
||||
if (general_arch != model.arch) {
|
||||
throw std::runtime_error("model arch and LoRA arch mismatch");
|
||||
}
|
||||
|
||||
auto adapter_type = get_kv_str(llm_kv(LLM_KV_ADAPTER_TYPE));
|
||||
if (adapter_type != "lora") {
|
||||
throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type);
|
||||
}
|
||||
|
||||
adapter.alpha = get_kv_f32(llm_kv(LLM_KV_ADAPTER_LORA_ALPHA));
|
||||
}
|
||||
|
||||
int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
|
||||
|
||||
// contexts for each buffer type
|
||||
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
|
||||
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
|
||||
auto it = ctx_map.find(buft);
|
||||
if (it == ctx_map.end()) {
|
||||
// add a new context
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ n_tensors*ggml_tensor_overhead(),
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
ggml_context * buft_ctx = ggml_init(params);
|
||||
if (!buft_ctx) {
|
||||
return nullptr;
|
||||
}
|
||||
ctx_map[buft] = buft_ctx;
|
||||
adapter.ctxs.emplace_back(buft_ctx);
|
||||
return buft_ctx;
|
||||
};
|
||||
return it->second;
|
||||
};
|
||||
|
||||
// bundle lora_a and lora_b into pairs
|
||||
std::map<std::string, llama_lora_weight> ab_map;
|
||||
auto str_endswith = [](const std::string & str, const std::string & suffix) {
|
||||
return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
|
||||
};
|
||||
|
||||
for (ggml_tensor * cur = ggml_get_first_tensor(ctx.get()); cur; cur = ggml_get_next_tensor(ctx.get(), cur)) {
|
||||
std::string name(cur->name);
|
||||
if (str_endswith(name, ".lora_a")) {
|
||||
replace_all(name, ".lora_a", "");
|
||||
if (ab_map.find(name) == ab_map.end()) {
|
||||
ab_map[name] = llama_lora_weight(cur, nullptr);
|
||||
} else {
|
||||
ab_map[name].a = cur;
|
||||
}
|
||||
} else if (str_endswith(name, ".lora_b")) {
|
||||
replace_all(name, ".lora_b", "");
|
||||
if (ab_map.find(name) == ab_map.end()) {
|
||||
ab_map[name] = llama_lora_weight(nullptr, cur);
|
||||
} else {
|
||||
ab_map[name].b = cur;
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error("LoRA tensor '" + name + "' has unexpected suffix");
|
||||
}
|
||||
}
|
||||
|
||||
// add tensors
|
||||
for (auto & it : ab_map) {
|
||||
const std::string & name = it.first;
|
||||
llama_lora_weight & w = it.second;
|
||||
|
||||
if (!w.a || !w.b) {
|
||||
throw std::runtime_error("LoRA tensor pair for '" + name + "' is missing one component");
|
||||
}
|
||||
|
||||
// device buft and device ctx
|
||||
auto * model_tensor = llama_model_get_tensor(model, name.c_str());
|
||||
if (!model_tensor) {
|
||||
throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model");
|
||||
}
|
||||
|
||||
struct ggml_context * dev_ctx = ctx_for_buft(ggml_backend_buffer_get_type(model_tensor->buffer));
|
||||
// validate tensor shape
|
||||
if (model_tensor->ne[0] != w.a->ne[0] || model_tensor->ne[1] != w.b->ne[1]) {
|
||||
throw std::runtime_error("tensor '" + name + "' has incorrect shape");
|
||||
}
|
||||
if (w.a->ne[1] != w.b->ne[0]) {
|
||||
throw std::runtime_error("lora_a tensor is not transposed (hint: adapter from \"finetune\" example is no longer supported)");
|
||||
}
|
||||
|
||||
// save tensor to adapter
|
||||
struct ggml_tensor * tensor_a = ggml_dup_tensor(dev_ctx, w.a);
|
||||
struct ggml_tensor * tensor_b = ggml_dup_tensor(dev_ctx, w.b);
|
||||
ggml_set_name(tensor_a, w.a->name);
|
||||
ggml_set_name(tensor_b, w.b->name);
|
||||
adapter.ab_map[name] = llama_lora_weight(tensor_a, tensor_b);
|
||||
}
|
||||
|
||||
// allocate tensors / buffers and zero
|
||||
{
|
||||
adapter.ctxs.reserve(ctx_map.size());
|
||||
adapter.bufs.reserve(ctx_map.size());
|
||||
for (auto & it : ctx_map) {
|
||||
ggml_backend_buffer_type_t buft = it.first;
|
||||
ggml_context * ctx_dev = it.second;
|
||||
ggml_backend_buffer_ptr buf { ggml_backend_alloc_ctx_tensors_from_buft(ctx_dev, buft) };
|
||||
if (!buf) {
|
||||
throw std::runtime_error("failed to allocate buffer for lora adapter\n");
|
||||
}
|
||||
LLAMA_LOG_INFO("%s: %10s LoRA buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get())/1024.0/1024.0);
|
||||
adapter.bufs.emplace_back(std::move(buf));
|
||||
}
|
||||
}
|
||||
|
||||
// set tensor data
|
||||
{
|
||||
llama_file gguf_file(path_lora, "rb");
|
||||
std::vector<uint8_t> read_buf;
|
||||
auto set_tensor = [&](struct ggml_tensor * orig, struct ggml_tensor * dev) {
|
||||
size_t offs = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), gguf_find_tensor(ctx_gguf.get(), orig->name));
|
||||
size_t size = ggml_nbytes(orig);
|
||||
read_buf.resize(size);
|
||||
gguf_file.seek(offs, SEEK_SET);
|
||||
gguf_file.read_raw(read_buf.data(), size);
|
||||
ggml_backend_tensor_set(dev, read_buf.data(), 0, size);
|
||||
};
|
||||
for (auto & it : adapter.ab_map) {
|
||||
auto orig = ab_map[it.first];
|
||||
auto dev = it.second;
|
||||
set_tensor(orig.a, dev.a);
|
||||
set_tensor(orig.b, dev.b);
|
||||
}
|
||||
}
|
||||
|
||||
LLAMA_LOG_INFO("%s: loaded %zu tensors from lora file\n", __func__, adapter.ab_map.size()*2);
|
||||
}
|
68
src/llama-adapter.h
Normal file
68
src/llama-adapter.h
Normal file
@ -0,0 +1,68 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama-impl.h"
|
||||
#include "llama-hparams.h"
|
||||
|
||||
#include "ggml-cpp.h"
|
||||
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
//
|
||||
// llama_adapter_cvec
|
||||
//
|
||||
|
||||
// TODO: rename to llama_adapter_cvec
|
||||
struct llama_control_vector {
|
||||
std::vector<ggml_context_ptr> ctxs;
|
||||
std::vector<ggml_backend_buffer_ptr> bufs;
|
||||
|
||||
std::vector<struct ggml_tensor *> tensors; // per layer
|
||||
|
||||
int32_t layer_start = -1;
|
||||
int32_t layer_end = -1;
|
||||
|
||||
struct ggml_tensor * tensor_for(int il) const;
|
||||
|
||||
struct ggml_tensor * apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const;
|
||||
};
|
||||
|
||||
int32_t llama_control_vector_apply(
|
||||
struct llama_control_vector & cvec,
|
||||
const llama_model & model,
|
||||
const float * data,
|
||||
size_t len,
|
||||
int32_t n_embd,
|
||||
int32_t il_start,
|
||||
int32_t il_end);
|
||||
|
||||
//
|
||||
// llama_adapter_lora
|
||||
//
|
||||
|
||||
// TODO: rename to llama_adapter_lora_weight
|
||||
struct llama_lora_weight {
|
||||
struct ggml_tensor * a = nullptr;
|
||||
struct ggml_tensor * b = nullptr;
|
||||
|
||||
llama_lora_weight() = default;
|
||||
llama_lora_weight(struct ggml_tensor * a, struct ggml_tensor * b) : a(a), b(b) {}
|
||||
};
|
||||
|
||||
// TODO: rename to llama_adapter_lora
|
||||
struct llama_lora_adapter {
|
||||
// map tensor name to lora_a_b
|
||||
std::unordered_map<std::string, struct llama_lora_weight> ab_map;
|
||||
|
||||
std::vector<ggml_context_ptr> ctxs;
|
||||
std::vector<ggml_backend_buffer_ptr> bufs;
|
||||
|
||||
float alpha;
|
||||
|
||||
llama_lora_adapter() = default;
|
||||
~llama_lora_adapter() = default;
|
||||
|
||||
llama_lora_weight * get_weight(struct ggml_tensor * w);
|
||||
};
|
||||
|
||||
void llama_lora_adapter_init_impl(struct llama_model & model, const char * path_lora, struct llama_lora_adapter & adapter);
|
1414
src/llama-arch.cpp
Normal file
1414
src/llama-arch.cpp
Normal file
File diff suppressed because it is too large
Load Diff
391
src/llama-arch.h
Normal file
391
src/llama-arch.h
Normal file
@ -0,0 +1,391 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h" // ggml_op
|
||||
|
||||
#include <string>
|
||||
|
||||
//
|
||||
// gguf constants (sync with gguf.py)
|
||||
//
|
||||
|
||||
enum llm_arch {
|
||||
LLM_ARCH_LLAMA,
|
||||
LLM_ARCH_DECI,
|
||||
LLM_ARCH_FALCON,
|
||||
LLM_ARCH_BAICHUAN,
|
||||
LLM_ARCH_GROK,
|
||||
LLM_ARCH_GPT2,
|
||||
LLM_ARCH_GPTJ,
|
||||
LLM_ARCH_GPTNEOX,
|
||||
LLM_ARCH_MPT,
|
||||
LLM_ARCH_STARCODER,
|
||||
LLM_ARCH_REFACT,
|
||||
LLM_ARCH_BERT,
|
||||
LLM_ARCH_NOMIC_BERT,
|
||||
LLM_ARCH_JINA_BERT_V2,
|
||||
LLM_ARCH_BLOOM,
|
||||
LLM_ARCH_STABLELM,
|
||||
LLM_ARCH_QWEN,
|
||||
LLM_ARCH_QWEN2,
|
||||
LLM_ARCH_QWEN2MOE,
|
||||
LLM_ARCH_QWEN2VL,
|
||||
LLM_ARCH_PHI2,
|
||||
LLM_ARCH_PHI3,
|
||||
LLM_ARCH_PLAMO,
|
||||
LLM_ARCH_CODESHELL,
|
||||
LLM_ARCH_ORION,
|
||||
LLM_ARCH_INTERNLM2,
|
||||
LLM_ARCH_MINICPM,
|
||||
LLM_ARCH_MINICPM3,
|
||||
LLM_ARCH_GEMMA,
|
||||
LLM_ARCH_GEMMA2,
|
||||
LLM_ARCH_STARCODER2,
|
||||
LLM_ARCH_MAMBA,
|
||||
LLM_ARCH_XVERSE,
|
||||
LLM_ARCH_COMMAND_R,
|
||||
LLM_ARCH_DBRX,
|
||||
LLM_ARCH_OLMO,
|
||||
LLM_ARCH_OLMO2,
|
||||
LLM_ARCH_OLMOE,
|
||||
LLM_ARCH_OPENELM,
|
||||
LLM_ARCH_ARCTIC,
|
||||
LLM_ARCH_DEEPSEEK,
|
||||
LLM_ARCH_DEEPSEEK2,
|
||||
LLM_ARCH_CHATGLM,
|
||||
LLM_ARCH_BITNET,
|
||||
LLM_ARCH_T5,
|
||||
LLM_ARCH_T5ENCODER,
|
||||
LLM_ARCH_JAIS,
|
||||
LLM_ARCH_NEMOTRON,
|
||||
LLM_ARCH_EXAONE,
|
||||
LLM_ARCH_RWKV6,
|
||||
LLM_ARCH_GRANITE,
|
||||
LLM_ARCH_GRANITE_MOE,
|
||||
LLM_ARCH_CHAMELEON,
|
||||
LLM_ARCH_WAVTOKENIZER_DEC,
|
||||
LLM_ARCH_UNKNOWN,
|
||||
};
|
||||
|
||||
enum llm_kv {
|
||||
LLM_KV_GENERAL_TYPE,
|
||||
LLM_KV_GENERAL_ARCHITECTURE,
|
||||
LLM_KV_GENERAL_QUANTIZATION_VERSION,
|
||||
LLM_KV_GENERAL_ALIGNMENT,
|
||||
LLM_KV_GENERAL_NAME,
|
||||
LLM_KV_GENERAL_AUTHOR,
|
||||
LLM_KV_GENERAL_VERSION,
|
||||
LLM_KV_GENERAL_URL,
|
||||
LLM_KV_GENERAL_DESCRIPTION,
|
||||
LLM_KV_GENERAL_LICENSE,
|
||||
LLM_KV_GENERAL_SOURCE_URL,
|
||||
LLM_KV_GENERAL_SOURCE_HF_REPO,
|
||||
|
||||
LLM_KV_VOCAB_SIZE,
|
||||
LLM_KV_CONTEXT_LENGTH,
|
||||
LLM_KV_EMBEDDING_LENGTH,
|
||||
LLM_KV_FEATURES_LENGTH,
|
||||
LLM_KV_BLOCK_COUNT,
|
||||
LLM_KV_LEADING_DENSE_BLOCK_COUNT,
|
||||
LLM_KV_FEED_FORWARD_LENGTH,
|
||||
LLM_KV_EXPERT_FEED_FORWARD_LENGTH,
|
||||
LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH,
|
||||
LLM_KV_USE_PARALLEL_RESIDUAL,
|
||||
LLM_KV_TENSOR_DATA_LAYOUT,
|
||||
LLM_KV_EXPERT_COUNT,
|
||||
LLM_KV_EXPERT_USED_COUNT,
|
||||
LLM_KV_EXPERT_SHARED_COUNT,
|
||||
LLM_KV_EXPERT_WEIGHTS_SCALE,
|
||||
LLM_KV_POOLING_TYPE,
|
||||
LLM_KV_LOGIT_SCALE,
|
||||
LLM_KV_DECODER_START_TOKEN_ID,
|
||||
LLM_KV_ATTN_LOGIT_SOFTCAPPING,
|
||||
LLM_KV_FINAL_LOGIT_SOFTCAPPING,
|
||||
LLM_KV_SWIN_NORM,
|
||||
LLM_KV_RESCALE_EVERY_N_LAYERS,
|
||||
LLM_KV_TIME_MIX_EXTRA_DIM,
|
||||
LLM_KV_TIME_DECAY_EXTRA_DIM,
|
||||
LLM_KV_RESIDUAL_SCALE,
|
||||
LLM_KV_EMBEDDING_SCALE,
|
||||
|
||||
LLM_KV_ATTENTION_HEAD_COUNT,
|
||||
LLM_KV_ATTENTION_HEAD_COUNT_KV,
|
||||
LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
|
||||
LLM_KV_ATTENTION_CLAMP_KQV,
|
||||
LLM_KV_ATTENTION_KEY_LENGTH,
|
||||
LLM_KV_ATTENTION_VALUE_LENGTH,
|
||||
LLM_KV_ATTENTION_LAYERNORM_EPS,
|
||||
LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
|
||||
LLM_KV_ATTENTION_GROUPNORM_EPS,
|
||||
LLM_KV_ATTENTION_GROUPNORM_GROUPS,
|
||||
LLM_KV_ATTENTION_CAUSAL,
|
||||
LLM_KV_ATTENTION_Q_LORA_RANK,
|
||||
LLM_KV_ATTENTION_KV_LORA_RANK,
|
||||
LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
|
||||
LLM_KV_ATTENTION_SLIDING_WINDOW,
|
||||
LLM_KV_ATTENTION_SCALE,
|
||||
|
||||
LLM_KV_ROPE_DIMENSION_COUNT,
|
||||
LLM_KV_ROPE_DIMENSION_SECTIONS,
|
||||
LLM_KV_ROPE_FREQ_BASE,
|
||||
LLM_KV_ROPE_SCALE_LINEAR,
|
||||
LLM_KV_ROPE_SCALING_TYPE,
|
||||
LLM_KV_ROPE_SCALING_FACTOR,
|
||||
LLM_KV_ROPE_SCALING_ATTN_FACTOR,
|
||||
LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
|
||||
LLM_KV_ROPE_SCALING_FINETUNED,
|
||||
LLM_KV_ROPE_SCALING_YARN_LOG_MUL,
|
||||
|
||||
LLM_KV_SPLIT_NO,
|
||||
LLM_KV_SPLIT_COUNT,
|
||||
LLM_KV_SPLIT_TENSORS_COUNT,
|
||||
|
||||
LLM_KV_SSM_INNER_SIZE,
|
||||
LLM_KV_SSM_CONV_KERNEL,
|
||||
LLM_KV_SSM_STATE_SIZE,
|
||||
LLM_KV_SSM_TIME_STEP_RANK,
|
||||
LLM_KV_SSM_DT_B_C_RMS,
|
||||
|
||||
LLM_KV_WKV_HEAD_SIZE,
|
||||
|
||||
LLM_KV_TOKENIZER_MODEL,
|
||||
LLM_KV_TOKENIZER_PRE,
|
||||
LLM_KV_TOKENIZER_LIST,
|
||||
LLM_KV_TOKENIZER_TOKEN_TYPE,
|
||||
LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
|
||||
LLM_KV_TOKENIZER_SCORES,
|
||||
LLM_KV_TOKENIZER_MERGES,
|
||||
LLM_KV_TOKENIZER_BOS_ID,
|
||||
LLM_KV_TOKENIZER_EOS_ID,
|
||||
LLM_KV_TOKENIZER_EOT_ID,
|
||||
LLM_KV_TOKENIZER_EOM_ID,
|
||||
LLM_KV_TOKENIZER_UNK_ID,
|
||||
LLM_KV_TOKENIZER_SEP_ID,
|
||||
LLM_KV_TOKENIZER_PAD_ID,
|
||||
LLM_KV_TOKENIZER_CLS_ID,
|
||||
LLM_KV_TOKENIZER_MASK_ID,
|
||||
LLM_KV_TOKENIZER_ADD_BOS,
|
||||
LLM_KV_TOKENIZER_ADD_EOS,
|
||||
LLM_KV_TOKENIZER_ADD_PREFIX,
|
||||
LLM_KV_TOKENIZER_REMOVE_EXTRA_WS,
|
||||
LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP,
|
||||
LLM_KV_TOKENIZER_HF_JSON,
|
||||
LLM_KV_TOKENIZER_RWKV,
|
||||
LLM_KV_TOKENIZER_FIM_PRE_ID,
|
||||
LLM_KV_TOKENIZER_FIM_SUF_ID,
|
||||
LLM_KV_TOKENIZER_FIM_MID_ID,
|
||||
LLM_KV_TOKENIZER_FIM_PAD_ID,
|
||||
LLM_KV_TOKENIZER_FIM_REP_ID,
|
||||
LLM_KV_TOKENIZER_FIM_SEP_ID,
|
||||
|
||||
LLM_KV_ADAPTER_TYPE,
|
||||
LLM_KV_ADAPTER_LORA_ALPHA,
|
||||
|
||||
LLM_KV_POSNET_EMBEDDING_LENGTH,
|
||||
LLM_KV_POSNET_BLOCK_COUNT,
|
||||
|
||||
LLM_KV_CONVNEXT_EMBEDDING_LENGTH,
|
||||
LLM_KV_CONVNEXT_BLOCK_COUNT,
|
||||
|
||||
// deprecated:
|
||||
LLM_KV_TOKENIZER_PREFIX_ID,
|
||||
LLM_KV_TOKENIZER_SUFFIX_ID,
|
||||
LLM_KV_TOKENIZER_MIDDLE_ID,
|
||||
};
|
||||
|
||||
enum llm_tensor {
|
||||
LLM_TENSOR_TOKEN_EMBD,
|
||||
LLM_TENSOR_TOKEN_EMBD_NORM,
|
||||
LLM_TENSOR_TOKEN_TYPES,
|
||||
LLM_TENSOR_POS_EMBD,
|
||||
LLM_TENSOR_OUTPUT,
|
||||
LLM_TENSOR_OUTPUT_NORM,
|
||||
LLM_TENSOR_ROPE_FREQS,
|
||||
LLM_TENSOR_ROPE_FACTORS_LONG,
|
||||
LLM_TENSOR_ROPE_FACTORS_SHORT,
|
||||
LLM_TENSOR_ATTN_Q,
|
||||
LLM_TENSOR_ATTN_K,
|
||||
LLM_TENSOR_ATTN_V,
|
||||
LLM_TENSOR_ATTN_QKV,
|
||||
LLM_TENSOR_ATTN_OUT,
|
||||
LLM_TENSOR_ATTN_NORM,
|
||||
LLM_TENSOR_ATTN_NORM_2,
|
||||
LLM_TENSOR_ATTN_OUT_NORM,
|
||||
LLM_TENSOR_ATTN_POST_NORM,
|
||||
LLM_TENSOR_ATTN_ROT_EMBD,
|
||||
LLM_TENSOR_FFN_GATE_INP,
|
||||
LLM_TENSOR_FFN_GATE_INP_SHEXP,
|
||||
LLM_TENSOR_FFN_NORM,
|
||||
LLM_TENSOR_FFN_POST_NORM,
|
||||
LLM_TENSOR_FFN_GATE,
|
||||
LLM_TENSOR_FFN_DOWN,
|
||||
LLM_TENSOR_FFN_UP,
|
||||
LLM_TENSOR_FFN_ACT,
|
||||
LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
|
||||
LLM_TENSOR_FFN_GATE_EXP,
|
||||
LLM_TENSOR_FFN_UP_EXP,
|
||||
LLM_TENSOR_FFN_NORM_EXPS,
|
||||
LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
|
||||
LLM_TENSOR_FFN_GATE_EXPS,
|
||||
LLM_TENSOR_FFN_UP_EXPS,
|
||||
LLM_TENSOR_FFN_DOWN_SHEXP,
|
||||
LLM_TENSOR_FFN_GATE_SHEXP,
|
||||
LLM_TENSOR_FFN_UP_SHEXP,
|
||||
LLM_TENSOR_ATTN_Q_NORM,
|
||||
LLM_TENSOR_ATTN_K_NORM,
|
||||
LLM_TENSOR_LAYER_OUT_NORM,
|
||||
LLM_TENSOR_SSM_IN,
|
||||
LLM_TENSOR_SSM_CONV1D,
|
||||
LLM_TENSOR_SSM_X,
|
||||
LLM_TENSOR_SSM_DT,
|
||||
LLM_TENSOR_SSM_A,
|
||||
LLM_TENSOR_SSM_D,
|
||||
LLM_TENSOR_SSM_OUT,
|
||||
LLM_TENSOR_TIME_MIX_W1,
|
||||
LLM_TENSOR_TIME_MIX_W2,
|
||||
LLM_TENSOR_TIME_MIX_LERP_X,
|
||||
LLM_TENSOR_TIME_MIX_LERP_W,
|
||||
LLM_TENSOR_TIME_MIX_LERP_K,
|
||||
LLM_TENSOR_TIME_MIX_LERP_V,
|
||||
LLM_TENSOR_TIME_MIX_LERP_R,
|
||||
LLM_TENSOR_TIME_MIX_LERP_G,
|
||||
LLM_TENSOR_TIME_MIX_FIRST,
|
||||
LLM_TENSOR_TIME_MIX_DECAY,
|
||||
LLM_TENSOR_TIME_MIX_DECAY_W1,
|
||||
LLM_TENSOR_TIME_MIX_DECAY_W2,
|
||||
LLM_TENSOR_TIME_MIX_KEY,
|
||||
LLM_TENSOR_TIME_MIX_VALUE,
|
||||
LLM_TENSOR_TIME_MIX_RECEPTANCE,
|
||||
LLM_TENSOR_TIME_MIX_GATE,
|
||||
LLM_TENSOR_TIME_MIX_LN,
|
||||
LLM_TENSOR_TIME_MIX_OUTPUT,
|
||||
LLM_TENSOR_CHANNEL_MIX_LERP_K,
|
||||
LLM_TENSOR_CHANNEL_MIX_LERP_R,
|
||||
LLM_TENSOR_CHANNEL_MIX_KEY,
|
||||
LLM_TENSOR_CHANNEL_MIX_RECEPTANCE,
|
||||
LLM_TENSOR_CHANNEL_MIX_VALUE,
|
||||
LLM_TENSOR_ATTN_Q_A,
|
||||
LLM_TENSOR_ATTN_Q_B,
|
||||
LLM_TENSOR_ATTN_KV_A_MQA,
|
||||
LLM_TENSOR_ATTN_KV_B,
|
||||
LLM_TENSOR_ATTN_Q_A_NORM,
|
||||
LLM_TENSOR_ATTN_KV_A_NORM,
|
||||
LLM_TENSOR_ATTN_SUB_NORM,
|
||||
LLM_TENSOR_FFN_SUB_NORM,
|
||||
LLM_TENSOR_DEC_ATTN_NORM,
|
||||
LLM_TENSOR_DEC_ATTN_Q,
|
||||
LLM_TENSOR_DEC_ATTN_K,
|
||||
LLM_TENSOR_DEC_ATTN_V,
|
||||
LLM_TENSOR_DEC_ATTN_OUT,
|
||||
LLM_TENSOR_DEC_ATTN_REL_B,
|
||||
LLM_TENSOR_DEC_CROSS_ATTN_NORM,
|
||||
LLM_TENSOR_DEC_CROSS_ATTN_Q,
|
||||
LLM_TENSOR_DEC_CROSS_ATTN_K,
|
||||
LLM_TENSOR_DEC_CROSS_ATTN_V,
|
||||
LLM_TENSOR_DEC_CROSS_ATTN_OUT,
|
||||
LLM_TENSOR_DEC_CROSS_ATTN_REL_B,
|
||||
LLM_TENSOR_DEC_FFN_NORM,
|
||||
LLM_TENSOR_DEC_FFN_GATE,
|
||||
LLM_TENSOR_DEC_FFN_DOWN,
|
||||
LLM_TENSOR_DEC_FFN_UP,
|
||||
LLM_TENSOR_DEC_OUTPUT_NORM,
|
||||
LLM_TENSOR_ENC_ATTN_NORM,
|
||||
LLM_TENSOR_ENC_ATTN_Q,
|
||||
LLM_TENSOR_ENC_ATTN_K,
|
||||
LLM_TENSOR_ENC_ATTN_V,
|
||||
LLM_TENSOR_ENC_ATTN_OUT,
|
||||
LLM_TENSOR_ENC_ATTN_REL_B,
|
||||
LLM_TENSOR_ENC_FFN_NORM,
|
||||
LLM_TENSOR_ENC_FFN_GATE,
|
||||
LLM_TENSOR_ENC_FFN_DOWN,
|
||||
LLM_TENSOR_ENC_FFN_UP,
|
||||
LLM_TENSOR_ENC_OUTPUT_NORM,
|
||||
LLM_TENSOR_CLS,
|
||||
LLM_TENSOR_CLS_OUT,
|
||||
LLM_TENSOR_CONV1D,
|
||||
LLM_TENSOR_CONVNEXT_DW,
|
||||
LLM_TENSOR_CONVNEXT_NORM,
|
||||
LLM_TENSOR_CONVNEXT_PW1,
|
||||
LLM_TENSOR_CONVNEXT_PW2,
|
||||
LLM_TENSOR_CONVNEXT_GAMMA,
|
||||
LLM_TENSOR_POS_NET_CONV1,
|
||||
LLM_TENSOR_POS_NET_CONV2,
|
||||
LLM_TENSOR_POS_NET_NORM,
|
||||
LLM_TENSOR_POS_NET_NORM1,
|
||||
LLM_TENSOR_POS_NET_NORM2,
|
||||
LLM_TENSOR_POS_NET_ATTN_NORM,
|
||||
LLM_TENSOR_POS_NET_ATTN_Q,
|
||||
LLM_TENSOR_POS_NET_ATTN_K,
|
||||
LLM_TENSOR_POS_NET_ATTN_V,
|
||||
LLM_TENSOR_POS_NET_ATTN_OUT,
|
||||
};
|
||||
|
||||
enum llm_tensor_layer {
|
||||
LLM_TENSOR_LAYER_INPUT,
|
||||
LLM_TENSOR_LAYER_REPEATING,
|
||||
LLM_TENSOR_LAYER_OUTPUT,
|
||||
};
|
||||
|
||||
struct LLM_KV {
|
||||
LLM_KV(llm_arch arch);
|
||||
|
||||
llm_arch arch;
|
||||
|
||||
std::string operator()(llm_kv kv) const;
|
||||
};
|
||||
|
||||
// helper to handle gguf constants
|
||||
// usage:
|
||||
//
|
||||
// const auto tn = LLM_TN(LLM_ARCH_LLAMA);
|
||||
//
|
||||
// std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
|
||||
// std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
|
||||
// std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
|
||||
//
|
||||
struct LLM_TN_IMPL {
|
||||
const llm_arch arch;
|
||||
const llm_tensor tensor;
|
||||
const char * const suffix;
|
||||
const int bid;
|
||||
const int xid;
|
||||
|
||||
std::string str() const;
|
||||
|
||||
operator std::string() const {
|
||||
return str();
|
||||
}
|
||||
|
||||
friend bool operator==(const std::string & str, const LLM_TN_IMPL & tn) {
|
||||
return str == tn.str();
|
||||
}
|
||||
|
||||
friend bool operator!=(const std::string & str, const LLM_TN_IMPL & tn) {
|
||||
return str != tn.str();
|
||||
}
|
||||
};
|
||||
|
||||
struct LLM_TN {
|
||||
LLM_TN(llm_arch arch) : arch(arch) {}
|
||||
|
||||
llm_arch arch;
|
||||
|
||||
LLM_TN_IMPL operator()(llm_tensor tensor, const char * suffix, int bid = -1, int xid = -1) const {
|
||||
return { arch, tensor, suffix, bid, xid };
|
||||
}
|
||||
|
||||
LLM_TN_IMPL operator()(llm_tensor tensor, int bid = -1, int xid = -1) const {
|
||||
return { arch, tensor, nullptr, bid, xid };
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
struct llm_tensor_info {
|
||||
llm_tensor_layer layer;
|
||||
ggml_op op;
|
||||
};
|
||||
|
||||
const char * llm_arch_name(llm_arch arch);
|
||||
|
||||
llm_arch llm_arch_from_string(const std::string & name);
|
||||
|
||||
const llm_tensor_info & llm_tensor_info_for(llm_tensor tensor);
|
368
src/llama-batch.cpp
Normal file
368
src/llama-batch.cpp
Normal file
@ -0,0 +1,368 @@
|
||||
#include "llama-batch.h"
|
||||
|
||||
#include <cstring>
|
||||
#include <algorithm>
|
||||
|
||||
llama_ubatch llama_sbatch::reserve_ubatch(size_t n_ubatch, bool has_embd) {
|
||||
// clear empty sequences
|
||||
// the previous ubatch is assumed to be gone,
|
||||
// so nothing should refer to values in these sequences anymore.
|
||||
for (size_t i = seq.size(); i-- > 0;) {
|
||||
if (seq[i].length == 0) {
|
||||
seq.pop_back();
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
ubatch_token.resize(!has_embd ? n_ubatch : 0);
|
||||
ubatch_embd.resize(has_embd ? n_embd * n_ubatch : 0);
|
||||
ubatch_pos.resize(n_ubatch);
|
||||
ubatch_n_seq_id.resize(n_ubatch);
|
||||
ubatch_seq_id.resize(n_ubatch);
|
||||
ubatch_output.resize(n_ubatch);
|
||||
llama_ubatch ubatch = {
|
||||
/*equal_seqs =*/ true,
|
||||
/*n_tokens =*/ 0,
|
||||
/*n_seq_tokens =*/ 0,
|
||||
/*n_seqs =*/ 0,
|
||||
/*token =*/ !has_embd ? ubatch_token.data() : nullptr,
|
||||
/*embd =*/ has_embd ? ubatch_embd.data() : nullptr,
|
||||
/*pos =*/ ubatch_pos.data(),
|
||||
/*n_seq_id =*/ ubatch_n_seq_id.data(),
|
||||
/*seq_id =*/ ubatch_seq_id.data(),
|
||||
/*output =*/ ubatch_output.data(),
|
||||
};
|
||||
return ubatch;
|
||||
}
|
||||
|
||||
void llama_sbatch::add_seq_to_ubatch(llama_ubatch & ubatch, llama_sbatch_seq & seq, size_t length) {
|
||||
GGML_ASSERT(batch != nullptr);
|
||||
GGML_ASSERT(length <= seq.length);
|
||||
// Can only add sequences of equal lengths to a batch,
|
||||
// otherwise it isn't clear to which sequence a token belongs
|
||||
GGML_ASSERT(seq.n_seq_id == 0 || ubatch.n_seqs == 0 || length == (size_t) ubatch.n_tokens / ubatch.n_seqs);
|
||||
GGML_ASSERT((seq.n_seq_id != 0) == ubatch.equal_seqs);
|
||||
// NOTE: loops are separated for cache-friendliness
|
||||
if (batch->token) {
|
||||
if (ubatch.equal_seqs) {
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
ubatch.token[ubatch.n_tokens + i] = batch->token[ids[seq.offset + i]];
|
||||
}
|
||||
} else {
|
||||
// simple split
|
||||
ubatch.token = batch->token + seq.offset;
|
||||
}
|
||||
} else {
|
||||
ubatch.token = nullptr;
|
||||
}
|
||||
if (batch->embd) {
|
||||
if (ubatch.equal_seqs) {
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
memcpy(
|
||||
ubatch.embd + (n_embd * (ubatch.n_tokens + i)),
|
||||
batch->embd + (n_embd * ids[seq.offset + i]),
|
||||
n_embd * sizeof(float)
|
||||
);
|
||||
}
|
||||
} else {
|
||||
// simple split
|
||||
ubatch.embd = batch->embd + (n_embd * seq.offset);
|
||||
}
|
||||
} else {
|
||||
ubatch.embd = nullptr;
|
||||
}
|
||||
if (ubatch.equal_seqs) {
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
ubatch.pos[ubatch.n_tokens + i] = batch->pos[ids[seq.offset + i]];
|
||||
}
|
||||
} else {
|
||||
// simple split
|
||||
ubatch.pos = batch->pos + seq.offset;
|
||||
}
|
||||
if (ubatch.equal_seqs) {
|
||||
ubatch.n_seq_id[ubatch.n_seqs] = seq.n_seq_id;
|
||||
if (seq.seq_id) {
|
||||
ubatch.seq_id[ubatch.n_seqs] = seq.seq_id;
|
||||
}
|
||||
} else {
|
||||
// simple split
|
||||
if (batch->n_seq_id) {
|
||||
ubatch.n_seq_id = batch->n_seq_id + seq.offset;
|
||||
} else {
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
ubatch.n_seq_id[ubatch.n_seqs + i] = 1;
|
||||
}
|
||||
}
|
||||
if (batch->seq_id) {
|
||||
ubatch.seq_id = batch->seq_id + seq.offset;
|
||||
}
|
||||
}
|
||||
if (logits_all) {
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
ubatch.output[ubatch.n_tokens + i] = 1;
|
||||
out_ids.push_back(ids[seq.offset + i]);
|
||||
}
|
||||
} else if (batch->logits) {
|
||||
if (ubatch.equal_seqs) {
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
size_t id = ids[seq.offset + i];
|
||||
int8_t is_output = batch->logits[id];
|
||||
ubatch.output[ubatch.n_tokens + i] = is_output;
|
||||
if (is_output) { out_ids.push_back(id); }
|
||||
}
|
||||
} else {
|
||||
// simple split
|
||||
ubatch.output = batch->logits + seq.offset;
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
if (ubatch.output[i] != 0) { out_ids.push_back(seq.offset + i); }
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// only get last output
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
size_t id = ids[seq.offset + i];
|
||||
int8_t is_last = id == ids.size() - 1;
|
||||
ubatch.output[ubatch.n_tokens + i] = is_last;
|
||||
if (is_last) { out_ids.push_back(id); }
|
||||
}
|
||||
}
|
||||
if (ubatch.n_tokens == 0 && ubatch.n_seqs == 0) {
|
||||
ubatch.n_seq_tokens = ubatch.equal_seqs ? length : 1;
|
||||
}
|
||||
ubatch.n_tokens += length;
|
||||
ubatch.n_seqs += ubatch.equal_seqs ? 1 : length; // virtual sequences for simple splits
|
||||
seq.offset += length;
|
||||
seq.length -= length;
|
||||
n_tokens -= length;
|
||||
GGML_ASSERT(ubatch.n_tokens == ubatch.n_seq_tokens * ubatch.n_seqs);
|
||||
}
|
||||
|
||||
llama_ubatch llama_sbatch::split_simple(size_t n_ubatch) {
|
||||
n_ubatch = n_tokens < n_ubatch ? n_tokens : n_ubatch;
|
||||
llama_ubatch ubatch = reserve_ubatch(n_ubatch, /* has_embd */ batch->embd != nullptr);
|
||||
ubatch.equal_seqs = false;
|
||||
if (!seq.empty()) {
|
||||
llama_sbatch_seq & s = seq[0];
|
||||
size_t length = s.length < n_ubatch ? s.length : n_ubatch;
|
||||
GGML_ASSERT(seq.size() == 1 && s.n_seq_id == 0); // don't mix with other splits
|
||||
add_seq_to_ubatch(ubatch, s, length);
|
||||
}
|
||||
return ubatch;
|
||||
}
|
||||
|
||||
llama_ubatch llama_sbatch::split_equal(size_t n_ubatch) {
|
||||
n_ubatch = n_tokens < n_ubatch ? n_tokens : n_ubatch;
|
||||
llama_ubatch ubatch = reserve_ubatch(n_ubatch, /* has_embd */ batch->embd != nullptr);
|
||||
if (!seq.empty()) {
|
||||
size_t length = 0;
|
||||
size_t n_tokens_in_ubatch = 0;
|
||||
GGML_ASSERT(seq[0].n_seq_id > 0); // should not be mixed with simple splits
|
||||
// smallest first, because it's easier to split this way;
|
||||
// starting from the end to pop in constant time.
|
||||
for (size_t i = seq.size(); i-- > 0;) {
|
||||
llama_sbatch_seq & s = seq[i];
|
||||
GGML_ASSERT(s.length > 0);
|
||||
if (length == 0) {
|
||||
length = s.length < n_ubatch ? s.length : n_ubatch;
|
||||
}
|
||||
add_seq_to_ubatch(ubatch, s, length);
|
||||
n_tokens_in_ubatch += length;
|
||||
// shared prompts can't be mixed with any of their sequences,
|
||||
// so it's safer to compute them in their own ubatch
|
||||
if (s.n_seq_id > 1) { break; }
|
||||
// stop when there isn't enough space for another sequence
|
||||
if (length + n_tokens_in_ubatch > n_ubatch) { break; }
|
||||
}
|
||||
}
|
||||
return ubatch;
|
||||
}
|
||||
|
||||
llama_ubatch llama_sbatch::split_seq(size_t n_ubatch) {
|
||||
n_ubatch = n_tokens < n_ubatch ? n_tokens : n_ubatch;
|
||||
llama_ubatch ubatch = reserve_ubatch(n_ubatch, /* has_embd */ batch->embd != nullptr);
|
||||
if (!seq.empty()) {
|
||||
llama_sbatch_seq & s = seq[seq.size() - 1];
|
||||
size_t length = s.length < n_ubatch ? s.length : n_ubatch;
|
||||
GGML_ASSERT(s.n_seq_id > 0); // should not be mixed with simple splits
|
||||
add_seq_to_ubatch(ubatch, s, length);
|
||||
}
|
||||
return ubatch;
|
||||
}
|
||||
|
||||
void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool simple_split, bool logits_all) {
|
||||
GGML_ASSERT(batch.n_tokens >= 0);
|
||||
this->batch = &batch;
|
||||
this->n_embd = n_embd;
|
||||
this->logits_all = logits_all;
|
||||
|
||||
n_tokens = batch.n_tokens;
|
||||
ids.resize(n_tokens);
|
||||
out_ids.clear();
|
||||
// TODO: reserve out_ids and seq
|
||||
|
||||
for (size_t i = 0; i < n_tokens; ++i) {
|
||||
ids[i] = i;
|
||||
}
|
||||
if (simple_split) {
|
||||
seq.resize(1);
|
||||
llama_sbatch_seq & s = seq[0];
|
||||
s.n_seq_id = 0;
|
||||
s.seq_id = nullptr;
|
||||
s.offset = 0;
|
||||
s.length = n_tokens;
|
||||
return;
|
||||
}
|
||||
std::sort(ids.begin(), ids.end(),
|
||||
[&batch](size_t a, size_t b) {
|
||||
int32_t n_seq_a = batch.n_seq_id ? batch.n_seq_id[a] : 1;
|
||||
int32_t n_seq_b = batch.n_seq_id ? batch.n_seq_id[b] : 1;
|
||||
// sort by seq_id, then by pos
|
||||
if (n_seq_a == n_seq_b) {
|
||||
if (batch.seq_id) {
|
||||
for (int32_t i = 0; i < n_seq_a; ++i) {
|
||||
llama_seq_id seq_id_a = batch.seq_id[a][i];
|
||||
llama_seq_id seq_id_b = batch.seq_id[b][i];
|
||||
// smaller seq_ids go first
|
||||
if (seq_id_a != seq_id_b) {
|
||||
return seq_id_a < seq_id_b;
|
||||
}
|
||||
}
|
||||
}
|
||||
// when all else is equal, sort by pos
|
||||
if (batch.pos) {
|
||||
return batch.pos[a] < batch.pos[b];
|
||||
}
|
||||
// no pos, sort by id
|
||||
return a < b;
|
||||
}
|
||||
// shared prompts go first
|
||||
return n_seq_a > n_seq_b;
|
||||
}
|
||||
);
|
||||
// init seq
|
||||
llama_sbatch_seq * last_seq = nullptr;
|
||||
|
||||
for (size_t i = 0; i < n_tokens; ++i) {
|
||||
const size_t bi = ids[i];
|
||||
const int32_t n_seqs = batch.n_seq_id[bi];
|
||||
llama_seq_id * seq_ids = batch.seq_id[bi];
|
||||
if (last_seq != nullptr) {
|
||||
bool same = n_seqs == last_seq->n_seq_id;
|
||||
for (int32_t j = 0; same && j < n_seqs; ++j) {
|
||||
if (seq_ids[j] != last_seq->seq_id[j]) {
|
||||
same = false;
|
||||
}
|
||||
}
|
||||
if (same) {
|
||||
last_seq->length += 1;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
llama_sbatch_seq new_seq = {n_seqs, seq_ids, i, 1};
|
||||
seq.push_back(new_seq);
|
||||
last_seq = &seq.back();
|
||||
}
|
||||
// keep shared prompts first at the end, then sort by length descending.
|
||||
std::sort(seq.begin(), seq.end(),
|
||||
[](llama_sbatch_seq & a, llama_sbatch_seq & b) {
|
||||
if (a.n_seq_id == b.n_seq_id) {
|
||||
return a.length > b.length;
|
||||
}
|
||||
return a.n_seq_id < b.n_seq_id;
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
llama_batch_allocr::llama_batch_allocr(struct llama_batch in_batch, llama_pos p0) {
|
||||
batch = in_batch;
|
||||
GGML_ASSERT(batch.n_tokens > 0);
|
||||
if (!batch.pos) {
|
||||
pos.resize(batch.n_tokens);
|
||||
for (int32_t i = 0; i < batch.n_tokens; i++) {
|
||||
pos[i] = i + p0;
|
||||
}
|
||||
batch.pos = pos.data();
|
||||
}
|
||||
if (!batch.n_seq_id) {
|
||||
n_seq_id.resize(batch.n_tokens);
|
||||
for (int32_t i = 0; i < batch.n_tokens; i++) {
|
||||
n_seq_id[i] = seq_id_0.size();
|
||||
}
|
||||
batch.n_seq_id = n_seq_id.data();
|
||||
}
|
||||
if (!batch.seq_id) {
|
||||
seq_id.resize(batch.n_tokens + 1);
|
||||
seq_id[batch.n_tokens] = NULL;
|
||||
for (int32_t i = 0; i < batch.n_tokens; i++) {
|
||||
seq_id[i] = seq_id_0.data();
|
||||
}
|
||||
batch.seq_id = seq_id.data();
|
||||
}
|
||||
if (!batch.logits) {
|
||||
logits.resize(batch.n_tokens);
|
||||
logits[logits.size() - 1] = true;
|
||||
batch.logits = logits.data();
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// interface implementation
|
||||
//
|
||||
|
||||
struct llama_batch llama_batch_get_one(
|
||||
llama_token * tokens,
|
||||
int32_t n_tokens) {
|
||||
return {
|
||||
/*n_tokens =*/ n_tokens,
|
||||
/*tokens =*/ tokens,
|
||||
/*embd =*/ nullptr,
|
||||
/*pos =*/ nullptr,
|
||||
/*n_seq_id =*/ nullptr,
|
||||
/*seq_id =*/ nullptr,
|
||||
/*logits =*/ nullptr,
|
||||
};
|
||||
}
|
||||
|
||||
struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
|
||||
llama_batch batch = {
|
||||
/*n_tokens =*/ 0,
|
||||
/*tokens =*/ nullptr,
|
||||
/*embd =*/ nullptr,
|
||||
/*pos =*/ nullptr,
|
||||
/*n_seq_id =*/ nullptr,
|
||||
/*seq_id =*/ nullptr,
|
||||
/*logits =*/ nullptr,
|
||||
};
|
||||
|
||||
if (embd) {
|
||||
batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
|
||||
} else {
|
||||
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
|
||||
}
|
||||
|
||||
batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
|
||||
batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
|
||||
batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
|
||||
for (int i = 0; i < n_tokens_alloc; ++i) {
|
||||
batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
|
||||
}
|
||||
batch.seq_id[n_tokens_alloc] = nullptr;
|
||||
|
||||
batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
|
||||
|
||||
return batch;
|
||||
}
|
||||
|
||||
void llama_batch_free(struct llama_batch batch) {
|
||||
if (batch.token) free(batch.token);
|
||||
if (batch.embd) free(batch.embd);
|
||||
if (batch.pos) free(batch.pos);
|
||||
if (batch.n_seq_id) free(batch.n_seq_id);
|
||||
if (batch.seq_id) {
|
||||
for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
|
||||
free(batch.seq_id[i]);
|
||||
}
|
||||
free(batch.seq_id);
|
||||
}
|
||||
if (batch.logits) free(batch.logits);
|
||||
}
|
88
src/llama-batch.h
Normal file
88
src/llama-batch.h
Normal file
@ -0,0 +1,88 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include <array>
|
||||
#include <vector>
|
||||
|
||||
// very similar to llama_batch,
|
||||
// but has more metadata about sequences
|
||||
struct llama_ubatch {
|
||||
bool equal_seqs;
|
||||
// TODO: whole_seqs for embeddings?
|
||||
|
||||
uint32_t n_tokens; // total tokens (n_seq_tokens * n_seqs)
|
||||
uint32_t n_seq_tokens; // tokens per sequence
|
||||
uint32_t n_seqs;
|
||||
|
||||
llama_token * token; // [n_tokens]
|
||||
float * embd; // [n_embd, n_tokens]
|
||||
llama_pos * pos; // [n_tokens]
|
||||
int32_t * n_seq_id; // [n_seqs]
|
||||
llama_seq_id ** seq_id; // [n_seqs]
|
||||
int8_t * output; // [n_tokens]
|
||||
};
|
||||
|
||||
struct llama_sbatch_seq {
|
||||
int32_t n_seq_id;
|
||||
|
||||
llama_seq_id * seq_id;
|
||||
|
||||
size_t offset;
|
||||
size_t length;
|
||||
};
|
||||
|
||||
// sequence-length-aware batch splitting
|
||||
struct llama_sbatch {
|
||||
// tokens left in this batch
|
||||
size_t n_tokens;
|
||||
|
||||
size_t n_embd;
|
||||
|
||||
bool logits_all; // TODO: remove once lctx.logits_all is removed too
|
||||
|
||||
// sorted indices into the batch
|
||||
std::vector<size_t> ids;
|
||||
// batch indices of the output
|
||||
std::vector<size_t> out_ids;
|
||||
std::vector<llama_sbatch_seq> seq;
|
||||
|
||||
const llama_batch * batch = nullptr;
|
||||
|
||||
// buffers for the ubatch
|
||||
std::vector<llama_token> ubatch_token;
|
||||
std::vector<float> ubatch_embd;
|
||||
std::vector<llama_pos> ubatch_pos;
|
||||
std::vector<int32_t> ubatch_n_seq_id;
|
||||
std::vector<llama_seq_id *> ubatch_seq_id;
|
||||
std::vector<int8_t> ubatch_output;
|
||||
|
||||
llama_ubatch reserve_ubatch(size_t n_ubatch, bool has_embd = false);
|
||||
|
||||
void add_seq_to_ubatch(llama_ubatch & ubatch, llama_sbatch_seq & seq, size_t length);
|
||||
|
||||
// simple split, unknown number of sequences of unequal lengths
|
||||
llama_ubatch split_simple(size_t n_ubatch);
|
||||
|
||||
// make batches of equal-length sequences
|
||||
llama_ubatch split_equal(size_t n_ubatch);
|
||||
|
||||
// sequence-wise split
|
||||
llama_ubatch split_seq(size_t n_ubatch);
|
||||
|
||||
void from_batch(const llama_batch & batch, size_t n_embd, bool simple_split = false, bool logits_all = false);
|
||||
};
|
||||
|
||||
// temporary allocate memory for the input batch if needed
|
||||
struct llama_batch_allocr {
|
||||
struct llama_batch batch;
|
||||
|
||||
std::array<llama_seq_id, 1> seq_id_0 = { 0 }; // default sequence id
|
||||
std::vector<llama_pos> pos;
|
||||
std::vector<int32_t> n_seq_id;
|
||||
std::vector<llama_seq_id *> seq_id;
|
||||
std::vector<int8_t> logits;
|
||||
|
||||
// optionally fulfill the batch returned by llama_batch_get_one
|
||||
llama_batch_allocr(struct llama_batch in_batch, llama_pos p0);
|
||||
};
|
549
src/llama-chat.cpp
Normal file
549
src/llama-chat.cpp
Normal file
@ -0,0 +1,549 @@
|
||||
#include "llama-chat.h"
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include <map>
|
||||
#include <sstream>
|
||||
|
||||
#if __cplusplus >= 202000L
|
||||
#define LU8(x) (const char*)(u8##x)
|
||||
#else
|
||||
#define LU8(x) u8##x
|
||||
#endif
|
||||
|
||||
// trim whitespace from the beginning and end of a string
|
||||
static std::string trim(const std::string & str) {
|
||||
size_t start = 0;
|
||||
size_t end = str.size();
|
||||
while (start < end && isspace(str[start])) {
|
||||
start += 1;
|
||||
}
|
||||
while (end > start && isspace(str[end - 1])) {
|
||||
end -= 1;
|
||||
}
|
||||
return str.substr(start, end - start);
|
||||
}
|
||||
|
||||
static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
|
||||
{ "chatml", LLM_CHAT_TEMPLATE_CHATML },
|
||||
{ "llama2", LLM_CHAT_TEMPLATE_LLAMA_2 },
|
||||
{ "llama2-sys", LLM_CHAT_TEMPLATE_LLAMA_2_SYS },
|
||||
{ "llama2-sys-bos", LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS },
|
||||
{ "llama2-sys-strip", LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP },
|
||||
{ "mistral-v1", LLM_CHAT_TEMPLATE_MISTRAL_V1 },
|
||||
{ "mistral-v3", LLM_CHAT_TEMPLATE_MISTRAL_V3 },
|
||||
{ "mistral-v3-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN },
|
||||
{ "mistral-v7", LLM_CHAT_TEMPLATE_MISTRAL_V7 },
|
||||
{ "phi3", LLM_CHAT_TEMPLATE_PHI_3 },
|
||||
{ "falcon3", LLM_CHAT_TEMPLATE_FALCON_3 },
|
||||
{ "zephyr", LLM_CHAT_TEMPLATE_ZEPHYR },
|
||||
{ "monarch", LLM_CHAT_TEMPLATE_MONARCH },
|
||||
{ "gemma", LLM_CHAT_TEMPLATE_GEMMA },
|
||||
{ "orion", LLM_CHAT_TEMPLATE_ORION },
|
||||
{ "openchat", LLM_CHAT_TEMPLATE_OPENCHAT },
|
||||
{ "vicuna", LLM_CHAT_TEMPLATE_VICUNA },
|
||||
{ "vicuna-orca", LLM_CHAT_TEMPLATE_VICUNA_ORCA },
|
||||
{ "deepseek", LLM_CHAT_TEMPLATE_DEEPSEEK },
|
||||
{ "deepseek2", LLM_CHAT_TEMPLATE_DEEPSEEK_2 },
|
||||
{ "command-r", LLM_CHAT_TEMPLATE_COMMAND_R },
|
||||
{ "llama3", LLM_CHAT_TEMPLATE_LLAMA_3 },
|
||||
{ "chatglm3", LLM_CHAT_TEMPLATE_CHATGML_3 },
|
||||
{ "chatglm4", LLM_CHAT_TEMPLATE_CHATGML_4 },
|
||||
{ "minicpm", LLM_CHAT_TEMPLATE_MINICPM },
|
||||
{ "exaone3", LLM_CHAT_TEMPLATE_EXAONE_3 },
|
||||
{ "rwkv-world", LLM_CHAT_TEMPLATE_RWKV_WORLD },
|
||||
{ "granite", LLM_CHAT_TEMPLATE_GRANITE },
|
||||
{ "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT },
|
||||
{ "megrez", LLM_CHAT_TEMPLATE_MEGREZ },
|
||||
};
|
||||
|
||||
llm_chat_template llm_chat_template_from_str(const std::string & name) {
|
||||
return LLM_CHAT_TEMPLATES.at(name);
|
||||
}
|
||||
|
||||
llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
|
||||
try {
|
||||
return llm_chat_template_from_str(tmpl);
|
||||
} catch (const std::out_of_range &) {
|
||||
// ignore
|
||||
}
|
||||
|
||||
auto tmpl_contains = [&tmpl](const char * haystack) -> bool {
|
||||
return tmpl.find(haystack) != std::string::npos;
|
||||
};
|
||||
if (tmpl_contains("<|im_start|>")) {
|
||||
return LLM_CHAT_TEMPLATE_CHATML;
|
||||
} else if (tmpl.find("mistral") == 0 || tmpl_contains("[INST]")) {
|
||||
if (tmpl_contains("[SYSTEM_PROMPT]")) {
|
||||
return LLM_CHAT_TEMPLATE_MISTRAL_V7;
|
||||
} else if (
|
||||
// catches official 'v1' template
|
||||
tmpl_contains("' [INST] ' + system_message")
|
||||
// catches official 'v3' and 'v3-tekken' templates
|
||||
|| tmpl_contains("[AVAILABLE_TOOLS]")
|
||||
) {
|
||||
// Official mistral 'v1', 'v3' and 'v3-tekken' templates
|
||||
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/chat_templates.md
|
||||
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/templates.md
|
||||
if (tmpl_contains(" [INST]")) {
|
||||
return LLM_CHAT_TEMPLATE_MISTRAL_V1;
|
||||
} else if (tmpl_contains("\"[INST]\"")) {
|
||||
return LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN;
|
||||
}
|
||||
return LLM_CHAT_TEMPLATE_MISTRAL_V3;
|
||||
} else {
|
||||
// llama2 template and its variants
|
||||
// [variant] support system message
|
||||
// See: https://huggingface.co/blog/llama2#how-to-prompt-llama-2
|
||||
bool support_system_message = tmpl_contains("<<SYS>>");
|
||||
bool add_bos_inside_history = tmpl_contains("bos_token + '[INST]");
|
||||
bool strip_message = tmpl_contains("content.strip()");
|
||||
if (strip_message) {
|
||||
return LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP;
|
||||
} else if (add_bos_inside_history) {
|
||||
return LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS;
|
||||
} else if (support_system_message) {
|
||||
return LLM_CHAT_TEMPLATE_LLAMA_2_SYS;
|
||||
} else {
|
||||
return LLM_CHAT_TEMPLATE_LLAMA_2;
|
||||
}
|
||||
}
|
||||
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>")) {
|
||||
return LLM_CHAT_TEMPLATE_PHI_3;
|
||||
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|user|>")) {
|
||||
return LLM_CHAT_TEMPLATE_FALCON_3;
|
||||
} else if (tmpl_contains("<|user|>") && tmpl_contains("<|endoftext|>")) {
|
||||
return LLM_CHAT_TEMPLATE_ZEPHYR;
|
||||
} else if (tmpl_contains("bos_token + message['role']")) {
|
||||
return LLM_CHAT_TEMPLATE_MONARCH;
|
||||
} else if (tmpl_contains("<start_of_turn>")) {
|
||||
return LLM_CHAT_TEMPLATE_GEMMA;
|
||||
} else if (tmpl_contains("'\\n\\nAssistant: ' + eos_token")) {
|
||||
// OrionStarAI/Orion-14B-Chat
|
||||
return LLM_CHAT_TEMPLATE_ORION;
|
||||
} else if (tmpl_contains("GPT4 Correct ")) {
|
||||
// openchat/openchat-3.5-0106
|
||||
return LLM_CHAT_TEMPLATE_OPENCHAT;
|
||||
} else if (tmpl_contains("USER: ") && tmpl_contains("ASSISTANT: ")) {
|
||||
// eachadea/vicuna-13b-1.1 (and Orca variant)
|
||||
if (tmpl_contains("SYSTEM: ")) {
|
||||
return LLM_CHAT_TEMPLATE_VICUNA_ORCA;
|
||||
}
|
||||
return LLM_CHAT_TEMPLATE_VICUNA;
|
||||
} else if (tmpl_contains("### Instruction:") && tmpl_contains("<|EOT|>")) {
|
||||
// deepseek-ai/deepseek-coder-33b-instruct
|
||||
return LLM_CHAT_TEMPLATE_DEEPSEEK;
|
||||
} else if (tmpl_contains("<|START_OF_TURN_TOKEN|>") && tmpl_contains("<|USER_TOKEN|>")) {
|
||||
// CohereForAI/c4ai-command-r-plus
|
||||
return LLM_CHAT_TEMPLATE_COMMAND_R;
|
||||
} else if (tmpl_contains("<|start_header_id|>") && tmpl_contains("<|end_header_id|>")) {
|
||||
return LLM_CHAT_TEMPLATE_LLAMA_3;
|
||||
} else if (tmpl_contains("[gMASK]sop")) {
|
||||
// chatglm3-6b
|
||||
return LLM_CHAT_TEMPLATE_CHATGML_3;
|
||||
} else if (tmpl_contains("[gMASK]<sop>")) {
|
||||
return LLM_CHAT_TEMPLATE_CHATGML_4;
|
||||
} else if (tmpl_contains(LU8("<用户>"))) {
|
||||
// MiniCPM-3B-OpenHermes-2.5-v2-GGUF
|
||||
return LLM_CHAT_TEMPLATE_MINICPM;
|
||||
} else if (tmpl_contains("'Assistant: ' + message['content'] + eos_token")) {
|
||||
return LLM_CHAT_TEMPLATE_DEEPSEEK_2;
|
||||
} else if (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]")) {
|
||||
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
|
||||
// EXAONE-3.0-7.8B-Instruct
|
||||
return LLM_CHAT_TEMPLATE_EXAONE_3;
|
||||
} else if (tmpl_contains("rwkv-world")) {
|
||||
return LLM_CHAT_TEMPLATE_RWKV_WORLD;
|
||||
} else if (tmpl_contains("<|start_of_role|>")) {
|
||||
return LLM_CHAT_TEMPLATE_GRANITE;
|
||||
} else if (tmpl_contains("message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1]")) {
|
||||
return LLM_CHAT_TEMPLATE_GIGACHAT;
|
||||
} else if (tmpl_contains("<|role_start|>")) {
|
||||
return LLM_CHAT_TEMPLATE_MEGREZ;
|
||||
}
|
||||
return LLM_CHAT_TEMPLATE_UNKNOWN;
|
||||
}
|
||||
|
||||
// Simple version of "llama_apply_chat_template" that only works with strings
|
||||
// This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
|
||||
int32_t llm_chat_apply_template(
|
||||
llm_chat_template tmpl,
|
||||
const std::vector<const llama_chat_message *> & chat,
|
||||
std::string & dest, bool add_ass) {
|
||||
// Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
|
||||
std::stringstream ss;
|
||||
if (tmpl == LLM_CHAT_TEMPLATE_CHATML) {
|
||||
// chatml template
|
||||
for (auto message : chat) {
|
||||
ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<|im_start|>assistant\n";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7) {
|
||||
// Official mistral 'v7' template
|
||||
// See: https://huggingface.co/mistralai/Mistral-Large-Instruct-2411#basic-instruct-template-v7
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
std::string content(message->content);
|
||||
if (role == "system") {
|
||||
ss << "[SYSTEM_PROMPT] " << content << "[/SYSTEM_PROMPT]";
|
||||
} else if (role == "user") {
|
||||
ss << "[INST] " << content << "[/INST]";
|
||||
}
|
||||
else {
|
||||
ss << " " << content << "</s>";
|
||||
}
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V1
|
||||
|| tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3
|
||||
|| tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN) {
|
||||
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/chat_templates.md
|
||||
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/templates.md
|
||||
std::string leading_space = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V1 ? " " : "";
|
||||
std::string trailing_space = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN ? "" : " ";
|
||||
bool trim_assistant_message = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3;
|
||||
bool is_inside_turn = false;
|
||||
for (auto message : chat) {
|
||||
if (!is_inside_turn) {
|
||||
ss << leading_space << "[INST]" << trailing_space;
|
||||
is_inside_turn = true;
|
||||
}
|
||||
std::string role(message->role);
|
||||
std::string content(message->content);
|
||||
if (role == "system") {
|
||||
ss << content << "\n\n";
|
||||
} else if (role == "user") {
|
||||
ss << content << leading_space << "[/INST]";
|
||||
} else {
|
||||
ss << trailing_space << (trim_assistant_message ? trim(content) : content) << "</s>";
|
||||
is_inside_turn = false;
|
||||
}
|
||||
}
|
||||
} else if (
|
||||
tmpl == LLM_CHAT_TEMPLATE_LLAMA_2
|
||||
|| tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS
|
||||
|| tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS
|
||||
|| tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP) {
|
||||
// llama2 template and its variants
|
||||
// [variant] support system message
|
||||
// See: https://huggingface.co/blog/llama2#how-to-prompt-llama-2
|
||||
bool support_system_message = tmpl != LLM_CHAT_TEMPLATE_LLAMA_2;
|
||||
// [variant] add BOS inside history
|
||||
bool add_bos_inside_history = tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS;
|
||||
// [variant] trim spaces from the input message
|
||||
bool strip_message = tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP;
|
||||
// construct the prompt
|
||||
bool is_inside_turn = true; // skip BOS at the beginning
|
||||
ss << "[INST] ";
|
||||
for (auto message : chat) {
|
||||
std::string content = strip_message ? trim(message->content) : message->content;
|
||||
std::string role(message->role);
|
||||
if (!is_inside_turn) {
|
||||
is_inside_turn = true;
|
||||
ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
|
||||
}
|
||||
if (role == "system") {
|
||||
if (support_system_message) {
|
||||
ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
|
||||
} else {
|
||||
// if the model does not support system message, we still include it in the first message, but without <<SYS>>
|
||||
ss << content << "\n";
|
||||
}
|
||||
} else if (role == "user") {
|
||||
ss << content << " [/INST]";
|
||||
} else {
|
||||
ss << content << "</s>";
|
||||
is_inside_turn = false;
|
||||
}
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_PHI_3) {
|
||||
// Phi 3
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
ss << "<|" << role << "|>\n" << message->content << "<|end|>\n";
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<|assistant|>\n";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_FALCON_3) {
|
||||
// Falcon 3
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
ss << "<|" << role << "|>\n" << message->content << "\n";
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<|assistant|>\n";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_ZEPHYR) {
|
||||
// zephyr template
|
||||
for (auto message : chat) {
|
||||
ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<|assistant|>\n";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_MONARCH) {
|
||||
// mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
|
||||
for (auto message : chat) {
|
||||
std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
|
||||
ss << bos << message->role << "\n" << message->content << "</s>\n";
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<s>assistant\n";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_GEMMA) {
|
||||
// google/gemma-7b-it
|
||||
std::string system_prompt = "";
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
if (role == "system") {
|
||||
// there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
|
||||
system_prompt = trim(message->content);
|
||||
continue;
|
||||
}
|
||||
// in gemma, "assistant" is "model"
|
||||
role = role == "assistant" ? "model" : message->role;
|
||||
ss << "<start_of_turn>" << role << "\n";
|
||||
if (!system_prompt.empty() && role != "model") {
|
||||
ss << system_prompt << "\n\n";
|
||||
system_prompt = "";
|
||||
}
|
||||
ss << trim(message->content) << "<end_of_turn>\n";
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<start_of_turn>model\n";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_ORION) {
|
||||
// OrionStarAI/Orion-14B-Chat
|
||||
std::string system_prompt = "";
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
if (role == "system") {
|
||||
// there is no system message support, we will merge it with user prompt
|
||||
system_prompt = message->content;
|
||||
continue;
|
||||
} else if (role == "user") {
|
||||
ss << "Human: ";
|
||||
if (!system_prompt.empty()) {
|
||||
ss << system_prompt << "\n\n";
|
||||
system_prompt = "";
|
||||
}
|
||||
ss << message->content << "\n\nAssistant: </s>";
|
||||
} else {
|
||||
ss << message->content << "</s>";
|
||||
}
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_OPENCHAT) {
|
||||
// openchat/openchat-3.5-0106,
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
if (role == "system") {
|
||||
ss << message->content << "<|end_of_turn|>";
|
||||
} else {
|
||||
role[0] = toupper(role[0]);
|
||||
ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
|
||||
}
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "GPT4 Correct Assistant:";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_VICUNA || tmpl == LLM_CHAT_TEMPLATE_VICUNA_ORCA) {
|
||||
// eachadea/vicuna-13b-1.1 (and Orca variant)
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
if (role == "system") {
|
||||
// Orca-Vicuna variant uses a system prefix
|
||||
if (tmpl == LLM_CHAT_TEMPLATE_VICUNA_ORCA) {
|
||||
ss << "SYSTEM: " << message->content << "\n";
|
||||
} else {
|
||||
ss << message->content << "\n\n";
|
||||
}
|
||||
} else if (role == "user") {
|
||||
ss << "USER: " << message->content << "\n";
|
||||
} else if (role == "assistant") {
|
||||
ss << "ASSISTANT: " << message->content << "</s>\n";
|
||||
}
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "ASSISTANT:";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_DEEPSEEK) {
|
||||
// deepseek-ai/deepseek-coder-33b-instruct
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
if (role == "system") {
|
||||
ss << message->content;
|
||||
} else if (role == "user") {
|
||||
ss << "### Instruction:\n" << message->content << "\n";
|
||||
} else if (role == "assistant") {
|
||||
ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
|
||||
}
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "### Response:\n";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_COMMAND_R) {
|
||||
// CohereForAI/c4ai-command-r-plus
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
if (role == "system") {
|
||||
ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
|
||||
} else if (role == "user") {
|
||||
ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
|
||||
} else if (role == "assistant") {
|
||||
ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
|
||||
}
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_LLAMA_3) {
|
||||
// Llama 3
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGML_3) {
|
||||
// chatglm3-6b
|
||||
ss << "[gMASK]" << "sop";
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
ss << "<|" << role << "|>" << "\n " << message->content;
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<|assistant|>";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGML_4) {
|
||||
ss << "[gMASK]" << "<sop>";
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
ss << "<|" << role << "|>" << "\n" << message->content;
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<|assistant|>";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_MINICPM) {
|
||||
// MiniCPM-3B-OpenHermes-2.5-v2-GGUF
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
if (role == "user") {
|
||||
ss << LU8("<用户>");
|
||||
ss << trim(message->content);
|
||||
ss << "<AI>";
|
||||
} else {
|
||||
ss << trim(message->content);
|
||||
}
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_DEEPSEEK_2) {
|
||||
// DeepSeek-V2
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
if (role == "system") {
|
||||
ss << message->content << "\n\n";
|
||||
} else if (role == "user") {
|
||||
ss << "User: " << message->content << "\n\n";
|
||||
} else if (role == "assistant") {
|
||||
ss << "Assistant: " << message->content << LU8("<|end▁of▁sentence|>");
|
||||
}
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "Assistant:";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_EXAONE_3) {
|
||||
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
|
||||
// EXAONE-3.0-7.8B-Instruct
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
if (role == "system") {
|
||||
ss << "[|system|]" << trim(message->content) << "[|endofturn|]\n";
|
||||
} else if (role == "user") {
|
||||
ss << "[|user|]" << trim(message->content) << "\n";
|
||||
} else if (role == "assistant") {
|
||||
ss << "[|assistant|]" << trim(message->content) << "[|endofturn|]\n";
|
||||
}
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "[|assistant|]";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_RWKV_WORLD) {
|
||||
// this template requires the model to have "\n\n" as EOT token
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
if (role == "user") {
|
||||
ss << "User: " << message->content << "\n\nAssistant:";
|
||||
} else {
|
||||
ss << message->content << "\n\n";
|
||||
}
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_GRANITE) {
|
||||
// IBM Granite template
|
||||
for (const auto & message : chat) {
|
||||
std::string role(message->role);
|
||||
ss << "<|start_of_role|>" << role << "<|end_of_role|>";
|
||||
if (role == "assistant_tool_call") {
|
||||
ss << "<|tool_call|>";
|
||||
}
|
||||
ss << message->content << "<|end_of_text|>\n";
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<|start_of_role|>assistant<|end_of_role|>\n";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_GIGACHAT) {
|
||||
// GigaChat template
|
||||
bool has_system = !chat.empty() && std::string(chat[0]->role) == "system";
|
||||
|
||||
// Handle system message if present
|
||||
if (has_system) {
|
||||
ss << "<s>" << chat[0]->content << "<|message_sep|>";
|
||||
} else {
|
||||
ss << "<s>";
|
||||
}
|
||||
|
||||
// Process remaining messages
|
||||
for (size_t i = has_system ? 1 : 0; i < chat.size(); i++) {
|
||||
std::string role(chat[i]->role);
|
||||
if (role == "user") {
|
||||
ss << "user<|role_sep|>" << chat[i]->content << "<|message_sep|>"
|
||||
<< "available functions<|role_sep|>[]<|message_sep|>";
|
||||
} else if (role == "assistant") {
|
||||
ss << "assistant<|role_sep|>" << chat[i]->content << "<|message_sep|>";
|
||||
}
|
||||
}
|
||||
|
||||
// Add generation prompt if needed
|
||||
if (add_ass) {
|
||||
ss << "assistant<|role_sep|>";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_MEGREZ) {
|
||||
// Megrez template
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
ss << "<|role_start|>" << role << "<|role_end|>" << message->content << "<|turn_end|>";
|
||||
}
|
||||
|
||||
if (add_ass) {
|
||||
ss << "<|role_start|>assistant<|role_end|>";
|
||||
}
|
||||
} else {
|
||||
// template not supported
|
||||
return -1;
|
||||
}
|
||||
dest = ss.str();
|
||||
return dest.size();
|
||||
}
|
||||
|
||||
// public interface
|
||||
|
||||
int32_t llama_chat_builtin_templates(const char ** output, size_t len) {
|
||||
auto it = LLM_CHAT_TEMPLATES.begin();
|
||||
for (size_t i = 0; i < std::min(len, LLM_CHAT_TEMPLATES.size()); i++) {
|
||||
output[i] = it->first.c_str();
|
||||
std::advance(it, 1);
|
||||
}
|
||||
return (int32_t) LLM_CHAT_TEMPLATES.size();
|
||||
}
|
||||
|
50
src/llama-chat.h
Normal file
50
src/llama-chat.h
Normal file
@ -0,0 +1,50 @@
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <cstdint>
|
||||
|
||||
enum llm_chat_template {
|
||||
LLM_CHAT_TEMPLATE_CHATML,
|
||||
LLM_CHAT_TEMPLATE_LLAMA_2,
|
||||
LLM_CHAT_TEMPLATE_LLAMA_2_SYS,
|
||||
LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS,
|
||||
LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP,
|
||||
LLM_CHAT_TEMPLATE_MISTRAL_V1,
|
||||
LLM_CHAT_TEMPLATE_MISTRAL_V3,
|
||||
LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN,
|
||||
LLM_CHAT_TEMPLATE_MISTRAL_V7,
|
||||
LLM_CHAT_TEMPLATE_PHI_3,
|
||||
LLM_CHAT_TEMPLATE_FALCON_3,
|
||||
LLM_CHAT_TEMPLATE_ZEPHYR,
|
||||
LLM_CHAT_TEMPLATE_MONARCH,
|
||||
LLM_CHAT_TEMPLATE_GEMMA,
|
||||
LLM_CHAT_TEMPLATE_ORION,
|
||||
LLM_CHAT_TEMPLATE_OPENCHAT,
|
||||
LLM_CHAT_TEMPLATE_VICUNA,
|
||||
LLM_CHAT_TEMPLATE_VICUNA_ORCA,
|
||||
LLM_CHAT_TEMPLATE_DEEPSEEK,
|
||||
LLM_CHAT_TEMPLATE_DEEPSEEK_2,
|
||||
LLM_CHAT_TEMPLATE_COMMAND_R,
|
||||
LLM_CHAT_TEMPLATE_LLAMA_3,
|
||||
LLM_CHAT_TEMPLATE_CHATGML_3,
|
||||
LLM_CHAT_TEMPLATE_CHATGML_4,
|
||||
LLM_CHAT_TEMPLATE_MINICPM,
|
||||
LLM_CHAT_TEMPLATE_EXAONE_3,
|
||||
LLM_CHAT_TEMPLATE_RWKV_WORLD,
|
||||
LLM_CHAT_TEMPLATE_GRANITE,
|
||||
LLM_CHAT_TEMPLATE_GIGACHAT,
|
||||
LLM_CHAT_TEMPLATE_MEGREZ,
|
||||
LLM_CHAT_TEMPLATE_UNKNOWN,
|
||||
};
|
||||
|
||||
struct llama_chat_message;
|
||||
|
||||
llm_chat_template llm_chat_template_from_str(const std::string & name);
|
||||
|
||||
llm_chat_template llm_chat_detect_template(const std::string & tmpl);
|
||||
|
||||
int32_t llm_chat_apply_template(
|
||||
llm_chat_template tmpl,
|
||||
const std::vector<const llama_chat_message *> & chat,
|
||||
std::string & dest, bool add_ass);
|
1337
src/llama-context.cpp
Normal file
1337
src/llama-context.cpp
Normal file
File diff suppressed because it is too large
Load Diff
126
src/llama-context.h
Normal file
126
src/llama-context.h
Normal file
@ -0,0 +1,126 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama-impl.h"
|
||||
#include "llama-batch.h"
|
||||
#include "llama-cparams.h"
|
||||
#include "llama-model.h"
|
||||
#include "llama-kv-cache.h"
|
||||
#include "llama-adapter.h"
|
||||
|
||||
#include "ggml-cpp.h"
|
||||
|
||||
#include <map>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include <set>
|
||||
|
||||
struct llama_context {
|
||||
llama_context(const llama_model & model)
|
||||
: model(model)
|
||||
, t_start_us(model.t_start_us)
|
||||
, t_load_us(model.t_load_us) {}
|
||||
|
||||
const struct llama_model & model;
|
||||
|
||||
struct llama_cparams cparams;
|
||||
struct llama_sbatch sbatch; // TODO: revisit if needed
|
||||
struct llama_kv_cache kv_self;
|
||||
struct llama_control_vector cvec;
|
||||
|
||||
std::unordered_map<struct llama_lora_adapter *, float> lora_adapters;
|
||||
|
||||
std::vector<ggml_backend_ptr> backends;
|
||||
std::vector<std::pair<ggml_backend_t, ggml_backend_set_n_threads_t>> set_n_threads_fns;
|
||||
|
||||
ggml_backend_t backend_cpu = nullptr;
|
||||
|
||||
ggml_threadpool_t threadpool = nullptr;
|
||||
ggml_threadpool_t threadpool_batch = nullptr;
|
||||
|
||||
bool has_evaluated_once = false;
|
||||
|
||||
mutable int64_t t_start_us;
|
||||
mutable int64_t t_load_us;
|
||||
mutable int64_t t_p_eval_us = 0;
|
||||
mutable int64_t t_eval_us = 0;
|
||||
|
||||
mutable int64_t t_compute_start_us = 0;
|
||||
mutable int64_t n_queued_tokens = 0;
|
||||
|
||||
mutable int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
|
||||
mutable int32_t n_eval = 0; // number of eval calls
|
||||
|
||||
// host buffer for the model output (logits and embeddings)
|
||||
ggml_backend_buffer_ptr buf_output;
|
||||
|
||||
// decode output (2-dimensional array: [n_outputs][n_vocab])
|
||||
size_t logits_size = 0; // capacity (of floats) for logits
|
||||
float * logits = nullptr;
|
||||
|
||||
std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
|
||||
size_t output_size = 0; // capacity (of tokens positions) for the output buffers
|
||||
int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
|
||||
|
||||
bool logits_all = false;
|
||||
|
||||
// embeddings output (2-dimensional array: [n_outputs][n_embd])
|
||||
// populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
|
||||
size_t embd_size = 0; // capacity (of floats) for embeddings
|
||||
float * embd = nullptr;
|
||||
|
||||
// sequence embeddings output (map of [n_embd] vectors)
|
||||
// populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
|
||||
std::map<llama_seq_id, std::vector<float>> embd_seq;
|
||||
|
||||
// whether we are computing encoder output or decoder output
|
||||
bool is_encoding = false;
|
||||
|
||||
// TODO: find a better way to accommodate mutli-dimension position encoding methods
|
||||
// number of position id each token get, 1 for each token in most cases.
|
||||
// when using m-rope, it will be 3 position ids per token to representing 3 dimension coordinate.
|
||||
int n_pos_per_token = 1;
|
||||
|
||||
// output of the encoder part of the encoder-decoder models
|
||||
std::vector<float> embd_enc;
|
||||
std::vector<std::set<llama_seq_id>> seq_ids_enc;
|
||||
|
||||
// memory buffers used to evaluate the model
|
||||
std::vector<uint8_t> buf_compute_meta;
|
||||
ggml_backend_sched_ptr sched;
|
||||
|
||||
ggml_abort_callback abort_callback = nullptr;
|
||||
void * abort_callback_data = nullptr;
|
||||
|
||||
// input tensors
|
||||
struct ggml_tensor * inp_tokens; // I32 [n_batch]
|
||||
struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
|
||||
struct ggml_tensor * inp_pos; // I32 [n_batch]
|
||||
struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
|
||||
struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
|
||||
struct ggml_tensor * inp_KQ_mask_swa; // F32 [kv_size, n_batch]
|
||||
struct ggml_tensor * inp_K_shift; // I32 [kv_size]
|
||||
struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
|
||||
struct ggml_tensor * inp_cls; // I32 [n_batch]
|
||||
struct ggml_tensor * inp_s_copy; // I32 [kv_size]
|
||||
struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
|
||||
struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
|
||||
struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch]
|
||||
struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
|
||||
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
|
||||
};
|
||||
|
||||
// TODO: make these methods of llama_context
|
||||
void llama_set_k_shift(struct llama_context & lctx);
|
||||
|
||||
void llama_set_s_copy(struct llama_context & lctx);
|
||||
|
||||
// Make sure enough space is available for outputs.
|
||||
// Returns max number of outputs for which space was reserved.
|
||||
size_t llama_output_reserve(struct llama_context & lctx, size_t n_outputs);
|
||||
|
||||
// make the outputs have the same order they had in the user-provided batch
|
||||
void llama_output_reorder(struct llama_context & ctx);
|
||||
|
||||
// For internal test use
|
||||
// TODO: remove
|
||||
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(struct llama_context * ctx);
|
1
src/llama-cparams.cpp
Normal file
1
src/llama-cparams.cpp
Normal file
@ -0,0 +1 @@
|
||||
#include "llama-cparams.h"
|
37
src/llama-cparams.h
Normal file
37
src/llama-cparams.h
Normal file
@ -0,0 +1,37 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
struct llama_cparams {
|
||||
uint32_t n_ctx; // context size used during inference
|
||||
uint32_t n_batch;
|
||||
uint32_t n_ubatch;
|
||||
uint32_t n_seq_max;
|
||||
int n_threads; // number of threads to use for generation
|
||||
int n_threads_batch; // number of threads to use for batch processing
|
||||
|
||||
float rope_freq_base;
|
||||
float rope_freq_scale;
|
||||
|
||||
uint32_t n_ctx_orig_yarn;
|
||||
// These hyperparameters are not exposed in GGUF, because all
|
||||
// existing YaRN models use the same values for them.
|
||||
float yarn_ext_factor;
|
||||
float yarn_attn_factor;
|
||||
float yarn_beta_fast;
|
||||
float yarn_beta_slow;
|
||||
float defrag_thold;
|
||||
|
||||
bool embeddings;
|
||||
bool causal_attn;
|
||||
bool offload_kqv;
|
||||
bool flash_attn;
|
||||
bool no_perf;
|
||||
|
||||
enum llama_pooling_type pooling_type;
|
||||
|
||||
ggml_backend_sched_eval_callback cb_eval;
|
||||
void * cb_eval_user_data;
|
||||
};
|
@ -1,5 +1,6 @@
|
||||
#include "llama-grammar.h"
|
||||
|
||||
#include "llama-impl.h"
|
||||
#include "llama-vocab.h"
|
||||
#include "llama-sampling.h"
|
||||
|
||||
|
@ -1,8 +1,10 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama-impl.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
struct llama_vocab;
|
||||
|
||||
|
71
src/llama-hparams.cpp
Normal file
71
src/llama-hparams.cpp
Normal file
@ -0,0 +1,71 @@
|
||||
#include "llama-hparams.h"
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
uint32_t llama_hparams::n_head(uint32_t il) const {
|
||||
if (il < n_layer) {
|
||||
return n_head_arr[il];
|
||||
}
|
||||
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_head_kv(uint32_t il) const {
|
||||
if (il < n_layer) {
|
||||
return n_head_kv_arr[il];
|
||||
}
|
||||
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_ff(uint32_t il) const {
|
||||
if (il < n_layer) {
|
||||
return n_ff_arr[il];
|
||||
}
|
||||
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_gqa(uint32_t il) const {
|
||||
const uint32_t n_head = this->n_head(il);
|
||||
const uint32_t n_head_kv = this->n_head_kv(il);
|
||||
|
||||
if (n_head_kv == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
return n_head/n_head_kv;
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_embd_k_gqa(uint32_t il) const {
|
||||
const uint32_t n_head_kv = this->n_head_kv(il);
|
||||
|
||||
return n_embd_head_k * n_head_kv;
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_embd_v_gqa(uint32_t il) const {
|
||||
const uint32_t n_head_kv = this->n_head_kv(il);
|
||||
|
||||
return n_embd_head_v * n_head_kv;
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_embd_k_s() const {
|
||||
if (wkv_head_size != 0) {
|
||||
// for RWKV models
|
||||
return 2 * n_embd;
|
||||
}
|
||||
|
||||
// TODO: maybe support other convolution strides than 1
|
||||
// NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
|
||||
return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_embd_v_s() const {
|
||||
if (wkv_head_size != 0) {
|
||||
// corresponds to RWKV's wkv_states size
|
||||
return n_embd * wkv_head_size;
|
||||
}
|
||||
|
||||
// corresponds to Mamba's ssm_states size
|
||||
return ssm_d_state * ssm_d_inner;
|
||||
}
|
131
src/llama-hparams.h
Normal file
131
src/llama-hparams.h
Normal file
@ -0,0 +1,131 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include <array>
|
||||
|
||||
// bump if necessary
|
||||
#define LLAMA_MAX_LAYERS 512
|
||||
#define LLAMA_MAX_EXPERTS 160 // DeepSeekV2
|
||||
|
||||
struct llama_hparams_posnet {
|
||||
uint32_t n_embd;
|
||||
uint32_t n_layer;
|
||||
};
|
||||
|
||||
struct llama_hparams_convnext {
|
||||
uint32_t n_embd;
|
||||
uint32_t n_layer;
|
||||
};
|
||||
|
||||
struct llama_hparams {
|
||||
bool vocab_only;
|
||||
bool rope_finetuned;
|
||||
bool use_par_res;
|
||||
bool swin_norm;
|
||||
|
||||
uint32_t n_vocab = 0;
|
||||
uint32_t n_ctx_train; // context size the model was trained on
|
||||
uint32_t n_embd;
|
||||
uint32_t n_embd_features = 0;
|
||||
uint32_t n_layer;
|
||||
uint32_t n_rot;
|
||||
uint32_t n_swa = 0; // sliding window attention (SWA)
|
||||
uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
|
||||
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
|
||||
uint32_t n_expert = 0;
|
||||
uint32_t n_expert_used = 0;
|
||||
uint32_t n_vocab_type = 0; // for BERT-style token types
|
||||
uint32_t n_rel_attn_bkts = 0;
|
||||
|
||||
// for WavTokenizer
|
||||
struct llama_hparams_posnet posnet;
|
||||
struct llama_hparams_convnext convnext;
|
||||
|
||||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr;
|
||||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
|
||||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
|
||||
|
||||
uint32_t n_layer_dense_lead = 0;
|
||||
uint32_t n_lora_q = 0;
|
||||
uint32_t n_lora_kv = 0;
|
||||
uint32_t n_ff_exp = 0;
|
||||
uint32_t n_ff_shexp = 0;
|
||||
uint32_t n_expert_shared = 0;
|
||||
uint32_t n_norm_groups = 0;
|
||||
|
||||
float expert_weights_scale = 0.0;
|
||||
|
||||
float f_norm_eps;
|
||||
float f_norm_rms_eps;
|
||||
float f_norm_group_eps;
|
||||
|
||||
float f_attn_logit_softcapping = 50.0f;
|
||||
float f_final_logit_softcapping = 30.0f;
|
||||
|
||||
// for RWKV
|
||||
uint32_t rescale_every_n_layers = 0;
|
||||
uint32_t time_mix_extra_dim = 0;
|
||||
uint32_t time_decay_extra_dim = 0;
|
||||
uint32_t wkv_head_size = 0;
|
||||
|
||||
float rope_attn_factor = 1.0f;
|
||||
float rope_freq_base_train;
|
||||
float rope_freq_scale_train;
|
||||
uint32_t n_ctx_orig_yarn;
|
||||
float rope_yarn_log_mul;
|
||||
int rope_sections[4]; // TODO: actually this should be std::array (I was wrong)
|
||||
|
||||
// for State Space Models
|
||||
uint32_t ssm_d_conv = 0;
|
||||
uint32_t ssm_d_inner = 0;
|
||||
uint32_t ssm_d_state = 0;
|
||||
uint32_t ssm_dt_rank = 0;
|
||||
|
||||
bool ssm_dt_b_c_rms = false;
|
||||
|
||||
float f_clamp_kqv = 0.0f;
|
||||
float f_max_alibi_bias = 0.0f;
|
||||
float f_logit_scale = 0.0f;
|
||||
|
||||
// Additional scale factors (Granite/Granite MoE)
|
||||
float f_residual_scale = 0.0f;
|
||||
float f_embedding_scale = 0.0f;
|
||||
float f_attention_scale = 0.0f;
|
||||
|
||||
bool causal_attn = true;
|
||||
bool use_alibi = false;
|
||||
bool attn_soft_cap = false;
|
||||
|
||||
// needed by encoder-decoder models (e.g. T5, FLAN-T5)
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/8141
|
||||
llama_token dec_start_token_id = LLAMA_TOKEN_NULL;
|
||||
|
||||
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
|
||||
enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
|
||||
enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
|
||||
|
||||
uint32_t n_head(uint32_t il = 0) const;
|
||||
|
||||
uint32_t n_head_kv(uint32_t il = 0) const;
|
||||
|
||||
uint32_t n_ff(uint32_t il = 0) const;
|
||||
|
||||
uint32_t n_gqa(uint32_t il = 0) const;
|
||||
|
||||
// dimension of key embeddings across all k-v heads
|
||||
uint32_t n_embd_k_gqa(uint32_t il = 0) const;
|
||||
|
||||
// dimension of value embeddings across all k-v heads
|
||||
uint32_t n_embd_v_gqa(uint32_t il = 0) const;
|
||||
|
||||
// dimension of the rolling state embeddings
|
||||
// corresponds to Mamba's conv_states size or RWKV's token_shift states size
|
||||
uint32_t n_embd_k_s() const;
|
||||
|
||||
// dimension of the recurrent state embeddings
|
||||
uint32_t n_embd_v_s() const;
|
||||
};
|
||||
|
||||
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
|
||||
|
91
src/llama-impl.cpp
Normal file
91
src/llama-impl.cpp
Normal file
@ -0,0 +1,91 @@
|
||||
#include "llama-impl.h"
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include <climits>
|
||||
#include <cstdarg>
|
||||
#include <vector>
|
||||
|
||||
struct llama_logger_state {
|
||||
ggml_log_callback log_callback = llama_log_callback_default;
|
||||
void * log_callback_user_data = nullptr;
|
||||
};
|
||||
|
||||
static llama_logger_state g_logger_state;
|
||||
|
||||
time_meas::time_meas(int64_t & t_acc, bool disable) : t_start_us(disable ? -1 : ggml_time_us()), t_acc(t_acc) {}
|
||||
|
||||
time_meas::~time_meas() {
|
||||
if (t_start_us >= 0) {
|
||||
t_acc += ggml_time_us() - t_start_us;
|
||||
}
|
||||
}
|
||||
|
||||
void llama_log_set(ggml_log_callback log_callback, void * user_data) {
|
||||
ggml_log_set(log_callback, user_data);
|
||||
g_logger_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
|
||||
g_logger_state.log_callback_user_data = user_data;
|
||||
}
|
||||
|
||||
static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
|
||||
va_list args_copy;
|
||||
va_copy(args_copy, args);
|
||||
char buffer[128];
|
||||
int len = vsnprintf(buffer, 128, format, args);
|
||||
if (len < 128) {
|
||||
g_logger_state.log_callback(level, buffer, g_logger_state.log_callback_user_data);
|
||||
} else {
|
||||
char * buffer2 = new char[len + 1];
|
||||
vsnprintf(buffer2, len + 1, format, args_copy);
|
||||
buffer2[len] = 0;
|
||||
g_logger_state.log_callback(level, buffer2, g_logger_state.log_callback_user_data);
|
||||
delete[] buffer2;
|
||||
}
|
||||
va_end(args_copy);
|
||||
}
|
||||
|
||||
void llama_log_internal(ggml_log_level level, const char * format, ...) {
|
||||
va_list args;
|
||||
va_start(args, format);
|
||||
llama_log_internal_v(level, format, args);
|
||||
va_end(args);
|
||||
}
|
||||
|
||||
void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
|
||||
(void) level;
|
||||
(void) user_data;
|
||||
fputs(text, stderr);
|
||||
fflush(stderr);
|
||||
}
|
||||
|
||||
void replace_all(std::string & s, const std::string & search, const std::string & replace) {
|
||||
if (search.empty()) {
|
||||
return;
|
||||
}
|
||||
std::string builder;
|
||||
builder.reserve(s.length());
|
||||
size_t pos = 0;
|
||||
size_t last_pos = 0;
|
||||
while ((pos = s.find(search, last_pos)) != std::string::npos) {
|
||||
builder.append(s, last_pos, pos - last_pos);
|
||||
builder.append(replace);
|
||||
last_pos = pos + search.length();
|
||||
}
|
||||
builder.append(s, last_pos, std::string::npos);
|
||||
s = std::move(builder);
|
||||
}
|
||||
|
||||
std::string format(const char * fmt, ...) {
|
||||
va_list ap;
|
||||
va_list ap2;
|
||||
va_start(ap, fmt);
|
||||
va_copy(ap2, ap);
|
||||
int size = vsnprintf(NULL, 0, fmt, ap);
|
||||
GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
|
||||
std::vector<char> buf(size + 1);
|
||||
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
|
||||
GGML_ASSERT(size2 == size);
|
||||
va_end(ap2);
|
||||
va_end(ap);
|
||||
return std::string(buf.data(), size);
|
||||
}
|
146
src/llama-impl.h
146
src/llama-impl.h
@ -1,10 +1,8 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama.h"
|
||||
#include "ggml.h" // for ggml_log_level
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <stdexcept>
|
||||
|
||||
#ifdef __GNUC__
|
||||
#ifdef __MINGW32__
|
||||
@ -36,146 +34,16 @@ void llama_log_callback_default(ggml_log_level level, const char * text, void *
|
||||
//
|
||||
|
||||
struct time_meas {
|
||||
time_meas(int64_t & t_acc, bool disable = false) : t_start_us(disable ? -1 : ggml_time_us()), t_acc(t_acc) {}
|
||||
|
||||
~time_meas() {
|
||||
if (t_start_us >= 0) {
|
||||
t_acc += ggml_time_us() - t_start_us;
|
||||
}
|
||||
}
|
||||
time_meas(int64_t & t_acc, bool disable = false);
|
||||
~time_meas();
|
||||
|
||||
const int64_t t_start_us;
|
||||
|
||||
int64_t & t_acc;
|
||||
};
|
||||
|
||||
static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
|
||||
if (search.empty()) {
|
||||
return;
|
||||
}
|
||||
std::string builder;
|
||||
builder.reserve(s.length());
|
||||
size_t pos = 0;
|
||||
size_t last_pos = 0;
|
||||
while ((pos = s.find(search, last_pos)) != std::string::npos) {
|
||||
builder.append(s, last_pos, pos - last_pos);
|
||||
builder.append(replace);
|
||||
last_pos = pos + search.length();
|
||||
}
|
||||
builder.append(s, last_pos, std::string::npos);
|
||||
s = std::move(builder);
|
||||
}
|
||||
void replace_all(std::string & s, const std::string & search, const std::string & replace);
|
||||
|
||||
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
|
||||
struct llama_context * ctx
|
||||
);
|
||||
|
||||
// the ring buffer works similarly to std::deque, but with a fixed capacity
|
||||
template<typename T>
|
||||
struct ring_buffer {
|
||||
ring_buffer(size_t cap) : capacity(cap), data(cap) {}
|
||||
|
||||
T & front() {
|
||||
if (sz == 0) {
|
||||
throw std::runtime_error("ring buffer is empty");
|
||||
}
|
||||
return data[first];
|
||||
}
|
||||
|
||||
const T & front() const {
|
||||
if (sz == 0) {
|
||||
throw std::runtime_error("ring buffer is empty");
|
||||
}
|
||||
return data[first];
|
||||
}
|
||||
|
||||
T & back() {
|
||||
if (sz == 0) {
|
||||
throw std::runtime_error("ring buffer is empty");
|
||||
}
|
||||
return data[pos];
|
||||
}
|
||||
|
||||
const T & back() const {
|
||||
if (sz == 0) {
|
||||
throw std::runtime_error("ring buffer is empty");
|
||||
}
|
||||
return data[pos];
|
||||
}
|
||||
|
||||
void push_back(const T & value) {
|
||||
if (capacity == 0) {
|
||||
throw std::runtime_error("ring buffer: capacity is zero");
|
||||
}
|
||||
|
||||
if (sz == capacity) {
|
||||
// advance the start when buffer is full
|
||||
first = (first + 1) % capacity;
|
||||
} else {
|
||||
sz++;
|
||||
}
|
||||
data[pos] = value;
|
||||
pos = (pos + 1) % capacity;
|
||||
}
|
||||
|
||||
T pop_front() {
|
||||
if (sz == 0) {
|
||||
throw std::runtime_error("ring buffer is empty");
|
||||
}
|
||||
T value = data[first];
|
||||
first = (first + 1) % capacity;
|
||||
sz--;
|
||||
return value;
|
||||
}
|
||||
|
||||
//T & operator[](size_t i) {
|
||||
// if (i >= sz) {
|
||||
// throw std::runtime_error("ring buffer: index out of bounds");
|
||||
// }
|
||||
// return data[(first + i) % capacity];
|
||||
//}
|
||||
|
||||
//const T & at(size_t i) const {
|
||||
// if (i >= sz) {
|
||||
// throw std::runtime_error("ring buffer: index out of bounds");
|
||||
// }
|
||||
// return data[(first + i) % capacity];
|
||||
//}
|
||||
|
||||
const T & rat(size_t i) const {
|
||||
if (i >= sz) {
|
||||
throw std::runtime_error("ring buffer: index out of bounds");
|
||||
}
|
||||
return data[(first + sz - i - 1) % capacity];
|
||||
}
|
||||
|
||||
std::vector<T> to_vector() const {
|
||||
std::vector<T> result;
|
||||
result.reserve(sz);
|
||||
for (size_t i = 0; i < sz; i++) {
|
||||
result.push_back(data[(first + i) % capacity]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
void clear() {
|
||||
// here only reset the status of the buffer
|
||||
sz = 0;
|
||||
first = 0;
|
||||
pos = 0;
|
||||
}
|
||||
|
||||
bool empty() const {
|
||||
return sz == 0;
|
||||
}
|
||||
|
||||
size_t size() const {
|
||||
return sz;
|
||||
}
|
||||
|
||||
size_t capacity = 0;
|
||||
size_t sz = 0;
|
||||
size_t first = 0;
|
||||
size_t pos = 0;
|
||||
std::vector<T> data;
|
||||
};
|
||||
// TODO: rename to llama_format ?
|
||||
LLAMA_ATTRIBUTE_FORMAT(1, 2)
|
||||
std::string format(const char * fmt, ...);
|
||||
|
718
src/llama-kv-cache.cpp
Normal file
718
src/llama-kv-cache.cpp
Normal file
@ -0,0 +1,718 @@
|
||||
#include "llama-kv-cache.h"
|
||||
|
||||
#include "llama-impl.h"
|
||||
#include "llama-batch.h"
|
||||
#include "llama-cparams.h"
|
||||
#include "llama-model.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <limits>
|
||||
#include <map>
|
||||
|
||||
static const llama_kv_cache_slot_info llama_kv_cache_slot_info_failed{false};
|
||||
|
||||
uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) {
|
||||
// the FA kernels require padding to avoid extra runtime boundary checks
|
||||
return cparams.flash_attn ? 256u : 32u;
|
||||
}
|
||||
|
||||
bool llama_kv_cache_init(
|
||||
struct llama_kv_cache & cache,
|
||||
const llama_model & model,
|
||||
const llama_cparams & cparams,
|
||||
ggml_type type_k,
|
||||
ggml_type type_v,
|
||||
uint32_t kv_size,
|
||||
bool offload) {
|
||||
const struct llama_hparams & hparams = model.hparams;
|
||||
|
||||
const int32_t n_layer = hparams.n_layer;
|
||||
|
||||
cache.has_shift = false;
|
||||
|
||||
cache.recurrent = llama_model_is_recurrent(&model);
|
||||
cache.v_trans = !cache.recurrent && !cparams.flash_attn;
|
||||
cache.can_shift = !cache.recurrent && model.arch != LLM_ARCH_DEEPSEEK2; // not supported due to MLA
|
||||
|
||||
LLAMA_LOG_INFO("%s: kv_size = %d, offload = %d, type_k = '%s', type_v = '%s', n_layer = %d, can_shift = %d\n",
|
||||
__func__, kv_size, offload, ggml_type_name(type_k), ggml_type_name(type_v), n_layer, cache.can_shift);
|
||||
|
||||
cache.head = 0;
|
||||
cache.size = kv_size;
|
||||
cache.used = 0;
|
||||
|
||||
cache.type_k = type_k;
|
||||
cache.type_v = type_v;
|
||||
|
||||
cache.cells.clear();
|
||||
cache.cells.resize(kv_size);
|
||||
|
||||
// create a context for each buffer type
|
||||
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
|
||||
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
|
||||
auto it = ctx_map.find(buft);
|
||||
if (it == ctx_map.end()) {
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ size_t(2u*n_layer*ggml_tensor_overhead()),
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
ggml_context * ctx = ggml_init(params);
|
||||
if (!ctx) {
|
||||
return nullptr;
|
||||
}
|
||||
ctx_map[buft] = ctx;
|
||||
cache.ctxs.emplace_back(ctx);
|
||||
return ctx;
|
||||
}
|
||||
return it->second;
|
||||
};
|
||||
|
||||
cache.k_l.reserve(n_layer);
|
||||
cache.v_l.reserve(n_layer);
|
||||
|
||||
for (int i = 0; i < n_layer; i++) {
|
||||
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
|
||||
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
|
||||
|
||||
LLAMA_LOG_DEBUG("%s: layer %d: n_embd_k_gqa = %d, n_embd_v_gqa = %d\n", __func__, i, n_embd_k_gqa, n_embd_v_gqa);
|
||||
|
||||
ggml_backend_buffer_type_t buft;
|
||||
if (offload) {
|
||||
auto * dev = model.dev_layer.at(i).dev;
|
||||
buft = ggml_backend_dev_buffer_type(dev);
|
||||
} else {
|
||||
buft = ggml_backend_cpu_buffer_type();
|
||||
}
|
||||
ggml_context * ctx = ctx_for_buft(buft);
|
||||
|
||||
if (!ctx) {
|
||||
LLAMA_LOG_ERROR("%s: failed to create ggml context for kv cache\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
|
||||
ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
|
||||
ggml_format_name(k, "cache_k_l%d", i);
|
||||
ggml_format_name(v, "cache_v_l%d", i);
|
||||
cache.k_l.push_back(k);
|
||||
cache.v_l.push_back(v);
|
||||
}
|
||||
|
||||
// allocate tensors and initialize the buffers to avoid NaNs in the padding
|
||||
for (auto it : ctx_map) {
|
||||
auto * buft = it.first;
|
||||
auto * ctx = it.second;
|
||||
|
||||
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
|
||||
if (!buf) {
|
||||
LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
|
||||
return false;
|
||||
}
|
||||
ggml_backend_buffer_clear(buf, 0);
|
||||
LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
|
||||
cache.bufs.emplace_back(buf);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
|
||||
struct llama_kv_cache & cache,
|
||||
const struct llama_ubatch & batch) {
|
||||
const uint32_t n_tokens = batch.n_tokens;
|
||||
const uint32_t n_seqs = batch.n_seqs;
|
||||
const uint32_t n_seq_tokens = batch.n_seq_tokens;
|
||||
|
||||
if (cache.recurrent) {
|
||||
// For recurrent state architectures (like Mamba or RWKV),
|
||||
// each cache cell can store the state for a whole sequence.
|
||||
// A slot should be always be contiguous.
|
||||
|
||||
// can only process batches with an equal number of new tokens in each sequence
|
||||
GGML_ASSERT(batch.equal_seqs);
|
||||
|
||||
int32_t min = cache.size - 1;
|
||||
int32_t max = 0;
|
||||
|
||||
// everything should fit if all seq_ids are smaller than the max
|
||||
for (uint32_t s = 0; s < n_seqs; ++s) {
|
||||
const uint32_t n_seq_id = batch.n_seq_id[s];
|
||||
for (uint32_t j = 0; j < n_seq_id; ++j) {
|
||||
const llama_seq_id seq_id = batch.seq_id[s][j];
|
||||
|
||||
if (seq_id < 0 || (uint32_t) seq_id >= cache.size) {
|
||||
// too big seq_id
|
||||
// TODO: would it be possible to resize the cache instead?
|
||||
LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
|
||||
return llama_kv_cache_slot_info_failed;
|
||||
}
|
||||
if (j > 0) {
|
||||
llama_kv_cell & seq = cache.cells[seq_id];
|
||||
if (seq.tail >= 0) {
|
||||
llama_kv_cell & cell = cache.cells[seq.tail];
|
||||
// clear cells from seq_ids that become shared
|
||||
// (should not normally happen, but let's handle it anyway)
|
||||
cell.seq_id.erase(seq_id);
|
||||
seq.tail = -1;
|
||||
if (cell.seq_id.empty()) {
|
||||
cell.pos = -1;
|
||||
cell.src = -1;
|
||||
cache.used -= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
{
|
||||
std::vector<int32_t> tails_verif;
|
||||
tails_verif.assign(cache.size, -1);
|
||||
for (uint32_t i = 0; i < cache.size; ++i) {
|
||||
llama_kv_cell & cell = cache.cells[i];
|
||||
for (llama_seq_id seq_id : cell.seq_id) {
|
||||
if (tails_verif[seq_id] != -1) {
|
||||
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]);
|
||||
}
|
||||
tails_verif[seq_id] = i;
|
||||
}
|
||||
}
|
||||
for (uint32_t i = 0; i < cache.size; ++i) {
|
||||
if (tails_verif[i] != cache.cells[i].tail) {
|
||||
LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n", __func__, i, cache.cells[i].tail, tails_verif[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
// find next empty cell
|
||||
uint32_t next_empty_cell = cache.head;
|
||||
|
||||
for (uint32_t i = 0; i < cache.size; ++i) {
|
||||
if (next_empty_cell >= cache.size) { next_empty_cell -= cache.size; }
|
||||
llama_kv_cell & cell = cache.cells[next_empty_cell];
|
||||
if (cell.is_empty()) { break; }
|
||||
next_empty_cell += 1;
|
||||
}
|
||||
|
||||
// find usable cell range
|
||||
for (uint32_t s = 0; s < n_seqs; ++s) {
|
||||
const llama_seq_id seq_id = batch.seq_id[s][0];
|
||||
llama_kv_cell & seq_meta = cache.cells[seq_id];
|
||||
bool has_cell = false;
|
||||
if (seq_meta.tail >= 0) {
|
||||
llama_kv_cell & cell = cache.cells[seq_meta.tail];
|
||||
GGML_ASSERT(cell.has_seq_id(seq_id));
|
||||
// does this seq_id "own" the cell?
|
||||
if (cell.seq_id.size() == 1) { has_cell = true; }
|
||||
}
|
||||
if (!has_cell) {
|
||||
llama_kv_cell & empty_cell = cache.cells[next_empty_cell];
|
||||
GGML_ASSERT(empty_cell.is_empty());
|
||||
// copy old tail into the empty cell
|
||||
if (seq_meta.tail >= 0) {
|
||||
llama_kv_cell & orig_cell = cache.cells[seq_meta.tail];
|
||||
empty_cell.pos = orig_cell.pos;
|
||||
empty_cell.src = orig_cell.src;
|
||||
orig_cell.seq_id.erase(seq_id);
|
||||
empty_cell.seq_id.insert(seq_id); // will be overwritten
|
||||
}
|
||||
seq_meta.tail = next_empty_cell;
|
||||
// find next empty cell
|
||||
if (s + 1 < n_seqs) {
|
||||
next_empty_cell += 1;
|
||||
for (uint32_t i = 0; i < cache.size; ++i) {
|
||||
if (next_empty_cell >= cache.size) { next_empty_cell -= cache.size; }
|
||||
llama_kv_cell & cell = cache.cells[next_empty_cell];
|
||||
if (cell.is_empty()) { break; }
|
||||
next_empty_cell += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (min > seq_meta.tail) { min = seq_meta.tail; }
|
||||
if (max < seq_meta.tail) { max = seq_meta.tail; }
|
||||
}
|
||||
|
||||
// gather and re-order
|
||||
for (uint32_t s = 0; s < n_seqs; ++s) {
|
||||
int32_t dst_id = s + min;
|
||||
int32_t src_id = cache.cells[batch.seq_id[s][0]].tail;
|
||||
if (dst_id != src_id) {
|
||||
llama_kv_cell & dst_cell = cache.cells[dst_id];
|
||||
llama_kv_cell & src_cell = cache.cells[src_id];
|
||||
|
||||
std::swap(dst_cell.pos, src_cell.pos);
|
||||
std::swap(dst_cell.src, src_cell.src);
|
||||
std::swap(dst_cell.seq_id, src_cell.seq_id);
|
||||
|
||||
// swap tails (assuming they NEVER overlap)
|
||||
for (const llama_seq_id seq_id : src_cell.seq_id) {
|
||||
cache.cells[seq_id].tail = src_id;
|
||||
}
|
||||
for (const llama_seq_id seq_id : dst_cell.seq_id) {
|
||||
cache.cells[seq_id].tail = dst_id;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// update the pos of the used seqs
|
||||
for (uint32_t s = 0; s < n_seqs; ++s) {
|
||||
const llama_pos last_pos = batch.pos[n_seq_tokens * s + n_seq_tokens - 1];
|
||||
int32_t cell_id = s + min;
|
||||
llama_kv_cell & cell = cache.cells[cell_id];
|
||||
|
||||
if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) {
|
||||
// What should happen when the pos backtracks or skips a value?
|
||||
// Clearing the state mid-batch would require special-casing which isn't done.
|
||||
LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
|
||||
__func__, last_pos, cell.pos, batch.seq_id[s][0], n_seq_tokens);
|
||||
}
|
||||
cell.pos = last_pos;
|
||||
cell.seq_id.clear();
|
||||
for (int32_t j = 0; j < batch.n_seq_id[s]; ++j) {
|
||||
const llama_seq_id seq_id = batch.seq_id[s][j];
|
||||
cell.seq_id.insert(seq_id);
|
||||
cache.cells[seq_id].tail = cell_id;
|
||||
}
|
||||
}
|
||||
|
||||
// allow getting the range of used cells, from head to head + n
|
||||
cache.head = min;
|
||||
cache.n = max - min + 1;
|
||||
cache.used = std::count_if(cache.cells.begin(), cache.cells.end(),
|
||||
[](const llama_kv_cell& cell){ return !cell.is_empty(); });
|
||||
|
||||
// sanity check
|
||||
return llama_kv_cache_slot_info(cache.n >= n_seqs);
|
||||
}
|
||||
// otherwise, one cell per token.
|
||||
|
||||
if (n_tokens > cache.size) {
|
||||
LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size);
|
||||
return llama_kv_cache_slot_info_failed;
|
||||
}
|
||||
|
||||
uint32_t n_tested = 0;
|
||||
|
||||
while (true) {
|
||||
if (cache.head + n_tokens > cache.size) {
|
||||
n_tested += cache.size - cache.head;
|
||||
cache.head = 0;
|
||||
continue;
|
||||
}
|
||||
|
||||
bool found = true;
|
||||
for (uint32_t i = 0; i < n_tokens; i++) {
|
||||
if (cache.cells[cache.head + i].pos >= 0) {
|
||||
found = false;
|
||||
cache.head += i + 1;
|
||||
n_tested += i + 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (found) {
|
||||
break;
|
||||
}
|
||||
|
||||
if (n_tested >= cache.size) {
|
||||
//LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
|
||||
return llama_kv_cache_slot_info_failed;
|
||||
}
|
||||
}
|
||||
|
||||
for (uint32_t s = 0; s < n_seqs; s++) {
|
||||
for (uint32_t i = 0; i < n_seq_tokens; ++i) {
|
||||
uint32_t k = s*n_seq_tokens + i;
|
||||
cache.cells[cache.head + k].pos = batch.pos[k];
|
||||
|
||||
for (int32_t j = 0; j < batch.n_seq_id[s]; j++) {
|
||||
cache.cells[cache.head + k].seq_id.insert(batch.seq_id[s][j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
cache.used += n_tokens;
|
||||
|
||||
return llama_kv_cache_slot_info(cache.head, cache.head + n_tokens);
|
||||
}
|
||||
|
||||
uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
|
||||
for (uint32_t i = cache.size; i > 0; --i) {
|
||||
const llama_kv_cell & cell = cache.cells[i - 1];
|
||||
|
||||
if (cell.pos >= 0 && !cell.is_empty()) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void llama_kv_cache_clear(struct llama_kv_cache & cache) {
|
||||
for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
|
||||
cache.cells[i].pos = -1;
|
||||
cache.cells[i].seq_id.clear();
|
||||
cache.cells[i].src = -1;
|
||||
cache.cells[i].tail = -1;
|
||||
}
|
||||
cache.head = 0;
|
||||
cache.used = 0;
|
||||
|
||||
for (auto & buf : cache.bufs) {
|
||||
ggml_backend_buffer_clear(buf.get(), 0);
|
||||
}
|
||||
}
|
||||
|
||||
bool llama_kv_cache_seq_rm(
|
||||
struct llama_kv_cache & cache,
|
||||
llama_seq_id seq_id,
|
||||
llama_pos p0,
|
||||
llama_pos p1) {
|
||||
uint32_t new_head = cache.size;
|
||||
|
||||
if (p0 < 0) p0 = 0;
|
||||
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
|
||||
|
||||
// models like Mamba or RWKV can't have a state partially erased
|
||||
if (cache.recurrent) {
|
||||
if (seq_id >= (int64_t) cache.size) {
|
||||
// could be fatal
|
||||
return false;
|
||||
}
|
||||
if (0 <= seq_id) {
|
||||
int32_t & tail_id = cache.cells[seq_id].tail;
|
||||
if (tail_id >= 0) {
|
||||
const llama_kv_cell & cell = cache.cells[tail_id];
|
||||
// partial intersection is invalid
|
||||
if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) {
|
||||
return false;
|
||||
}
|
||||
// invalidate tails which will be cleared
|
||||
if (p0 <= cell.pos && cell.pos < p1) {
|
||||
tail_id = -1;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// seq_id is negative, then the range should include everything or nothing
|
||||
if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (uint32_t i = 0; i < cache.size; ++i) {
|
||||
if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
|
||||
if (seq_id < 0) {
|
||||
cache.cells[i].seq_id.clear();
|
||||
} else if (cache.cells[i].has_seq_id(seq_id)) {
|
||||
cache.cells[i].seq_id.erase(seq_id);
|
||||
} else {
|
||||
continue;
|
||||
}
|
||||
if (cache.cells[i].is_empty()) {
|
||||
// keep count of the number of used cells
|
||||
if (cache.cells[i].pos >= 0) cache.used--;
|
||||
|
||||
cache.cells[i].pos = -1;
|
||||
cache.cells[i].src = -1;
|
||||
if (new_head == cache.size) new_head = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If we freed up a slot, set head to it so searching can start there.
|
||||
if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void llama_kv_cache_seq_cp(
|
||||
struct llama_kv_cache & cache,
|
||||
llama_seq_id seq_id_src,
|
||||
llama_seq_id seq_id_dst,
|
||||
llama_pos p0,
|
||||
llama_pos p1) {
|
||||
if (p0 < 0) p0 = 0;
|
||||
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
|
||||
|
||||
if (cache.recurrent) {
|
||||
if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
|
||||
llama_kv_cell & tail_src = cache.cells[seq_id_src];
|
||||
llama_kv_cell & tail_dst = cache.cells[seq_id_dst];
|
||||
if (tail_dst.tail >= 0) {
|
||||
// clear destination seq_id if it wasn't empty
|
||||
llama_kv_cell & cell_dst = cache.cells[tail_dst.tail];
|
||||
|
||||
cell_dst.seq_id.erase(seq_id_dst);
|
||||
tail_dst.tail = -1;
|
||||
if (cell_dst.seq_id.empty()) {
|
||||
cell_dst.pos = -1;
|
||||
cell_dst.delta = -1;
|
||||
cell_dst.src = -1;
|
||||
cache.used -= 1;
|
||||
}
|
||||
}
|
||||
if (tail_src.tail >= 0) {
|
||||
llama_kv_cell & cell_src = cache.cells[tail_src.tail];
|
||||
|
||||
cell_src.seq_id.insert(seq_id_dst);
|
||||
tail_dst.tail = tail_src.tail;
|
||||
}
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
// otherwise, this is the KV cache of a Transformer-like model
|
||||
|
||||
cache.head = 0;
|
||||
|
||||
for (uint32_t i = 0; i < cache.size; ++i) {
|
||||
if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
|
||||
cache.cells[i].seq_id.insert(seq_id_dst);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
|
||||
uint32_t new_head = cache.size;
|
||||
|
||||
for (uint32_t i = 0; i < cache.size; ++i) {
|
||||
if (cache.recurrent && (llama_seq_id) i != seq_id) {
|
||||
cache.cells[i].tail = -1;
|
||||
}
|
||||
if (!cache.cells[i].has_seq_id(seq_id)) {
|
||||
if (cache.cells[i].pos >= 0) cache.used--;
|
||||
cache.cells[i].pos = -1;
|
||||
cache.cells[i].src = -1;
|
||||
cache.cells[i].seq_id.clear();
|
||||
if (new_head == cache.size) new_head = i;
|
||||
} else {
|
||||
cache.cells[i].seq_id.clear();
|
||||
cache.cells[i].seq_id.insert(seq_id);
|
||||
}
|
||||
}
|
||||
|
||||
// If we freed up a slot, set head to it so searching can start there.
|
||||
if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
|
||||
}
|
||||
|
||||
void llama_kv_cache_seq_add(
|
||||
struct llama_kv_cache & cache,
|
||||
llama_seq_id seq_id,
|
||||
llama_pos p0,
|
||||
llama_pos p1,
|
||||
llama_pos delta) {
|
||||
uint32_t new_head = cache.size;
|
||||
|
||||
if (p0 < 0) p0 = 0;
|
||||
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
|
||||
// If there is no range then return early to avoid looping over the cache.
|
||||
if (p0 == p1) return;
|
||||
|
||||
if (cache.recurrent) {
|
||||
// for Mamba-like or RWKV models, only the pos needs to be shifted
|
||||
if (0 <= seq_id && seq_id < (int64_t) cache.size) {
|
||||
const int32_t tail_id = cache.cells[seq_id].tail;
|
||||
if (tail_id >= 0) {
|
||||
llama_kv_cell & cell = cache.cells[tail_id];
|
||||
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
|
||||
cell.pos += delta;
|
||||
}
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
for (uint32_t i = 0; i < cache.size; ++i) {
|
||||
if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
|
||||
cache.has_shift = true;
|
||||
cache.cells[i].pos += delta;
|
||||
cache.cells[i].delta += delta;
|
||||
|
||||
if (cache.cells[i].pos < 0) {
|
||||
if (!cache.cells[i].is_empty()) {
|
||||
cache.used--;
|
||||
}
|
||||
cache.cells[i].pos = -1;
|
||||
cache.cells[i].seq_id.clear();
|
||||
if (new_head == cache.size) {
|
||||
new_head = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If we freed up a slot, set head to it so searching can start there.
|
||||
// Otherwise we just start the next search from the beginning.
|
||||
cache.head = new_head != cache.size ? new_head : 0;
|
||||
}
|
||||
|
||||
void llama_kv_cache_seq_div(
|
||||
struct llama_kv_cache & cache,
|
||||
llama_seq_id seq_id,
|
||||
llama_pos p0,
|
||||
llama_pos p1,
|
||||
int d) {
|
||||
if (p0 < 0) p0 = 0;
|
||||
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
|
||||
// If there is no range then return early to avoid looping over the cache.
|
||||
if (p0 == p1) return;
|
||||
|
||||
if (cache.recurrent) {
|
||||
// for Mamba-like or RWKV models, only the pos needs to be changed
|
||||
if (0 <= seq_id && seq_id < (int64_t) cache.size) {
|
||||
const int32_t tail_id = cache.cells[seq_id].tail;
|
||||
if (tail_id >= 0) {
|
||||
llama_kv_cell & cell = cache.cells[tail_id];
|
||||
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
|
||||
cell.pos /= d;
|
||||
}
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
for (uint32_t i = 0; i < cache.size; ++i) {
|
||||
if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
|
||||
cache.has_shift = true;
|
||||
|
||||
{
|
||||
llama_pos p_old = cache.cells[i].pos;
|
||||
cache.cells[i].pos /= d;
|
||||
cache.cells[i].delta += cache.cells[i].pos - p_old;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
|
||||
llama_pos result = 0;
|
||||
|
||||
for (uint32_t i = 0; i < cache.size; ++i) {
|
||||
if (cache.cells[i].has_seq_id(seq_id)) {
|
||||
result = std::max(result, cache.cells[i].pos);
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
|
||||
if (!cache.recurrent) {
|
||||
cache.do_defrag = true;
|
||||
}
|
||||
}
|
||||
|
||||
int32_t llama_get_kv_cache_token_count(const struct llama_kv_cache & kv) {
|
||||
int result = 0;
|
||||
|
||||
for (uint32_t i = 0; i < kv.size; i++) {
|
||||
result += kv.cells[i].seq_id.size();
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
int32_t llama_get_kv_cache_used_cells(const struct llama_kv_cache & kv) {
|
||||
return kv.used;
|
||||
}
|
||||
|
||||
bool llama_kv_cache_can_shift(const struct llama_kv_cache & kv) {
|
||||
return kv.can_shift;
|
||||
}
|
||||
|
||||
//
|
||||
// kv cache view
|
||||
//
|
||||
|
||||
struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_kv_cache & kv, int32_t n_seq_max) {
|
||||
struct llama_kv_cache_view result = {
|
||||
/*.n_cells = */ 0,
|
||||
/*.n_seq_max = */ n_seq_max,
|
||||
/*.token_count = */ 0,
|
||||
/*.used_cells = */ llama_get_kv_cache_used_cells(kv),
|
||||
/*.max_contiguous = */ 0,
|
||||
/*.max_contiguous_idx = */ -1,
|
||||
/*.cells = */ nullptr,
|
||||
/*.cells_sequences = */ nullptr,
|
||||
};
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
|
||||
if (view->cells != nullptr) {
|
||||
free(view->cells);
|
||||
view->cells = nullptr;
|
||||
}
|
||||
if (view->cells_sequences != nullptr) {
|
||||
free(view->cells_sequences);
|
||||
view->cells_sequences = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
void llama_kv_cache_view_update(struct llama_kv_cache_view * view, const struct llama_kv_cache & kv) {
|
||||
if (uint32_t(view->n_cells) < kv.size || view->cells == nullptr) {
|
||||
view->n_cells = int32_t(kv.size);
|
||||
void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
|
||||
GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
|
||||
view->cells = (struct llama_kv_cache_view_cell *)p;
|
||||
p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
|
||||
GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
|
||||
view->cells_sequences = (llama_seq_id *)p;
|
||||
}
|
||||
|
||||
const std::vector<llama_kv_cell> & kv_cells = kv.cells;
|
||||
llama_kv_cache_view_cell * c_curr = view->cells;
|
||||
llama_seq_id * cs_curr = view->cells_sequences;
|
||||
int32_t used_cells = 0;
|
||||
int32_t token_count = 0;
|
||||
int32_t curr_contig_idx = -1;
|
||||
uint32_t max_contig = 0;
|
||||
int32_t max_contig_idx = -1;
|
||||
|
||||
for (int32_t i = 0; i < int32_t(kv.size); i++, c_curr++, cs_curr += view->n_seq_max) {
|
||||
const size_t curr_size = kv_cells[i].seq_id.size();
|
||||
token_count += curr_size;
|
||||
c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
|
||||
|
||||
if (curr_size > 0) {
|
||||
if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
|
||||
max_contig = i - curr_contig_idx;
|
||||
max_contig_idx = curr_contig_idx;
|
||||
}
|
||||
curr_contig_idx = -1;
|
||||
} else if (curr_contig_idx < 0) {
|
||||
curr_contig_idx = i;
|
||||
}
|
||||
|
||||
int seq_idx = 0;
|
||||
for (const llama_seq_id it : kv_cells[i].seq_id) {
|
||||
if (seq_idx >= view->n_seq_max) {
|
||||
break;
|
||||
}
|
||||
cs_curr[seq_idx] = it;
|
||||
seq_idx++;
|
||||
}
|
||||
if (seq_idx != 0) {
|
||||
used_cells++;
|
||||
}
|
||||
for (; seq_idx < view->n_seq_max; seq_idx++) {
|
||||
cs_curr[seq_idx] = -1;
|
||||
}
|
||||
}
|
||||
if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
|
||||
max_contig_idx = curr_contig_idx;
|
||||
max_contig = kv_cells.size() - curr_contig_idx;
|
||||
}
|
||||
view->max_contiguous = max_contig;
|
||||
view->max_contiguous_idx = max_contig_idx;
|
||||
view->token_count = token_count;
|
||||
view->used_cells = used_cells;
|
||||
if (uint32_t(used_cells) != kv.used) {
|
||||
LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
|
||||
__func__, kv.used, used_cells);
|
||||
}
|
||||
}
|
218
src/llama-kv-cache.h
Normal file
218
src/llama-kv-cache.h
Normal file
@ -0,0 +1,218 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include "ggml-cpp.h"
|
||||
|
||||
#include <set>
|
||||
#include <vector>
|
||||
|
||||
struct llama_kv_cell {
|
||||
llama_pos pos = -1;
|
||||
llama_pos delta = 0;
|
||||
int32_t src = -1; // used by recurrent state models to copy states
|
||||
int32_t tail = -1;
|
||||
|
||||
std::set<llama_seq_id> seq_id;
|
||||
|
||||
bool has_seq_id(const llama_seq_id & id) const {
|
||||
return seq_id.find(id) != seq_id.end();
|
||||
}
|
||||
|
||||
bool is_empty() const {
|
||||
return seq_id.empty();
|
||||
}
|
||||
|
||||
bool is_same_seq(const llama_kv_cell & other) const {
|
||||
return seq_id == other.seq_id;
|
||||
}
|
||||
};
|
||||
|
||||
// ring-buffer of cached KV data
|
||||
struct llama_kv_cache {
|
||||
bool has_shift = false;
|
||||
bool do_defrag = false;
|
||||
bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
|
||||
bool v_trans = true; // the value tensor is transposed
|
||||
bool can_shift = false;
|
||||
|
||||
// Note: The value of head isn't only used to optimize searching
|
||||
// for a free KV slot. llama_decode_internal also uses it, so it
|
||||
// cannot be freely changed after a slot has been allocated.
|
||||
uint32_t head = 0;
|
||||
uint32_t size = 0;
|
||||
uint32_t used = 0; // used cells (i.e. at least one seq_id)
|
||||
|
||||
// computed before each graph build
|
||||
uint32_t n = 0;
|
||||
|
||||
ggml_type type_k = GGML_TYPE_F16;
|
||||
ggml_type type_v = GGML_TYPE_F16;
|
||||
|
||||
std::vector<llama_kv_cell> cells;
|
||||
|
||||
std::vector<struct ggml_tensor *> k_l; // per layer
|
||||
std::vector<struct ggml_tensor *> v_l;
|
||||
|
||||
std::vector<ggml_context_ptr> ctxs;
|
||||
std::vector<ggml_backend_buffer_ptr> bufs;
|
||||
|
||||
size_t total_size() const {
|
||||
size_t size = 0;
|
||||
for (const auto & buf : bufs) {
|
||||
size += ggml_backend_buffer_get_size(buf.get());
|
||||
}
|
||||
|
||||
return size;
|
||||
}
|
||||
|
||||
// TODO: better data structures to reduce the cost of this operation
|
||||
llama_pos max_pos() const {
|
||||
llama_pos max_pos = -1;
|
||||
for (const auto & cell : cells) {
|
||||
max_pos = std::max(max_pos, cell.pos);
|
||||
}
|
||||
|
||||
return max_pos;
|
||||
}
|
||||
};
|
||||
|
||||
// a structure holds information about the slot found in llama_kv_cache_find_slot
|
||||
struct llama_kv_cache_slot_info {
|
||||
std::pair<uint32_t, uint32_t> boundaries; // slot boundaries [begin, end)
|
||||
bool found = false; // the slot was found
|
||||
|
||||
explicit llama_kv_cache_slot_info(bool found_) : found{found_} {}
|
||||
llama_kv_cache_slot_info(uint32_t begin, uint32_t end) : boundaries{begin, end}, found{true} {}
|
||||
|
||||
operator bool() const { return found; }
|
||||
};
|
||||
|
||||
// TODO: maybe not needed
|
||||
uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams);
|
||||
|
||||
bool llama_kv_cache_init(
|
||||
struct llama_kv_cache & cache,
|
||||
const llama_model & model,
|
||||
const llama_cparams & cparams,
|
||||
ggml_type type_k,
|
||||
ggml_type type_v,
|
||||
uint32_t kv_size,
|
||||
bool offload);
|
||||
|
||||
// find an empty slot of size "n_tokens" in the cache
|
||||
// updates the cache head
|
||||
// returns a structure holding information about the slot found
|
||||
// Note: On success, it's important that cache.head points
|
||||
// to the first cell of the slot.
|
||||
struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
|
||||
struct llama_kv_cache & cache,
|
||||
const struct llama_ubatch & batch);
|
||||
|
||||
// find how many cells are currently in use
|
||||
uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache);
|
||||
|
||||
void llama_kv_cache_clear(struct llama_kv_cache & cache);
|
||||
|
||||
bool llama_kv_cache_seq_rm(
|
||||
struct llama_kv_cache & cache,
|
||||
llama_seq_id seq_id,
|
||||
llama_pos p0,
|
||||
llama_pos p1);
|
||||
|
||||
void llama_kv_cache_seq_cp(
|
||||
struct llama_kv_cache & cache,
|
||||
llama_seq_id seq_id_src,
|
||||
llama_seq_id seq_id_dst,
|
||||
llama_pos p0,
|
||||
llama_pos p1);
|
||||
|
||||
void llama_kv_cache_seq_keep(
|
||||
struct llama_kv_cache & cache,
|
||||
llama_seq_id seq_id);
|
||||
|
||||
void llama_kv_cache_seq_add(
|
||||
struct llama_kv_cache & cache,
|
||||
llama_seq_id seq_id,
|
||||
llama_pos p0,
|
||||
llama_pos p1,
|
||||
llama_pos delta);
|
||||
|
||||
void llama_kv_cache_seq_div(
|
||||
struct llama_kv_cache & cache,
|
||||
llama_seq_id seq_id,
|
||||
llama_pos p0,
|
||||
llama_pos p1,
|
||||
int d);
|
||||
|
||||
llama_pos llama_kv_cache_seq_pos_max(
|
||||
struct llama_kv_cache & cache,
|
||||
llama_seq_id seq_id);
|
||||
|
||||
void llama_kv_cache_defrag(struct llama_kv_cache & cache);
|
||||
|
||||
int32_t llama_get_kv_cache_token_count(const struct llama_kv_cache & kv);
|
||||
|
||||
int32_t llama_get_kv_cache_used_cells(const struct llama_kv_cache & kv);
|
||||
|
||||
bool llama_kv_cache_can_shift(const struct llama_kv_cache & kv);
|
||||
|
||||
//
|
||||
// kv cache view
|
||||
//
|
||||
|
||||
struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_kv_cache & kv, int32_t n_seq_max);
|
||||
|
||||
void llama_kv_cache_view_update(struct llama_kv_cache_view * view, const struct llama_kv_cache & kv);
|
||||
|
||||
//
|
||||
// kv cache restore
|
||||
//
|
||||
|
||||
// saves the kv_cache state for future recovery.
|
||||
// used to rollback llama_kv_cache_find_slot changes.
|
||||
struct llama_kv_slot_restorer {
|
||||
struct llama_kv_cache_state {
|
||||
uint32_t head = 0;
|
||||
uint32_t n = 0;
|
||||
} old_state;
|
||||
|
||||
// for non-recurrent models only
|
||||
// list of slots to restore
|
||||
std::vector<std::pair<uint32_t, uint32_t>> slot_boundaries;
|
||||
|
||||
bool do_restore = false;
|
||||
|
||||
explicit llama_kv_slot_restorer(const struct llama_kv_cache & cache) {
|
||||
old_state.head = cache.head;
|
||||
old_state.n = cache.n;
|
||||
}
|
||||
|
||||
// saves a slot information for future restoration
|
||||
void save(const struct llama_kv_cache_slot_info & slot) {
|
||||
if (slot) {
|
||||
do_restore = true;
|
||||
if (slot.boundaries.first != slot.boundaries.second) {
|
||||
slot_boundaries.push_back(slot.boundaries);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// must be explicitly called to restore the kv_cache state
|
||||
// and rollback changes from all llama_kv_cache_find_slot calls
|
||||
void restore(struct llama_kv_cache & cache) {
|
||||
if (do_restore) {
|
||||
cache.head = old_state.head;
|
||||
cache.n = old_state.n;
|
||||
|
||||
if (cache.recurrent) { // recurrent models like Mamba or RWKV can't have a state partially erased
|
||||
llama_kv_cache_seq_rm(cache, -1, -1, -1);
|
||||
} else {
|
||||
for (auto & slot : slot_boundaries) {
|
||||
llama_kv_cache_seq_rm(cache, -1, slot.first, slot.second);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
585
src/llama-mmap.cpp
Normal file
585
src/llama-mmap.cpp
Normal file
@ -0,0 +1,585 @@
|
||||
#include "llama-mmap.h"
|
||||
|
||||
#include "llama-impl.h"
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
#include <cstring>
|
||||
#include <climits>
|
||||
#include <stdexcept>
|
||||
|
||||
#ifdef __has_include
|
||||
#if __has_include(<unistd.h>)
|
||||
#include <unistd.h>
|
||||
#if defined(_POSIX_MAPPED_FILES)
|
||||
#include <sys/mman.h>
|
||||
#include <fcntl.h>
|
||||
#endif
|
||||
#if defined(_POSIX_MEMLOCK_RANGE)
|
||||
#include <sys/resource.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
#define NOMINMAX
|
||||
#endif
|
||||
#include <windows.h>
|
||||
#ifndef PATH_MAX
|
||||
#define PATH_MAX MAX_PATH
|
||||
#endif
|
||||
#include <io.h>
|
||||
#endif
|
||||
|
||||
// TODO: consider moving to llama-impl.h if needed in more places
|
||||
#if defined(_WIN32)
|
||||
std::string llama_format_win_err(DWORD err) {
|
||||
LPSTR buf;
|
||||
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
|
||||
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
|
||||
if (!size) {
|
||||
return "FormatMessageA failed";
|
||||
}
|
||||
std::string ret(buf, size);
|
||||
LocalFree(buf);
|
||||
return ret;
|
||||
}
|
||||
#endif
|
||||
|
||||
// llama_file
|
||||
|
||||
struct llama_file::impl {
|
||||
#if defined(_WIN32)
|
||||
HANDLE fp_win32;
|
||||
std::string GetErrorMessageWin32(DWORD error_code) const {
|
||||
std::string ret;
|
||||
LPSTR lpMsgBuf = NULL;
|
||||
DWORD bufLen = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
|
||||
NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&lpMsgBuf, 0, NULL);
|
||||
if (!bufLen) {
|
||||
ret = format("Win32 error code: %lx", error_code);
|
||||
} else {
|
||||
ret = lpMsgBuf;
|
||||
LocalFree(lpMsgBuf);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
impl(const char * fname, const char * mode) {
|
||||
fp = ggml_fopen(fname, mode);
|
||||
if (fp == NULL) {
|
||||
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
|
||||
}
|
||||
fp_win32 = (HANDLE) _get_osfhandle(_fileno(fp));
|
||||
seek(0, SEEK_END);
|
||||
size = tell();
|
||||
seek(0, SEEK_SET);
|
||||
}
|
||||
|
||||
size_t tell() const {
|
||||
LARGE_INTEGER li;
|
||||
li.QuadPart = 0;
|
||||
BOOL ret = SetFilePointerEx(fp_win32, li, &li, FILE_CURRENT);
|
||||
if (!ret) {
|
||||
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
|
||||
}
|
||||
|
||||
return li.QuadPart;
|
||||
}
|
||||
|
||||
void seek(size_t offset, int whence) const {
|
||||
static_assert(SEEK_SET == FILE_BEGIN, "SEEK_SET != FILE_BEGIN");
|
||||
static_assert(SEEK_CUR == FILE_CURRENT, "SEEK_CUR != FILE_CURRENT");
|
||||
static_assert(SEEK_END == FILE_END, "SEEK_END != FILE_END");
|
||||
|
||||
LARGE_INTEGER li;
|
||||
li.QuadPart = offset;
|
||||
BOOL ret = SetFilePointerEx(fp_win32, li, NULL, whence);
|
||||
if (!ret) {
|
||||
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
|
||||
}
|
||||
}
|
||||
|
||||
void read_raw(void * ptr, size_t len) const {
|
||||
size_t bytes_read = 0;
|
||||
while (bytes_read < len) {
|
||||
size_t chunk_size = std::min<size_t>(len - bytes_read, 64*1024*1024);
|
||||
DWORD chunk_read = 0;
|
||||
BOOL result = ReadFile(fp_win32, reinterpret_cast<char*>(ptr) + bytes_read, chunk_size, &chunk_read, NULL);
|
||||
if (!result) {
|
||||
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
|
||||
}
|
||||
if (chunk_read < chunk_size || chunk_read == 0) {
|
||||
throw std::runtime_error("unexpectedly reached end of file");
|
||||
}
|
||||
|
||||
bytes_read += chunk_read;
|
||||
}
|
||||
}
|
||||
|
||||
uint32_t read_u32() const {
|
||||
uint32_t val;
|
||||
read_raw(&val, sizeof(val));
|
||||
return val;
|
||||
}
|
||||
|
||||
void write_raw(const void * ptr, size_t len) const {
|
||||
size_t bytes_written = 0;
|
||||
while (bytes_written < len) {
|
||||
size_t chunk_size = std::min<size_t>(len - bytes_written, 64*1024*1024);
|
||||
DWORD chunk_written = 0;
|
||||
BOOL result = WriteFile(fp_win32, reinterpret_cast<char const*>(ptr) + bytes_written, chunk_size, &chunk_written, NULL);
|
||||
if (!result) {
|
||||
throw std::runtime_error(format("write error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
|
||||
}
|
||||
if (chunk_written < chunk_size || chunk_written == 0) {
|
||||
throw std::runtime_error("unexpectedly failed to write bytes");
|
||||
}
|
||||
|
||||
bytes_written += chunk_written;
|
||||
}
|
||||
}
|
||||
|
||||
void write_u32(uint32_t val) const {
|
||||
write_raw(&val, sizeof(val));
|
||||
}
|
||||
|
||||
~impl() {
|
||||
if (fp) {
|
||||
std::fclose(fp);
|
||||
}
|
||||
}
|
||||
#else
|
||||
impl(const char * fname, const char * mode) {
|
||||
fp = ggml_fopen(fname, mode);
|
||||
if (fp == NULL) {
|
||||
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
|
||||
}
|
||||
seek(0, SEEK_END);
|
||||
size = tell();
|
||||
seek(0, SEEK_SET);
|
||||
}
|
||||
|
||||
size_t tell() const {
|
||||
// TODO: this ifdef is never true?
|
||||
#ifdef _WIN32
|
||||
__int64 ret = _ftelli64(fp);
|
||||
#else
|
||||
long ret = std::ftell(fp);
|
||||
#endif
|
||||
if (ret == -1) {
|
||||
throw std::runtime_error(format("ftell error: %s", strerror(errno)));
|
||||
}
|
||||
|
||||
return (size_t) ret;
|
||||
}
|
||||
|
||||
void seek(size_t offset, int whence) const {
|
||||
// TODO: this ifdef is never true?
|
||||
#ifdef _WIN32
|
||||
int ret = _fseeki64(fp, (__int64) offset, whence);
|
||||
#else
|
||||
int ret = std::fseek(fp, (long) offset, whence);
|
||||
#endif
|
||||
if (ret != 0) {
|
||||
throw std::runtime_error(format("seek error: %s", strerror(errno)));
|
||||
}
|
||||
}
|
||||
|
||||
void read_raw(void * ptr, size_t len) const {
|
||||
if (len == 0) {
|
||||
return;
|
||||
}
|
||||
errno = 0;
|
||||
std::size_t ret = std::fread(ptr, len, 1, fp);
|
||||
if (ferror(fp)) {
|
||||
throw std::runtime_error(format("read error: %s", strerror(errno)));
|
||||
}
|
||||
if (ret != 1) {
|
||||
throw std::runtime_error("unexpectedly reached end of file");
|
||||
}
|
||||
}
|
||||
|
||||
uint32_t read_u32() const {
|
||||
uint32_t ret;
|
||||
read_raw(&ret, sizeof(ret));
|
||||
return ret;
|
||||
}
|
||||
|
||||
void write_raw(const void * ptr, size_t len) const {
|
||||
if (len == 0) {
|
||||
return;
|
||||
}
|
||||
errno = 0;
|
||||
size_t ret = std::fwrite(ptr, len, 1, fp);
|
||||
if (ret != 1) {
|
||||
throw std::runtime_error(format("write error: %s", strerror(errno)));
|
||||
}
|
||||
}
|
||||
|
||||
void write_u32(uint32_t val) const {
|
||||
write_raw(&val, sizeof(val));
|
||||
}
|
||||
|
||||
~impl() {
|
||||
if (fp) {
|
||||
std::fclose(fp);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
FILE * fp;
|
||||
size_t size;
|
||||
};
|
||||
|
||||
llama_file::llama_file(const char * fname, const char * mode) : pimpl(std::make_unique<impl>(fname, mode)) {}
|
||||
llama_file::~llama_file() = default;
|
||||
|
||||
size_t llama_file::tell() const { return pimpl->tell(); }
|
||||
size_t llama_file::size() const { return pimpl->size; }
|
||||
|
||||
int llama_file::fileno() const {
|
||||
#ifdef _WIN32
|
||||
return _fileno(pimpl->fp);
|
||||
#else
|
||||
return ::fileno(pimpl->fp);
|
||||
#endif
|
||||
}
|
||||
|
||||
void llama_file::seek(size_t offset, int whence) const { pimpl->seek(offset, whence); }
|
||||
void llama_file::read_raw(void * ptr, size_t len) const { pimpl->read_raw(ptr, len); }
|
||||
|
||||
uint32_t llama_file::read_u32() const { return pimpl->read_u32(); }
|
||||
|
||||
void llama_file::write_raw(const void * ptr, size_t len) const { pimpl->write_raw(ptr, len); }
|
||||
void llama_file::write_u32(uint32_t val) const { pimpl->write_u32(val); }
|
||||
|
||||
// llama_mmap
|
||||
|
||||
struct llama_mmap::impl {
|
||||
#ifdef _POSIX_MAPPED_FILES
|
||||
std::vector<std::pair<size_t, size_t>> mapped_fragments;
|
||||
|
||||
impl(struct llama_file * file, size_t prefetch, bool numa) {
|
||||
size = file->size();
|
||||
int fd = file->fileno();
|
||||
int flags = MAP_SHARED;
|
||||
if (numa) { prefetch = 0; }
|
||||
#ifdef __linux__
|
||||
if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
|
||||
LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
|
||||
strerror(errno));
|
||||
}
|
||||
if (prefetch) { flags |= MAP_POPULATE; }
|
||||
#endif
|
||||
addr = mmap(NULL, file->size(), PROT_READ, flags, fd, 0);
|
||||
if (addr == MAP_FAILED) {
|
||||
throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
|
||||
}
|
||||
|
||||
if (prefetch > 0) {
|
||||
if (posix_madvise(addr, std::min(file->size(), prefetch), POSIX_MADV_WILLNEED)) {
|
||||
LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
|
||||
strerror(errno));
|
||||
}
|
||||
}
|
||||
if (numa) {
|
||||
if (posix_madvise(addr, file->size(), POSIX_MADV_RANDOM)) {
|
||||
LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
|
||||
strerror(errno));
|
||||
}
|
||||
}
|
||||
|
||||
mapped_fragments.emplace_back(0, file->size());
|
||||
}
|
||||
|
||||
static void align_range(size_t * first, size_t * last, size_t page_size) {
|
||||
size_t offset_in_page = *first & (page_size - 1);
|
||||
size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
|
||||
*first += offset_to_page;
|
||||
|
||||
*last = *last & ~(page_size - 1);
|
||||
|
||||
if (*last <= *first) {
|
||||
*last = *first;
|
||||
}
|
||||
}
|
||||
|
||||
void unmap_fragment(size_t first, size_t last) {
|
||||
int page_size = sysconf(_SC_PAGESIZE);
|
||||
align_range(&first, &last, page_size);
|
||||
size_t len = last - first;
|
||||
|
||||
if (len == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
GGML_ASSERT(first % page_size == 0);
|
||||
GGML_ASSERT(last % page_size == 0);
|
||||
GGML_ASSERT(last > first);
|
||||
|
||||
void * next_page_start = (uint8_t *) addr + first;
|
||||
|
||||
if (munmap(next_page_start, len)) {
|
||||
LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
|
||||
}
|
||||
|
||||
std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
|
||||
for (const auto & frag : mapped_fragments) {
|
||||
if (frag.first < first && frag.second > last) {
|
||||
new_mapped_fragments.emplace_back(frag.first, first);
|
||||
new_mapped_fragments.emplace_back(last, frag.second);
|
||||
} else if (frag.first < first && frag.second > first) {
|
||||
new_mapped_fragments.emplace_back(frag.first, first);
|
||||
} else if (frag.first < last && frag.second > last) {
|
||||
new_mapped_fragments.emplace_back(last, frag.second);
|
||||
} else if (frag.first >= first && frag.second <= last) {
|
||||
} else {
|
||||
new_mapped_fragments.push_back(frag);
|
||||
}
|
||||
}
|
||||
mapped_fragments = std::move(new_mapped_fragments);
|
||||
}
|
||||
|
||||
~impl() {
|
||||
for (const auto & frag : mapped_fragments) {
|
||||
if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
|
||||
LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
|
||||
}
|
||||
}
|
||||
}
|
||||
#elif defined(_WIN32)
|
||||
impl(struct llama_file * file, size_t prefetch, bool numa) {
|
||||
GGML_UNUSED(numa);
|
||||
|
||||
size = file->size();
|
||||
|
||||
HANDLE hFile = (HANDLE) _get_osfhandle(file->fileno());
|
||||
|
||||
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
|
||||
|
||||
if (hMapping == NULL) {
|
||||
DWORD error = GetLastError();
|
||||
throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
|
||||
}
|
||||
|
||||
addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
|
||||
DWORD error = GetLastError();
|
||||
CloseHandle(hMapping);
|
||||
|
||||
if (addr == NULL) {
|
||||
throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
|
||||
}
|
||||
|
||||
if (prefetch > 0) {
|
||||
#if _WIN32_WINNT >= 0x602
|
||||
BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
|
||||
HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
|
||||
|
||||
pPrefetchVirtualMemory = (decltype(pPrefetchVirtualMemory))(void *) GetProcAddress(hKernel32, "PrefetchVirtualMemory");
|
||||
|
||||
if (pPrefetchVirtualMemory) {
|
||||
WIN32_MEMORY_RANGE_ENTRY range;
|
||||
range.VirtualAddress = addr;
|
||||
range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
|
||||
if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
|
||||
LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
}
|
||||
}
|
||||
#else
|
||||
throw std::runtime_error("PrefetchVirtualMemory unavailable");
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
void unmap_fragment(size_t first, size_t last) {
|
||||
GGML_UNUSED(first);
|
||||
GGML_UNUSED(last);
|
||||
}
|
||||
|
||||
~impl() {
|
||||
if (!UnmapViewOfFile(addr)) {
|
||||
LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
}
|
||||
}
|
||||
#else
|
||||
impl(struct llama_file * file, size_t prefetch, bool numa) {
|
||||
GGML_UNUSED(file);
|
||||
GGML_UNUSED(prefetch);
|
||||
GGML_UNUSED(numa);
|
||||
|
||||
throw std::runtime_error("mmap not supported");
|
||||
}
|
||||
|
||||
void unmap_fragment(size_t first, size_t last) {
|
||||
GGML_UNUSED(first);
|
||||
GGML_UNUSED(last);
|
||||
|
||||
throw std::runtime_error("mmap not supported");
|
||||
}
|
||||
#endif
|
||||
|
||||
void * addr;
|
||||
size_t size;
|
||||
};
|
||||
|
||||
llama_mmap::llama_mmap(struct llama_file * file, size_t prefetch, bool numa) : pimpl(std::make_unique<impl>(file, prefetch, numa)) {}
|
||||
llama_mmap::~llama_mmap() = default;
|
||||
|
||||
size_t llama_mmap::size() const { return pimpl->size; }
|
||||
void * llama_mmap::addr() const { return pimpl->addr; }
|
||||
|
||||
void llama_mmap::unmap_fragment(size_t first, size_t last) { pimpl->unmap_fragment(first, last); }
|
||||
|
||||
#if defined(_POSIX_MEMLOCK_RANGE) || defined(_WIN32)
|
||||
const bool llama_mmap::SUPPORTED = true;
|
||||
#else
|
||||
const bool llama_mmap::SUPPORTED = false;
|
||||
#endif
|
||||
|
||||
// llama_mlock
|
||||
|
||||
struct llama_mlock::impl {
|
||||
#ifdef _POSIX_MEMLOCK_RANGE
|
||||
static size_t lock_granularity() {
|
||||
return (size_t) sysconf(_SC_PAGESIZE);
|
||||
}
|
||||
|
||||
bool raw_lock(const void * addr, size_t size) const {
|
||||
if (!mlock(addr, size)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
#ifdef __APPLE__
|
||||
#define MLOCK_SUGGESTION \
|
||||
"Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
|
||||
"decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
|
||||
#else
|
||||
#define MLOCK_SUGGESTION \
|
||||
"Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
|
||||
#endif
|
||||
|
||||
char* errmsg = std::strerror(errno);
|
||||
bool suggest = (errno == ENOMEM);
|
||||
|
||||
struct rlimit lock_limit;
|
||||
if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
|
||||
suggest = false;
|
||||
}
|
||||
if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
|
||||
suggest = false;
|
||||
}
|
||||
|
||||
LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
|
||||
size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
|
||||
return false;
|
||||
}
|
||||
|
||||
static void raw_unlock(void * addr, size_t size) {
|
||||
if (munlock(addr, size)) {
|
||||
LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
|
||||
}
|
||||
}
|
||||
#elif defined(_WIN32)
|
||||
static size_t lock_granularity() {
|
||||
SYSTEM_INFO si;
|
||||
GetSystemInfo(&si);
|
||||
return (size_t) si.dwPageSize;
|
||||
}
|
||||
|
||||
bool raw_lock(void * ptr, size_t len) const {
|
||||
for (int tries = 1; ; tries++) {
|
||||
if (VirtualLock(ptr, len)) {
|
||||
return true;
|
||||
}
|
||||
if (tries == 2) {
|
||||
LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
|
||||
len, size, llama_format_win_err(GetLastError()).c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
SIZE_T min_ws_size, max_ws_size;
|
||||
if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
|
||||
LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
return false;
|
||||
}
|
||||
size_t increment = len + 1048576;
|
||||
min_ws_size += increment;
|
||||
max_ws_size += increment;
|
||||
if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
|
||||
LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void raw_unlock(void * ptr, size_t len) {
|
||||
if (!VirtualUnlock(ptr, len)) {
|
||||
LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
}
|
||||
}
|
||||
#else
|
||||
static size_t lock_granularity() {
|
||||
return (size_t) 65536;
|
||||
}
|
||||
|
||||
bool raw_lock(const void * addr, size_t len) const {
|
||||
LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
static void raw_unlock(const void * addr, size_t len) {}
|
||||
#endif
|
||||
|
||||
impl() : addr(NULL), size(0), failed_already(false) {}
|
||||
|
||||
void init(void * ptr) {
|
||||
GGML_ASSERT(addr == NULL && size == 0);
|
||||
addr = ptr;
|
||||
}
|
||||
|
||||
void grow_to(size_t target_size) {
|
||||
GGML_ASSERT(addr);
|
||||
if (failed_already) {
|
||||
return;
|
||||
}
|
||||
size_t granularity = lock_granularity();
|
||||
target_size = (target_size + granularity - 1) & ~(granularity - 1);
|
||||
if (target_size > size) {
|
||||
if (raw_lock((uint8_t *) addr + size, target_size - size)) {
|
||||
size = target_size;
|
||||
} else {
|
||||
failed_already = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void * addr;
|
||||
size_t size;
|
||||
|
||||
bool failed_already;
|
||||
};
|
||||
|
||||
llama_mlock::llama_mlock() : pimpl(std::make_unique<impl>()) {}
|
||||
llama_mlock::~llama_mlock() = default;
|
||||
|
||||
void llama_mlock::init(void * ptr) { pimpl->init(ptr); }
|
||||
void llama_mlock::grow_to(size_t target_size) { pimpl->grow_to(target_size); }
|
||||
|
||||
#if defined(_POSIX_MEMLOCK_RANGE) || defined(_WIN32)
|
||||
const bool llama_mlock::SUPPORTED = true;
|
||||
#else
|
||||
const bool llama_mlock::SUPPORTED = false;
|
||||
#endif
|
||||
|
||||
size_t llama_path_max() {
|
||||
return PATH_MAX;
|
||||
}
|
67
src/llama-mmap.h
Normal file
67
src/llama-mmap.h
Normal file
@ -0,0 +1,67 @@
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
struct llama_file;
|
||||
struct llama_mmap;
|
||||
struct llama_mlock;
|
||||
|
||||
using llama_files = std::vector<std::unique_ptr<llama_file>>;
|
||||
using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
|
||||
using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
|
||||
|
||||
struct llama_file {
|
||||
llama_file(const char * fname, const char * mode);
|
||||
~llama_file();
|
||||
|
||||
size_t tell() const;
|
||||
size_t size() const;
|
||||
|
||||
int fileno() const;
|
||||
|
||||
void seek(size_t offset, int whence) const;
|
||||
|
||||
void read_raw(void * ptr, size_t len) const;
|
||||
uint32_t read_u32() const;
|
||||
|
||||
void write_raw(const void * ptr, size_t len) const;
|
||||
void write_u32(uint32_t val) const;
|
||||
|
||||
private:
|
||||
struct impl;
|
||||
std::unique_ptr<impl> pimpl;
|
||||
};
|
||||
|
||||
struct llama_mmap {
|
||||
llama_mmap(const llama_mmap &) = delete;
|
||||
llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false);
|
||||
~llama_mmap();
|
||||
|
||||
size_t size() const;
|
||||
void * addr() const;
|
||||
|
||||
void unmap_fragment(size_t first, size_t last);
|
||||
|
||||
static const bool SUPPORTED;
|
||||
|
||||
private:
|
||||
struct impl;
|
||||
std::unique_ptr<impl> pimpl;
|
||||
};
|
||||
|
||||
struct llama_mlock {
|
||||
llama_mlock();
|
||||
~llama_mlock();
|
||||
|
||||
void init(void * ptr);
|
||||
void grow_to(size_t target_size);
|
||||
|
||||
static const bool SUPPORTED;
|
||||
|
||||
private:
|
||||
struct impl;
|
||||
std::unique_ptr<impl> pimpl;
|
||||
};
|
||||
|
||||
size_t llama_path_max();
|
413
src/llama-model.cpp
Normal file
413
src/llama-model.cpp
Normal file
@ -0,0 +1,413 @@
|
||||
#include "llama-model.h"
|
||||
|
||||
#include "llama-impl.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <stdexcept>
|
||||
|
||||
const char * llm_type_name(llm_type type) {
|
||||
switch (type) {
|
||||
case MODEL_14M: return "14M";
|
||||
case MODEL_17M: return "17M";
|
||||
case MODEL_22M: return "22M";
|
||||
case MODEL_33M: return "33M";
|
||||
case MODEL_60M: return "60M";
|
||||
case MODEL_70M: return "70M";
|
||||
case MODEL_80M: return "80M";
|
||||
case MODEL_109M: return "109M";
|
||||
case MODEL_137M: return "137M";
|
||||
case MODEL_160M: return "160M";
|
||||
case MODEL_220M: return "220M";
|
||||
case MODEL_250M: return "250M";
|
||||
case MODEL_270M: return "270M";
|
||||
case MODEL_335M: return "335M";
|
||||
case MODEL_410M: return "410M";
|
||||
case MODEL_450M: return "450M";
|
||||
case MODEL_770M: return "770M";
|
||||
case MODEL_780M: return "780M";
|
||||
case MODEL_0_5B: return "0.5B";
|
||||
case MODEL_1B: return "1B";
|
||||
case MODEL_1_3B: return "1.3B";
|
||||
case MODEL_1_4B: return "1.4B";
|
||||
case MODEL_1_5B: return "1.5B";
|
||||
case MODEL_1_6B: return "1.6B";
|
||||
case MODEL_2B: return "2B";
|
||||
case MODEL_2_8B: return "2.8B";
|
||||
case MODEL_3B: return "3B";
|
||||
case MODEL_4B: return "4B";
|
||||
case MODEL_6B: return "6B";
|
||||
case MODEL_6_9B: return "6.9B";
|
||||
case MODEL_7B: return "7B";
|
||||
case MODEL_8B: return "8B";
|
||||
case MODEL_9B: return "9B";
|
||||
case MODEL_11B: return "11B";
|
||||
case MODEL_12B: return "12B";
|
||||
case MODEL_13B: return "13B";
|
||||
case MODEL_14B: return "14B";
|
||||
case MODEL_15B: return "15B";
|
||||
case MODEL_16B: return "16B";
|
||||
case MODEL_20B: return "20B";
|
||||
case MODEL_30B: return "30B";
|
||||
case MODEL_32B: return "32B";
|
||||
case MODEL_34B: return "34B";
|
||||
case MODEL_35B: return "35B";
|
||||
case MODEL_40B: return "40B";
|
||||
case MODEL_65B: return "65B";
|
||||
case MODEL_70B: return "70B";
|
||||
case MODEL_236B: return "236B";
|
||||
case MODEL_314B: return "314B";
|
||||
case MODEL_SMALL: return "0.1B";
|
||||
case MODEL_MEDIUM: return "0.4B";
|
||||
case MODEL_LARGE: return "0.8B";
|
||||
case MODEL_XL: return "1.5B";
|
||||
case MODEL_A1_7B: return "A1.7B";
|
||||
case MODEL_A2_7B: return "A2.7B";
|
||||
case MODEL_8x7B: return "8x7B";
|
||||
case MODEL_8x22B: return "8x22B";
|
||||
case MODEL_16x12B: return "16x12B";
|
||||
case MODEL_10B_128x3_66B: return "10B+128x3.66B";
|
||||
case MODEL_57B_A14B: return "57B.A14B";
|
||||
case MODEL_27B: return "27B";
|
||||
default: return "?B";
|
||||
}
|
||||
}
|
||||
|
||||
static std::string llama_model_ftype_name(llama_ftype ftype) {
|
||||
if (ftype & LLAMA_FTYPE_GUESSED) {
|
||||
return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
|
||||
}
|
||||
|
||||
switch (ftype) {
|
||||
case LLAMA_FTYPE_ALL_F32: return "all F32";
|
||||
case LLAMA_FTYPE_MOSTLY_F16: return "F16";
|
||||
case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
|
||||
case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
|
||||
case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
|
||||
case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
|
||||
case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
|
||||
case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
|
||||
case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
|
||||
case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
|
||||
case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
|
||||
case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
|
||||
case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
|
||||
case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
|
||||
case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
|
||||
case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
|
||||
case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
|
||||
case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
|
||||
case LLAMA_FTYPE_MOSTLY_TQ1_0: return "TQ1_0 - 1.69 bpw ternary";
|
||||
case LLAMA_FTYPE_MOSTLY_TQ2_0: return "TQ2_0 - 2.06 bpw ternary";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ2_XXS: return "IQ2_XXS - 2.0625 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ3_XXS: return "IQ3_XXS - 3.0625 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ1_S: return "IQ1_S - 1.5625 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ1_M: return "IQ1_M - 1.75 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
|
||||
|
||||
default: return "unknown, may not work";
|
||||
}
|
||||
}
|
||||
|
||||
std::string llama_model_arch_name (const llama_model & model) {
|
||||
return llm_arch_name(model.arch);
|
||||
}
|
||||
|
||||
std::string llama_model_type_name (const llama_model & model) {
|
||||
return llm_type_name(model.type);
|
||||
}
|
||||
|
||||
std::string llama_model_ftype_name(const llama_model & model) {
|
||||
return llama_model_ftype_name(model.ftype);
|
||||
}
|
||||
|
||||
template<typename F>
|
||||
static bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) {
|
||||
ggml_init_params params = {
|
||||
/*.mem_size =*/ ggml_tensor_overhead()*8,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
|
||||
ggml_context_ptr ctx { ggml_init(params) };
|
||||
if (!ctx) {
|
||||
throw std::runtime_error(format("failed to create ggml context"));
|
||||
}
|
||||
|
||||
ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) };
|
||||
ggml_tensor * op_tensor = fn(ctx.get());
|
||||
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||
if (op_tensor->src[i] != nullptr) {
|
||||
assert(op_tensor->src[i]->buffer == nullptr);
|
||||
op_tensor->src[i]->buffer = buf.get();
|
||||
}
|
||||
}
|
||||
|
||||
bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
|
||||
|
||||
return op_supported;
|
||||
}
|
||||
|
||||
template<typename F>
|
||||
static ggml_backend_buffer_type_t select_buft(const llama_model::buft_list_t & buft_list, const F & fn) {
|
||||
for (const auto & cur : buft_list) {
|
||||
ggml_backend_dev_t cur_dev = cur.first;
|
||||
ggml_backend_buffer_type_t cur_buft = cur.second;
|
||||
if (buft_supported(cur_buft, cur_dev, fn)) {
|
||||
return cur_buft;
|
||||
}
|
||||
}
|
||||
|
||||
throw std::runtime_error(format("no suitable buffer type found"));
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t llama_model_select_buft(const llama_model & model, int il) {
|
||||
return select_buft(
|
||||
*model.dev_layer.at(il).buft_list,
|
||||
[&](ggml_context * ctx) {
|
||||
ggml_tensor * cur = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
|
||||
ggml_tensor * layer_dir = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
|
||||
return ggml_add(ctx, cur, layer_dir);
|
||||
});
|
||||
}
|
||||
|
||||
struct ggml_tensor * llama_model_get_tensor(const struct llama_model & model, const char * name) {
|
||||
auto it = std::find_if(model.tensors_by_name.begin(), model.tensors_by_name.end(),
|
||||
[name](const std::pair<std::string, struct ggml_tensor *> & it) {
|
||||
return it.first == name;
|
||||
});
|
||||
if (it == model.tensors_by_name.end()) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return it->second;
|
||||
}
|
||||
|
||||
size_t llama_model_max_nodes(const llama_model & model) {
|
||||
return std::max<size_t>(8192, model.tensors_by_name.size()*5);
|
||||
}
|
||||
|
||||
//
|
||||
// interface implementation
|
||||
//
|
||||
|
||||
struct llama_model_params llama_model_default_params() {
|
||||
struct llama_model_params result = {
|
||||
/*.devices =*/ nullptr,
|
||||
/*.n_gpu_layers =*/ 0,
|
||||
/*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
|
||||
/*.main_gpu =*/ 0,
|
||||
/*.tensor_split =*/ nullptr,
|
||||
/*.rpc_servers =*/ nullptr,
|
||||
/*.progress_callback =*/ nullptr,
|
||||
/*.progress_callback_user_data =*/ nullptr,
|
||||
/*.kv_overrides =*/ nullptr,
|
||||
/*.vocab_only =*/ false,
|
||||
/*.use_mmap =*/ true,
|
||||
/*.use_mlock =*/ false,
|
||||
/*.check_tensors =*/ false,
|
||||
};
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
// note: we usually have plenty of VRAM, so by default offload all layers to the GPU
|
||||
result.n_gpu_layers = 999;
|
||||
#endif
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
void llama_free_model(struct llama_model * model) {
|
||||
delete model;
|
||||
}
|
||||
|
||||
enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
|
||||
return model->vocab.type;
|
||||
}
|
||||
|
||||
int32_t llama_n_vocab(const struct llama_model * model) {
|
||||
return model->hparams.n_vocab;
|
||||
}
|
||||
|
||||
int32_t llama_n_ctx_train(const struct llama_model * model) {
|
||||
return model->hparams.n_ctx_train;
|
||||
}
|
||||
|
||||
int32_t llama_n_embd(const struct llama_model * model) {
|
||||
return model->hparams.n_embd;
|
||||
}
|
||||
|
||||
int32_t llama_n_layer(const struct llama_model * model) {
|
||||
return model->hparams.n_layer;
|
||||
}
|
||||
|
||||
int32_t llama_n_head(const struct llama_model * model) {
|
||||
return model->hparams.n_head();
|
||||
}
|
||||
|
||||
enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
||||
switch (model->arch) {
|
||||
// these models do not use RoPE
|
||||
case LLM_ARCH_GPT2:
|
||||
case LLM_ARCH_GPTJ:
|
||||
case LLM_ARCH_MPT:
|
||||
case LLM_ARCH_REFACT:
|
||||
case LLM_ARCH_BLOOM:
|
||||
case LLM_ARCH_MAMBA:
|
||||
case LLM_ARCH_JINA_BERT_V2:
|
||||
case LLM_ARCH_T5:
|
||||
case LLM_ARCH_T5ENCODER:
|
||||
case LLM_ARCH_JAIS:
|
||||
case LLM_ARCH_RWKV6:
|
||||
case LLM_ARCH_WAVTOKENIZER_DEC:
|
||||
return LLAMA_ROPE_TYPE_NONE;
|
||||
|
||||
// use what we call a normal RoPE, operating on pairs of consecutive head values
|
||||
case LLM_ARCH_LLAMA:
|
||||
case LLM_ARCH_DECI:
|
||||
case LLM_ARCH_BAICHUAN:
|
||||
case LLM_ARCH_STARCODER:
|
||||
case LLM_ARCH_PLAMO:
|
||||
case LLM_ARCH_ORION:
|
||||
case LLM_ARCH_INTERNLM2:
|
||||
case LLM_ARCH_MINICPM:
|
||||
case LLM_ARCH_XVERSE:
|
||||
case LLM_ARCH_COMMAND_R:
|
||||
case LLM_ARCH_OLMO:
|
||||
case LLM_ARCH_ARCTIC:
|
||||
case LLM_ARCH_DEEPSEEK:
|
||||
case LLM_ARCH_DEEPSEEK2:
|
||||
case LLM_ARCH_CHATGLM:
|
||||
case LLM_ARCH_GRANITE:
|
||||
case LLM_ARCH_GRANITE_MOE:
|
||||
case LLM_ARCH_CHAMELEON:
|
||||
return LLAMA_ROPE_TYPE_NORM;
|
||||
|
||||
// the pairs of head values are offset by n_rot/2
|
||||
case LLM_ARCH_FALCON:
|
||||
case LLM_ARCH_GROK:
|
||||
case LLM_ARCH_DBRX:
|
||||
case LLM_ARCH_BERT:
|
||||
case LLM_ARCH_NOMIC_BERT:
|
||||
case LLM_ARCH_STABLELM:
|
||||
case LLM_ARCH_BITNET:
|
||||
case LLM_ARCH_QWEN:
|
||||
case LLM_ARCH_QWEN2:
|
||||
case LLM_ARCH_QWEN2MOE:
|
||||
case LLM_ARCH_OLMO2:
|
||||
case LLM_ARCH_OLMOE:
|
||||
case LLM_ARCH_PHI2:
|
||||
case LLM_ARCH_PHI3:
|
||||
case LLM_ARCH_GEMMA:
|
||||
case LLM_ARCH_GEMMA2:
|
||||
case LLM_ARCH_STARCODER2:
|
||||
case LLM_ARCH_OPENELM:
|
||||
case LLM_ARCH_GPTNEOX:
|
||||
case LLM_ARCH_CODESHELL:
|
||||
case LLM_ARCH_NEMOTRON:
|
||||
case LLM_ARCH_EXAONE:
|
||||
case LLM_ARCH_MINICPM3:
|
||||
return LLAMA_ROPE_TYPE_NEOX;
|
||||
|
||||
case LLM_ARCH_QWEN2VL:
|
||||
return LLAMA_ROPE_TYPE_MROPE;
|
||||
|
||||
// all model arches should be listed explicitly here
|
||||
case LLM_ARCH_UNKNOWN:
|
||||
GGML_ABORT("unknown architecture");
|
||||
}
|
||||
|
||||
return LLAMA_ROPE_TYPE_NONE;
|
||||
}
|
||||
|
||||
float llama_rope_freq_scale_train(const struct llama_model * model) {
|
||||
return model->hparams.rope_freq_scale_train;
|
||||
}
|
||||
|
||||
int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
|
||||
const auto & it = model->gguf_kv.find(key);
|
||||
if (it == model->gguf_kv.end()) {
|
||||
if (buf_size > 0) {
|
||||
buf[0] = '\0';
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
return snprintf(buf, buf_size, "%s", it->second.c_str());
|
||||
}
|
||||
|
||||
int32_t llama_model_meta_count(const struct llama_model * model) {
|
||||
return (int)model->gguf_kv.size();
|
||||
}
|
||||
|
||||
int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
|
||||
if (i < 0 || i >= (int)model->gguf_kv.size()) {
|
||||
if (buf_size > 0) {
|
||||
buf[0] = '\0';
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
auto it = model->gguf_kv.begin();
|
||||
std::advance(it, i);
|
||||
return snprintf(buf, buf_size, "%s", it->first.c_str());
|
||||
}
|
||||
|
||||
int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
|
||||
if (i < 0 || i >= (int)model->gguf_kv.size()) {
|
||||
if (buf_size > 0) {
|
||||
buf[0] = '\0';
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
auto it = model->gguf_kv.begin();
|
||||
std::advance(it, i);
|
||||
return snprintf(buf, buf_size, "%s", it->second.c_str());
|
||||
}
|
||||
|
||||
int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
|
||||
return snprintf(buf, buf_size, "%s %s %s",
|
||||
llama_model_arch_name (*model).c_str(),
|
||||
llama_model_type_name (*model).c_str(),
|
||||
llama_model_ftype_name(*model).c_str());
|
||||
}
|
||||
|
||||
uint64_t llama_model_size(const struct llama_model * model) {
|
||||
return model->n_bytes;
|
||||
}
|
||||
|
||||
uint64_t llama_model_n_params(const struct llama_model * model) {
|
||||
return model->n_elements;
|
||||
}
|
||||
|
||||
bool llama_model_has_encoder(const struct llama_model * model) {
|
||||
switch (model->arch) {
|
||||
case LLM_ARCH_T5: return true;
|
||||
case LLM_ARCH_T5ENCODER: return true;
|
||||
default: return false;
|
||||
}
|
||||
}
|
||||
|
||||
bool llama_model_has_decoder(const struct llama_model * model) {
|
||||
switch (model->arch) {
|
||||
case LLM_ARCH_T5ENCODER: return false;
|
||||
default: return true;
|
||||
}
|
||||
}
|
||||
|
||||
llama_token llama_model_decoder_start_token(const struct llama_model * model) {
|
||||
return model->hparams.dec_start_token_id;
|
||||
}
|
||||
|
||||
bool llama_model_is_recurrent(const struct llama_model * model) {
|
||||
switch (model->arch) {
|
||||
case LLM_ARCH_MAMBA: return true;
|
||||
case LLM_ARCH_RWKV6: return true;
|
||||
default: return false;
|
||||
}
|
||||
}
|
||||
|
380
src/llama-model.h
Normal file
380
src/llama-model.h
Normal file
@ -0,0 +1,380 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama.h"
|
||||
#include "llama-arch.h"
|
||||
#include "llama-hparams.h"
|
||||
#include "llama-vocab.h"
|
||||
#include "llama-mmap.h"
|
||||
|
||||
#include "ggml-cpp.h"
|
||||
|
||||
#include <vector>
|
||||
|
||||
// available models
|
||||
// TODO: this enum does not follow the enum naming convention
|
||||
enum llm_type {
|
||||
MODEL_UNKNOWN,
|
||||
MODEL_14M,
|
||||
MODEL_17M,
|
||||
MODEL_22M,
|
||||
MODEL_33M,
|
||||
MODEL_60M,
|
||||
MODEL_70M,
|
||||
MODEL_80M,
|
||||
MODEL_109M,
|
||||
MODEL_137M,
|
||||
MODEL_160M,
|
||||
MODEL_220M,
|
||||
MODEL_250M,
|
||||
MODEL_270M,
|
||||
MODEL_335M,
|
||||
MODEL_410M,
|
||||
MODEL_450M,
|
||||
MODEL_770M,
|
||||
MODEL_780M,
|
||||
MODEL_0_5B,
|
||||
MODEL_1B,
|
||||
MODEL_1_3B,
|
||||
MODEL_1_4B,
|
||||
MODEL_1_5B,
|
||||
MODEL_1_6B,
|
||||
MODEL_2B,
|
||||
MODEL_2_8B,
|
||||
MODEL_3B,
|
||||
MODEL_4B,
|
||||
MODEL_6B,
|
||||
MODEL_6_9B,
|
||||
MODEL_7B,
|
||||
MODEL_8B,
|
||||
MODEL_9B,
|
||||
MODEL_11B,
|
||||
MODEL_12B,
|
||||
MODEL_13B,
|
||||
MODEL_14B,
|
||||
MODEL_15B,
|
||||
MODEL_16B,
|
||||
MODEL_20B,
|
||||
MODEL_30B,
|
||||
MODEL_32B,
|
||||
MODEL_34B,
|
||||
MODEL_35B,
|
||||
MODEL_40B,
|
||||
MODEL_65B,
|
||||
MODEL_70B,
|
||||
MODEL_236B,
|
||||
MODEL_314B,
|
||||
MODEL_SMALL,
|
||||
MODEL_MEDIUM,
|
||||
MODEL_LARGE,
|
||||
MODEL_XL,
|
||||
MODEL_A1_7B,
|
||||
MODEL_A2_7B,
|
||||
MODEL_8x7B,
|
||||
MODEL_8x22B,
|
||||
MODEL_16x12B,
|
||||
MODEL_10B_128x3_66B,
|
||||
MODEL_57B_A14B,
|
||||
MODEL_27B,
|
||||
};
|
||||
|
||||
struct llama_layer_posnet {
|
||||
// resnet
|
||||
struct ggml_tensor * norm1 = nullptr;
|
||||
struct ggml_tensor * norm1_b = nullptr;
|
||||
|
||||
struct ggml_tensor * conv1 = nullptr;
|
||||
struct ggml_tensor * conv1_b = nullptr;
|
||||
|
||||
struct ggml_tensor * norm2 = nullptr;
|
||||
struct ggml_tensor * norm2_b = nullptr;
|
||||
|
||||
struct ggml_tensor * conv2 = nullptr;
|
||||
struct ggml_tensor * conv2_b = nullptr;
|
||||
|
||||
// attention
|
||||
struct ggml_tensor * attn_norm = nullptr;
|
||||
struct ggml_tensor * attn_norm_b = nullptr;
|
||||
|
||||
struct ggml_tensor * attn_q = nullptr;
|
||||
struct ggml_tensor * attn_q_b = nullptr;
|
||||
|
||||
struct ggml_tensor * attn_k = nullptr;
|
||||
struct ggml_tensor * attn_k_b = nullptr;
|
||||
|
||||
struct ggml_tensor * attn_v = nullptr;
|
||||
struct ggml_tensor * attn_v_b = nullptr;
|
||||
|
||||
struct ggml_tensor * attn_o = nullptr;
|
||||
struct ggml_tensor * attn_o_b = nullptr;
|
||||
|
||||
// normalize
|
||||
struct ggml_tensor * norm = nullptr;
|
||||
struct ggml_tensor * norm_b = nullptr;
|
||||
};
|
||||
|
||||
struct llama_layer_convnext {
|
||||
struct ggml_tensor * dw = nullptr;
|
||||
struct ggml_tensor * dw_b = nullptr;
|
||||
|
||||
struct ggml_tensor * norm = nullptr;
|
||||
struct ggml_tensor * norm_b = nullptr;
|
||||
|
||||
struct ggml_tensor * pw1 = nullptr;
|
||||
struct ggml_tensor * pw1_b = nullptr;
|
||||
|
||||
struct ggml_tensor * pw2 = nullptr;
|
||||
struct ggml_tensor * pw2_b = nullptr;
|
||||
|
||||
struct ggml_tensor * gamma = nullptr;
|
||||
};
|
||||
|
||||
struct llama_layer {
|
||||
// normalization
|
||||
struct ggml_tensor * attn_norm = nullptr;
|
||||
struct ggml_tensor * attn_norm_b = nullptr;
|
||||
struct ggml_tensor * attn_norm_2 = nullptr;
|
||||
struct ggml_tensor * attn_norm_2_b = nullptr;
|
||||
struct ggml_tensor * attn_q_norm = nullptr;
|
||||
struct ggml_tensor * attn_q_norm_b = nullptr;
|
||||
struct ggml_tensor * attn_k_norm = nullptr;
|
||||
struct ggml_tensor * attn_k_norm_b = nullptr;
|
||||
struct ggml_tensor * attn_out_norm = nullptr;
|
||||
struct ggml_tensor * attn_out_norm_b = nullptr;
|
||||
struct ggml_tensor * attn_q_a_norm = nullptr;
|
||||
struct ggml_tensor * attn_kv_a_norm = nullptr;
|
||||
struct ggml_tensor * attn_sub_norm = nullptr;
|
||||
struct ggml_tensor * attn_post_norm = nullptr;
|
||||
struct ggml_tensor * ffn_sub_norm = nullptr;
|
||||
struct ggml_tensor * attn_norm_cross = nullptr;
|
||||
struct ggml_tensor * attn_norm_enc = nullptr;
|
||||
|
||||
// attention
|
||||
struct ggml_tensor * wq = nullptr;
|
||||
struct ggml_tensor * wk = nullptr;
|
||||
struct ggml_tensor * wv = nullptr;
|
||||
struct ggml_tensor * wo = nullptr;
|
||||
struct ggml_tensor * wqkv = nullptr;
|
||||
struct ggml_tensor * wq_a = nullptr;
|
||||
struct ggml_tensor * wq_b = nullptr;
|
||||
struct ggml_tensor * wkv_a_mqa = nullptr;
|
||||
struct ggml_tensor * wkv_b = nullptr;
|
||||
struct ggml_tensor * wq_cross = nullptr;
|
||||
struct ggml_tensor * wk_cross = nullptr;
|
||||
struct ggml_tensor * wv_cross = nullptr;
|
||||
struct ggml_tensor * wo_cross = nullptr;
|
||||
struct ggml_tensor * wq_enc = nullptr;
|
||||
struct ggml_tensor * wk_enc = nullptr;
|
||||
struct ggml_tensor * wv_enc = nullptr;
|
||||
struct ggml_tensor * wo_enc = nullptr;
|
||||
|
||||
// attention bias
|
||||
struct ggml_tensor * bq = nullptr;
|
||||
struct ggml_tensor * bk = nullptr;
|
||||
struct ggml_tensor * bv = nullptr;
|
||||
struct ggml_tensor * bo = nullptr;
|
||||
struct ggml_tensor * bqkv = nullptr;
|
||||
|
||||
// relative position bias
|
||||
struct ggml_tensor * attn_rel_b = nullptr;
|
||||
struct ggml_tensor * attn_rel_b_enc = nullptr;
|
||||
struct ggml_tensor * attn_rel_b_cross = nullptr;
|
||||
|
||||
// normalization
|
||||
struct ggml_tensor * ffn_norm = nullptr;
|
||||
struct ggml_tensor * ffn_norm_b = nullptr;
|
||||
struct ggml_tensor * ffn_post_norm = nullptr;
|
||||
struct ggml_tensor * layer_out_norm = nullptr;
|
||||
struct ggml_tensor * layer_out_norm_b = nullptr;
|
||||
struct ggml_tensor * ffn_norm_exps = nullptr;
|
||||
struct ggml_tensor * ffn_norm_enc = nullptr;
|
||||
|
||||
// ff
|
||||
struct ggml_tensor * ffn_gate = nullptr; // w1
|
||||
struct ggml_tensor * ffn_down = nullptr; // w2
|
||||
struct ggml_tensor * ffn_up = nullptr; // w3
|
||||
struct ggml_tensor * ffn_gate_enc = nullptr;
|
||||
struct ggml_tensor * ffn_down_enc = nullptr;
|
||||
struct ggml_tensor * ffn_up_enc = nullptr;
|
||||
|
||||
// ff MoE
|
||||
struct ggml_tensor * ffn_gate_inp = nullptr;
|
||||
struct ggml_tensor * ffn_gate_exps = nullptr;
|
||||
struct ggml_tensor * ffn_down_exps = nullptr;
|
||||
struct ggml_tensor * ffn_up_exps = nullptr;
|
||||
|
||||
// ff shared expert (shexp)
|
||||
struct ggml_tensor * ffn_gate_inp_shexp = nullptr;
|
||||
struct ggml_tensor * ffn_gate_shexp = nullptr;
|
||||
struct ggml_tensor * ffn_down_shexp = nullptr;
|
||||
struct ggml_tensor * ffn_up_shexp = nullptr;
|
||||
|
||||
// ff bias
|
||||
struct ggml_tensor * ffn_gate_b = nullptr;
|
||||
struct ggml_tensor * ffn_down_b = nullptr; // b2
|
||||
struct ggml_tensor * ffn_up_b = nullptr; // b3
|
||||
struct ggml_tensor * ffn_act = nullptr;
|
||||
|
||||
// mamba proj
|
||||
struct ggml_tensor * ssm_in = nullptr;
|
||||
struct ggml_tensor * ssm_x = nullptr;
|
||||
struct ggml_tensor * ssm_dt = nullptr;
|
||||
struct ggml_tensor * ssm_out = nullptr;
|
||||
|
||||
// mamba
|
||||
struct ggml_tensor * ssm_conv1d = nullptr;
|
||||
struct ggml_tensor * ssm_a = nullptr;
|
||||
struct ggml_tensor * ssm_d = nullptr;
|
||||
|
||||
// mamba bias
|
||||
struct ggml_tensor * ssm_conv1d_b = nullptr;
|
||||
struct ggml_tensor * ssm_dt_b = nullptr;
|
||||
|
||||
// rwkv
|
||||
struct ggml_tensor * time_mix_w1 = nullptr;
|
||||
struct ggml_tensor * time_mix_w2 = nullptr;
|
||||
struct ggml_tensor * time_mix_lerp_x = nullptr;
|
||||
struct ggml_tensor * time_mix_lerp_w = nullptr;
|
||||
struct ggml_tensor * time_mix_lerp_k = nullptr;
|
||||
struct ggml_tensor * time_mix_lerp_v = nullptr;
|
||||
struct ggml_tensor * time_mix_lerp_r = nullptr;
|
||||
struct ggml_tensor * time_mix_lerp_g = nullptr;
|
||||
|
||||
struct ggml_tensor * time_mix_first = nullptr;
|
||||
struct ggml_tensor * time_mix_decay = nullptr;
|
||||
struct ggml_tensor * time_mix_decay_w1 = nullptr;
|
||||
struct ggml_tensor * time_mix_decay_w2 = nullptr;
|
||||
struct ggml_tensor * time_mix_key = nullptr;
|
||||
struct ggml_tensor * time_mix_value = nullptr;
|
||||
struct ggml_tensor * time_mix_receptance = nullptr;
|
||||
struct ggml_tensor * time_mix_gate = nullptr;
|
||||
|
||||
struct ggml_tensor * time_mix_ln = nullptr;
|
||||
struct ggml_tensor * time_mix_ln_b = nullptr;
|
||||
struct ggml_tensor * time_mix_output = nullptr;
|
||||
|
||||
struct ggml_tensor * channel_mix_lerp_k = nullptr;
|
||||
struct ggml_tensor * channel_mix_lerp_r = nullptr;
|
||||
|
||||
struct ggml_tensor * channel_mix_key = nullptr;
|
||||
struct ggml_tensor * channel_mix_receptance = nullptr;
|
||||
struct ggml_tensor * channel_mix_value = nullptr;
|
||||
|
||||
// long rope factors
|
||||
struct ggml_tensor * rope_long = nullptr;
|
||||
struct ggml_tensor * rope_short = nullptr;
|
||||
struct ggml_tensor * rope_freqs = nullptr;
|
||||
|
||||
// bitnet scale
|
||||
struct ggml_tensor * wq_scale = nullptr;
|
||||
struct ggml_tensor * wk_scale = nullptr;
|
||||
struct ggml_tensor * wv_scale = nullptr;
|
||||
struct ggml_tensor * wo_scale = nullptr;
|
||||
struct ggml_tensor * ffn_gate_scale = nullptr;
|
||||
struct ggml_tensor * ffn_up_scale = nullptr;
|
||||
struct ggml_tensor * ffn_down_scale = nullptr;
|
||||
|
||||
struct llama_layer_posnet posnet;
|
||||
|
||||
struct llama_layer_convnext convnext;
|
||||
};
|
||||
|
||||
struct llama_model {
|
||||
llm_type type = MODEL_UNKNOWN;
|
||||
llm_arch arch = LLM_ARCH_UNKNOWN;
|
||||
|
||||
llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
|
||||
|
||||
std::string name = "n/a";
|
||||
|
||||
llama_hparams hparams = {};
|
||||
llama_vocab vocab;
|
||||
|
||||
struct ggml_tensor * tok_embd = nullptr;
|
||||
struct ggml_tensor * type_embd = nullptr;
|
||||
struct ggml_tensor * pos_embd = nullptr;
|
||||
struct ggml_tensor * tok_norm = nullptr;
|
||||
struct ggml_tensor * tok_norm_b = nullptr;
|
||||
|
||||
struct ggml_tensor * output_norm = nullptr;
|
||||
struct ggml_tensor * output_norm_b = nullptr;
|
||||
struct ggml_tensor * output = nullptr;
|
||||
struct ggml_tensor * output_b = nullptr;
|
||||
struct ggml_tensor * output_norm_enc = nullptr;
|
||||
|
||||
// classifier
|
||||
struct ggml_tensor * cls = nullptr;
|
||||
struct ggml_tensor * cls_b = nullptr;
|
||||
struct ggml_tensor * cls_out = nullptr;
|
||||
struct ggml_tensor * cls_out_b = nullptr;
|
||||
|
||||
struct ggml_tensor * conv1d = nullptr;
|
||||
struct ggml_tensor * conv1d_b = nullptr;
|
||||
|
||||
std::vector<llama_layer> layers;
|
||||
|
||||
// gguf metadata
|
||||
std::unordered_map<std::string, std::string> gguf_kv;
|
||||
|
||||
llama_split_mode split_mode;
|
||||
int main_gpu;
|
||||
int n_gpu_layers;
|
||||
|
||||
std::vector<std::string> rpc_servers;
|
||||
|
||||
// list of devices used in this model
|
||||
std::vector<ggml_backend_dev_t> devices;
|
||||
|
||||
|
||||
// lists of buffer types used for each layer
|
||||
using buft_list_t = std::vector<std::pair<ggml_backend_dev_t, ggml_backend_buffer_type_t>>;
|
||||
buft_list_t cpu_buft_list;
|
||||
std::map<ggml_backend_dev_t, buft_list_t> gpu_buft_list;
|
||||
|
||||
struct layer_dev {
|
||||
ggml_backend_dev_t dev;
|
||||
buft_list_t * buft_list;
|
||||
};
|
||||
|
||||
layer_dev dev_input = {};
|
||||
layer_dev dev_output = {};
|
||||
std::vector<layer_dev> dev_layer;
|
||||
|
||||
// contexts where the model tensors metadata is stored
|
||||
std::vector<ggml_context_ptr> ctxs;
|
||||
|
||||
// the model memory buffers for the tensor data
|
||||
std::vector<ggml_backend_buffer_ptr> bufs;
|
||||
|
||||
// model memory mapped files
|
||||
llama_mmaps mappings;
|
||||
|
||||
// objects representing data potentially being locked in memory
|
||||
llama_mlocks mlock_bufs;
|
||||
llama_mlocks mlock_mmaps;
|
||||
|
||||
// for quantize-stats only
|
||||
std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
|
||||
|
||||
int64_t t_load_us = 0;
|
||||
int64_t t_start_us = 0;
|
||||
|
||||
// total number of parameters in the model
|
||||
uint64_t n_elements = 0;
|
||||
|
||||
// total size of all the tensors in the model in bytes
|
||||
size_t n_bytes = 0;
|
||||
};
|
||||
|
||||
const char * llm_type_name(llm_type type);
|
||||
|
||||
std::string llama_model_arch_name (const llama_model & model);
|
||||
std::string llama_model_type_name (const llama_model & model);
|
||||
std::string llama_model_ftype_name(const llama_model & model);
|
||||
|
||||
// used by llama_adapter_cvec
|
||||
ggml_backend_buffer_type_t llama_model_select_buft(const llama_model & model, int il);
|
||||
|
||||
// used by llama_adapter_lora
|
||||
struct ggml_tensor * llama_model_get_tensor(const struct llama_model & model, const char * name);
|
||||
|
||||
size_t llama_model_max_nodes(const llama_model & model);
|
@ -1,5 +1,6 @@
|
||||
#include "llama-sampling.h"
|
||||
|
||||
#include "llama-impl.h"
|
||||
#include "llama-vocab.h"
|
||||
#include "llama-grammar.h"
|
||||
|
||||
@ -14,6 +15,117 @@
|
||||
#include <numeric>
|
||||
#include <random>
|
||||
#include <unordered_map>
|
||||
#include <stdexcept>
|
||||
|
||||
// the ring buffer works similarly to std::deque, but with a fixed capacity
|
||||
template<typename T>
|
||||
struct ring_buffer {
|
||||
ring_buffer(size_t cap) : capacity(cap), data(cap) {}
|
||||
|
||||
T & front() {
|
||||
if (sz == 0) {
|
||||
throw std::runtime_error("ring buffer is empty");
|
||||
}
|
||||
return data[first];
|
||||
}
|
||||
|
||||
const T & front() const {
|
||||
if (sz == 0) {
|
||||
throw std::runtime_error("ring buffer is empty");
|
||||
}
|
||||
return data[first];
|
||||
}
|
||||
|
||||
T & back() {
|
||||
if (sz == 0) {
|
||||
throw std::runtime_error("ring buffer is empty");
|
||||
}
|
||||
return data[pos];
|
||||
}
|
||||
|
||||
const T & back() const {
|
||||
if (sz == 0) {
|
||||
throw std::runtime_error("ring buffer is empty");
|
||||
}
|
||||
return data[pos];
|
||||
}
|
||||
|
||||
void push_back(const T & value) {
|
||||
if (capacity == 0) {
|
||||
throw std::runtime_error("ring buffer: capacity is zero");
|
||||
}
|
||||
|
||||
if (sz == capacity) {
|
||||
// advance the start when buffer is full
|
||||
first = (first + 1) % capacity;
|
||||
} else {
|
||||
sz++;
|
||||
}
|
||||
data[pos] = value;
|
||||
pos = (pos + 1) % capacity;
|
||||
}
|
||||
|
||||
T pop_front() {
|
||||
if (sz == 0) {
|
||||
throw std::runtime_error("ring buffer is empty");
|
||||
}
|
||||
T value = data[first];
|
||||
first = (first + 1) % capacity;
|
||||
sz--;
|
||||
return value;
|
||||
}
|
||||
|
||||
//T & operator[](size_t i) {
|
||||
// if (i >= sz) {
|
||||
// throw std::runtime_error("ring buffer: index out of bounds");
|
||||
// }
|
||||
// return data[(first + i) % capacity];
|
||||
//}
|
||||
|
||||
//const T & at(size_t i) const {
|
||||
// if (i >= sz) {
|
||||
// throw std::runtime_error("ring buffer: index out of bounds");
|
||||
// }
|
||||
// return data[(first + i) % capacity];
|
||||
//}
|
||||
|
||||
const T & rat(size_t i) const {
|
||||
if (i >= sz) {
|
||||
throw std::runtime_error("ring buffer: index out of bounds");
|
||||
}
|
||||
return data[(first + sz - i - 1) % capacity];
|
||||
}
|
||||
|
||||
std::vector<T> to_vector() const {
|
||||
std::vector<T> result;
|
||||
result.reserve(sz);
|
||||
for (size_t i = 0; i < sz; i++) {
|
||||
result.push_back(data[(first + i) % capacity]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
void clear() {
|
||||
// here only reset the status of the buffer
|
||||
sz = 0;
|
||||
first = 0;
|
||||
pos = 0;
|
||||
}
|
||||
|
||||
bool empty() const {
|
||||
return sz == 0;
|
||||
}
|
||||
|
||||
size_t size() const {
|
||||
return sz;
|
||||
}
|
||||
|
||||
size_t capacity = 0;
|
||||
size_t sz = 0;
|
||||
size_t first = 0;
|
||||
size_t pos = 0;
|
||||
std::vector<T> data;
|
||||
};
|
||||
|
||||
static int llama_sample_dist(llama_token_data_array * cur_p, std::mt19937 & rng) {
|
||||
// iterator for the probabilities
|
||||
|
@ -1,5 +1,7 @@
|
||||
#include "llama-vocab.h"
|
||||
|
||||
#include "llama-impl.h"
|
||||
|
||||
#include "unicode.h"
|
||||
|
||||
#include <algorithm>
|
||||
@ -16,22 +18,6 @@
|
||||
// helpers
|
||||
//
|
||||
|
||||
LLAMA_ATTRIBUTE_FORMAT(1, 2)
|
||||
static std::string format(const char * fmt, ...) {
|
||||
va_list ap;
|
||||
va_list ap2;
|
||||
va_start(ap, fmt);
|
||||
va_copy(ap2, ap);
|
||||
int size = vsnprintf(NULL, 0, fmt, ap);
|
||||
GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
|
||||
std::vector<char> buf(size + 1);
|
||||
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
|
||||
GGML_ASSERT(size2 == size);
|
||||
va_end(ap2);
|
||||
va_end(ap);
|
||||
return std::string(buf.data(), size);
|
||||
}
|
||||
|
||||
struct naive_trie {
|
||||
naive_trie() : has_value(false), value(0) {
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama-impl.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
@ -8,6 +8,18 @@
|
||||
#include <map>
|
||||
#include <set>
|
||||
|
||||
static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
|
||||
switch (type) {
|
||||
case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
|
||||
case LLAMA_VOCAB_TYPE_SPM: return "SPM";
|
||||
case LLAMA_VOCAB_TYPE_BPE: return "BPE";
|
||||
case LLAMA_VOCAB_TYPE_WPM: return "WPM";
|
||||
case LLAMA_VOCAB_TYPE_UGM: return "UGM";
|
||||
case LLAMA_VOCAB_TYPE_RWKV: return "RWKV";
|
||||
default: return "unknown";
|
||||
}
|
||||
}
|
||||
|
||||
struct llm_tokenizer;
|
||||
|
||||
struct llama_vocab {
|
||||
|
7097
src/llama.cpp
7097
src/llama.cpp
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user