mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-29 04:44:34 +00:00
convert-llama-h5-to-gguf.py : accumulate kv / ti + special tokens
This commit is contained in:
parent
c3a65c4bbe
commit
e1e9b28547
@ -11,8 +11,10 @@ from transformers import AutoModelForCausalLM
|
|||||||
from sentencepiece import SentencePieceProcessor
|
from sentencepiece import SentencePieceProcessor
|
||||||
|
|
||||||
|
|
||||||
NDArray = np.ndarray[Any, Any]
|
#NDArray = np.ndarray[Any, Any]
|
||||||
|
|
||||||
|
# compatible with python < 3.9
|
||||||
|
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
|
||||||
|
|
||||||
def permute(weights: NDArray, n_head: int) -> NDArray:
|
def permute(weights: NDArray, n_head: int) -> NDArray:
|
||||||
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||||||
@ -57,51 +59,36 @@ if hparams["architectures"][0] != "LlamaForCausalLM":
|
|||||||
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
|
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
|
||||||
list_vars = model.state_dict()
|
list_vars = model.state_dict()
|
||||||
|
|
||||||
# count tensors to be converted
|
|
||||||
tensor_count = 0
|
|
||||||
for name in list_vars.keys():
|
|
||||||
# we don't need these
|
|
||||||
if name.endswith(".rotary_emb.inv_freq"):
|
|
||||||
continue
|
|
||||||
tensor_count += 1
|
|
||||||
|
|
||||||
gguf_writer = gguf.GGUFWriter.open(fname_out)
|
gguf_writer = gguf.GGUFWriter.open(fname_out)
|
||||||
|
|
||||||
# This must be changed when adding/deleting kv
|
|
||||||
kv_count = 13
|
|
||||||
|
|
||||||
print("tensors " + str(tensor_count) + " kv " + str(kv_count))
|
print("gguf: add key-values, metadata")
|
||||||
|
|
||||||
print("write gguf header")
|
|
||||||
|
|
||||||
gguf_writer.write_header(tensor_count, kv_count)
|
|
||||||
|
|
||||||
print("write gguf hparams")
|
|
||||||
|
|
||||||
llm_arch = "llama"
|
llm_arch = "llama"
|
||||||
|
|
||||||
gguf_writer.write_name("llama2-7b")
|
gguf_writer.add_name("llama2-7b")
|
||||||
gguf_writer.write_description("gguf test model")
|
gguf_writer.add_description("gguf test model")
|
||||||
gguf_writer.write_architecture(llm_arch)
|
gguf_writer.add_architecture(llm_arch)
|
||||||
gguf_writer.write_context_length(llm_arch, hparams["max_position_embeddings"])
|
gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"])
|
||||||
gguf_writer.write_embedding_length(llm_arch, hparams["hidden_size"])
|
gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"])
|
||||||
gguf_writer.write_layer_count(llm_arch, hparams["num_hidden_layers"])
|
gguf_writer.add_layer_count(llm_arch, hparams["num_hidden_layers"])
|
||||||
gguf_writer.write_feed_forward_length(llm_arch, hparams["intermediate_size"])
|
gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"])
|
||||||
gguf_writer.write_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"])
|
gguf_writer.add_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"])
|
||||||
gguf_writer.write_head_count(llm_arch, hparams["num_attention_heads"])
|
gguf_writer.add_head_count(llm_arch, hparams["num_attention_heads"])
|
||||||
gguf_writer.write_layer_norm_rms_eps(llm_arch, hparams["rms_norm_eps"])
|
gguf_writer.add_layer_norm_rms_eps(llm_arch, hparams["rms_norm_eps"])
|
||||||
|
|
||||||
|
|
||||||
# TOKENIZATION
|
# TOKENIZATION
|
||||||
|
|
||||||
print("write gguf tokenizer")
|
print("gguf: add key-values, tokenizer")
|
||||||
|
|
||||||
tokens: List[str] = []
|
tokens: List[str] = []
|
||||||
scores: List[float] = []
|
scores: List[float] = []
|
||||||
|
|
||||||
if Path(dir_model + "/tokenizer.model").is_file():
|
if Path(dir_model + "/tokenizer.model").is_file():
|
||||||
# vocab type sentencepiece
|
# vocab type sentencepiece
|
||||||
print("Adding sentencepiece tokenizer vocab.")
|
print("gguf: adding sentencepiece tokenizer vocab")
|
||||||
|
|
||||||
tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model")
|
tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model")
|
||||||
|
|
||||||
for i in range(tokenizer.vocab_size()):
|
for i in range(tokenizer.vocab_size()):
|
||||||
@ -123,14 +110,52 @@ if Path(dir_model + "/tokenizer.model").is_file():
|
|||||||
tokens.append(text)
|
tokens.append(text)
|
||||||
scores.append(score)
|
scores.append(score)
|
||||||
|
|
||||||
gguf_writer.write_tokenizer_model("llama")
|
gguf_writer.add_tokenizer_model("llama")
|
||||||
gguf_writer.write_token_list(tokens)
|
gguf_writer.add_token_list(tokens)
|
||||||
gguf_writer.write_token_scores(scores)
|
gguf_writer.add_token_scores(scores)
|
||||||
|
|
||||||
|
if Path(dir_model + "/tokenizer.json").is_file():
|
||||||
|
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
|
||||||
|
tokenizer = json.load(f)
|
||||||
|
|
||||||
|
if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file():
|
||||||
|
print("gguf: adding special token ids")
|
||||||
|
|
||||||
|
with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
|
||||||
|
tokenizer_config = json.load(f)
|
||||||
|
|
||||||
|
# find special token ids
|
||||||
|
|
||||||
|
if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] != None:
|
||||||
|
for key in tokenizer["added_tokens"]:
|
||||||
|
if key["content"] == tokenizer_config["bos_token"] or key["content"] == tokenizer_config["bos_token"]["content"]:
|
||||||
|
gguf_writer.add_bos_token_id(key["id"])
|
||||||
|
|
||||||
|
if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] != None:
|
||||||
|
for key in tokenizer["added_tokens"]:
|
||||||
|
if key["content"] == tokenizer_config["eos_token"] or key["content"] == tokenizer_config["eos_token"]["content"]:
|
||||||
|
gguf_writer.add_eos_token_id(key["id"])
|
||||||
|
|
||||||
|
if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] != None:
|
||||||
|
for key in tokenizer["added_tokens"]:
|
||||||
|
if key["content"] == tokenizer_config["unk_token"] or key["content"] == tokenizer_config["unk_token"]["content"]:
|
||||||
|
gguf_writer.add_unk_token_id(key["id"])
|
||||||
|
|
||||||
|
if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] != None:
|
||||||
|
for key in tokenizer["added_tokens"]:
|
||||||
|
if key["content"] == tokenizer_config["sep_token"] or key["content"] == tokenizer_config["sep_token"]["content"]:
|
||||||
|
gguf_writer.add_sep_token_id(key["id"])
|
||||||
|
|
||||||
|
if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] != None:
|
||||||
|
for key in tokenizer["added_tokens"]:
|
||||||
|
if key["content"] == tokenizer_config["pad_token"] or key["content"] == tokenizer_config["pad_token"]["content"]:
|
||||||
|
gguf_writer.add_pad_token_id(key["id"])
|
||||||
|
|
||||||
|
|
||||||
# TENSORS
|
# TENSORS
|
||||||
|
|
||||||
# tensor info
|
# tensor info
|
||||||
print("write gguf tensor info")
|
print("gguf: add gguf tensor info")
|
||||||
|
|
||||||
for name in list_vars.keys():
|
for name in list_vars.keys():
|
||||||
data = list_vars[name].squeeze().numpy()
|
data = list_vars[name].squeeze().numpy()
|
||||||
@ -197,24 +222,31 @@ for name in list_vars.keys():
|
|||||||
data = data.astype(np.float32)
|
data = data.astype(np.float32)
|
||||||
ftype_cur = 0
|
ftype_cur = 0
|
||||||
|
|
||||||
gguf_writer.write_tensor_info(name, data)
|
gguf_writer.add_tensor_info(name, data)
|
||||||
|
|
||||||
|
|
||||||
|
print("gguf: write header")
|
||||||
|
gguf_writer.write_header_to_file()
|
||||||
|
print("gguf: write key-values")
|
||||||
|
gguf_writer.write_kv_data_to_file()
|
||||||
|
print("gguf: write tensor info")
|
||||||
|
gguf_writer.write_ti_data_to_file()
|
||||||
|
|
||||||
# tensor data
|
# tensor data
|
||||||
print("write gguf tensor data")
|
print("gguf: write tensor data")
|
||||||
|
|
||||||
for name in list_vars.keys():
|
for name in list_vars.keys():
|
||||||
data = list_vars[name].squeeze().numpy()
|
data = list_vars[name].squeeze().numpy()
|
||||||
print("Process tensor: " + name + " with shape: ", data.shape)
|
# print("Process tensor: " + name + " with shape: ", data.shape)
|
||||||
|
|
||||||
# we don't need these
|
# we don't need these
|
||||||
if name.endswith(".rotary_emb.inv_freq"):
|
if name.endswith(".rotary_emb.inv_freq"):
|
||||||
print(" Skip tensor: " + name)
|
# print(" Skip tensor: " + name)
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# permute these
|
# permute these
|
||||||
if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
|
if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
|
||||||
print(" Permute tensor: " + name)
|
# print(" Permute tensor: " + name)
|
||||||
data = permute(data, hparams["num_attention_heads"])
|
data = permute(data, hparams["num_attention_heads"])
|
||||||
|
|
||||||
n_dims = len(data.shape)
|
n_dims = len(data.shape)
|
||||||
@ -223,23 +255,23 @@ for name in list_vars.keys():
|
|||||||
ftype_cur = 0
|
ftype_cur = 0
|
||||||
if ftype != 0:
|
if ftype != 0:
|
||||||
if name.endswith(".weight") and n_dims == 2:
|
if name.endswith(".weight") and n_dims == 2:
|
||||||
print(" Converting to float16")
|
# print(" Converting to float16")
|
||||||
data = data.astype(np.float16)
|
data = data.astype(np.float16)
|
||||||
ftype_cur = 1
|
ftype_cur = 1
|
||||||
else:
|
else:
|
||||||
print(" Converting to float32")
|
# print(" Converting to float32")
|
||||||
data = data.astype(np.float32)
|
data = data.astype(np.float32)
|
||||||
ftype_cur = 0
|
ftype_cur = 0
|
||||||
else:
|
else:
|
||||||
if data.dtype != np.float32:
|
if data.dtype != np.float32:
|
||||||
print(" Converting to float32")
|
# print(" Converting to float32")
|
||||||
data = data.astype(np.float32)
|
data = data.astype(np.float32)
|
||||||
ftype_cur = 0
|
ftype_cur = 0
|
||||||
|
|
||||||
gguf_writer.write_tensor(data)
|
gguf_writer.write_tensor_to_file(data)
|
||||||
|
|
||||||
gguf_writer.close()
|
gguf_writer.close()
|
||||||
|
|
||||||
|
|
||||||
print("Done. Output file: " + fname_out)
|
print("gguf: conversion done, output file: " + fname_out)
|
||||||
print("")
|
print("")
|
||||||
|
Loading…
Reference in New Issue
Block a user