Merge branch 'master' into gg/flash-attn

This commit is contained in:
Georgi Gerganov 2024-03-04 20:42:48 +02:00
commit e307882c34
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735
17 changed files with 995 additions and 272 deletions

View File

@ -19,7 +19,12 @@ if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/../.git")
endif() endif()
endif() endif()
if(EXISTS "${GIT_DIR}/index")
set(GIT_INDEX "${GIT_DIR}/index") set(GIT_INDEX "${GIT_DIR}/index")
else()
message(WARNING "Git index not found in git repository.")
set(GIT_INDEX "")
endif()
else() else()
message(WARNING "Git repository not found; to enable automatic generation of build info, make sure Git is installed and the project is a Git repository.") message(WARNING "Git repository not found; to enable automatic generation of build info, make sure Git is installed and the project is a Git repository.")
set(GIT_INDEX "") set(GIT_INDEX "")

View File

@ -513,12 +513,6 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
break; break;
} }
params.n_sequences = std::stoi(argv[i]); params.n_sequences = std::stoi(argv[i]);
} else if (arg == "--p-accept" || arg == "-pa") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.p_accept = std::stof(argv[i]);
} else if (arg == "--p-split" || arg == "-ps") { } else if (arg == "--p-split" || arg == "-ps") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
@ -1044,7 +1038,6 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks); printf(" --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks);
printf(" -np N, --parallel N number of parallel sequences to decode (default: %d)\n", params.n_parallel); printf(" -np N, --parallel N number of parallel sequences to decode (default: %d)\n", params.n_parallel);
printf(" -ns N, --sequences N number of sequences to decode (default: %d)\n", params.n_sequences); printf(" -ns N, --sequences N number of sequences to decode (default: %d)\n", params.n_sequences);
printf(" -pa N, --p-accept N speculative decoding accept probability (default: %.1f)\n", (double)params.p_accept);
printf(" -ps N, --p-split N speculative decoding split probability (default: %.1f)\n", (double)params.p_split); printf(" -ps N, --p-split N speculative decoding split probability (default: %.1f)\n", (double)params.p_split);
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n"); printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n"); printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n");

View File

@ -43,7 +43,7 @@ extern char const *LLAMA_BUILD_TARGET;
int32_t get_num_physical_cores(); int32_t get_num_physical_cores();
struct gpt_params { struct gpt_params {
uint32_t seed = -1; // RNG seed uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
int32_t n_threads = get_num_physical_cores(); int32_t n_threads = get_num_physical_cores();
int32_t n_threads_draft = -1; int32_t n_threads_draft = -1;
@ -53,11 +53,10 @@ struct gpt_params {
int32_t n_ctx = 512; // context size int32_t n_ctx = 512; // context size
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS) int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_draft = 8; // number of tokens to draft during speculative decoding int32_t n_draft = 5; // number of tokens to draft during speculative decoding
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited) int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
int32_t n_parallel = 1; // number of parallel sequences to decode int32_t n_parallel = 1; // number of parallel sequences to decode
int32_t n_sequences = 1; // number of sequences to decode int32_t n_sequences = 1; // number of sequences to decode
float p_accept = 0.5f; // speculative decoding accept probability
float p_split = 0.1f; // speculative decoding split probability float p_split = 0.1f; // speculative decoding split probability
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default) int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default) int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)

View File

@ -295,6 +295,77 @@ static llama_token llama_sampling_sample_impl(
return id; return id;
} }
static llama_token_data_array llama_sample_probability_distribution_impl(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
const int idx) {
const llama_sampling_params & params = ctx_sampling->params;
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
const float penalty_repeat = params.penalty_repeat;
const float penalty_freq = params.penalty_freq;
const float penalty_present = params.penalty_present;
const bool penalize_nl = params.penalize_nl;
auto & prev = ctx_sampling->prev;
auto & cur = ctx_sampling->cur;
// Get a pointer to the logits
float * logits = llama_get_logits_ith(ctx_main, idx);
// Declare original_logits at the beginning of the function scope
std::vector<float> original_logits;
// apply params.logit_bias map
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
logits[it->first] += it->second;
}
if (ctx_cfg) {
float * logits_guidance = llama_get_logits_ith(ctx_cfg, idx);
llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale);
}
cur.clear();
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array cur_p = { cur.data(), cur.size(), false };
// apply penalties
const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
if (penalty_tokens_used_size) {
const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))];
llama_sample_repetition_penalties(ctx_main, &cur_p,
penalty_tokens.data() + penalty_tokens.size() - penalty_tokens_used_size,
penalty_tokens_used_size, penalty_repeat, penalty_freq, penalty_present);
if (!penalize_nl) {
for (size_t idx = 0; idx < cur_p.size; idx++) {
if (cur_p.data[idx].id == llama_token_nl(llama_get_model(ctx_main))) {
cur_p.data[idx].logit = nl_logit;
break;
}
}
}
}
// apply grammar checks
if (ctx_sampling->grammar != NULL) {
llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
}
llama_sample_softmax(ctx_main, &cur_p);
return cur_p;
}
llama_token llama_sampling_sample( llama_token llama_sampling_sample(
struct llama_sampling_context * ctx_sampling, struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main, struct llama_context * ctx_main,
@ -304,6 +375,14 @@ llama_token llama_sampling_sample(
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, false); return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, false);
} }
llama_token_data_array llama_sampling_probability_distribution(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
const int idx) {
return llama_sample_probability_distribution_impl(ctx_sampling,ctx_main, ctx_cfg, idx);
}
void llama_sampling_accept( void llama_sampling_accept(
struct llama_sampling_context * ctx_sampling, struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main, struct llama_context * ctx_main,

View File

@ -131,6 +131,13 @@ llama_token llama_sampling_sample(
struct llama_context * ctx_cfg, struct llama_context * ctx_cfg,
int idx = 0); int idx = 0);
// returns the probability that token of given id will be sampled
llama_token_data_array llama_sampling_probability_distribution(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
int idx = 0);
void llama_sampling_accept( void llama_sampling_accept(
struct llama_sampling_context * ctx_sampling, struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main, struct llama_context * ctx_main,

View File

@ -511,6 +511,14 @@ int main(int argc, char ** argv) {
std::vector<llama_token> embd; std::vector<llama_token> embd;
std::vector<llama_token> embd_guidance; std::vector<llama_token> embd_guidance;
// tokenized antiprompts
std::vector<std::vector<llama_token>> antiprompt_ids;
antiprompt_ids.reserve(params.antiprompt.size());
for (const std::string & antiprompt : params.antiprompt) {
antiprompt_ids.emplace_back(::llama_tokenize(ctx, antiprompt, false, true));
}
struct llama_sampling_context * ctx_sampling = llama_sampling_init(sparams); struct llama_sampling_context * ctx_sampling = llama_sampling_init(sparams);
while ((n_remain != 0 && !is_antiprompt) || params.interactive) { while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
@ -769,6 +777,18 @@ int main(int argc, char ** argv) {
} }
} }
// check for reverse prompt using special tokens
llama_token last_token = llama_sampling_last(ctx_sampling);
for (std::vector<llama_token> ids : antiprompt_ids) {
if (ids.size() == 1 && last_token == ids[0]) {
if (params.interactive) {
is_interacting = true;
}
is_antiprompt = true;
break;
}
}
if (is_antiprompt) { if (is_antiprompt) {
LOG("found antiprompt: %s\n", last_output.c_str()); LOG("found antiprompt: %s\n", last_output.c_str());
} }

View File

@ -413,7 +413,7 @@ struct llama_server_context
int res = llama_chat_apply_template(model, nullptr, chat, 1, true, buf.data(), buf.size()); int res = llama_chat_apply_template(model, nullptr, chat, 1, true, buf.data(), buf.size());
if (res < 0) { if (res < 0) {
LOG_ERROR("The chat template comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {}); LOG_ERROR("The chat template comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {});
sparams.chat_template = "<|im_start|>"; // llama_chat_apply_template only checks if <|im_start|> exist in the template sparams.chat_template = "chatml";
} }
} }

View File

@ -6,3 +6,4 @@ More info:
- https://github.com/ggerganov/llama.cpp/pull/2926 - https://github.com/ggerganov/llama.cpp/pull/2926
- https://github.com/ggerganov/llama.cpp/pull/3624 - https://github.com/ggerganov/llama.cpp/pull/3624
- https://github.com/ggerganov/llama.cpp/pull/5625

View File

@ -5,6 +5,7 @@
#include <cstdio> #include <cstdio>
#include <string> #include <string>
#include <vector> #include <vector>
#include <set>
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 100 #define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 100
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5 #define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
@ -18,6 +19,7 @@ struct seq_draft {
std::vector<int> i_batch_tgt; std::vector<int> i_batch_tgt;
std::vector<llama_token> tokens; std::vector<llama_token> tokens;
std::vector<std::vector<llama_token_data>> dists;
struct llama_sampling_context * ctx_sampling; struct llama_sampling_context * ctx_sampling;
}; };
@ -37,12 +39,15 @@ int main(int argc, char ** argv) {
// max number of parallel drafting sequences (i.e. tree branches) // max number of parallel drafting sequences (i.e. tree branches)
const int n_seq_dft = params.n_parallel; const int n_seq_dft = params.n_parallel;
// probability threshold for accepting a token from the draft model
const float p_accept = params.p_accept;
// probability threshold for splitting a draft branch (only for n_seq_dft > 1) // probability threshold for splitting a draft branch (only for n_seq_dft > 1)
const float p_split = params.p_split; const float p_split = params.p_split;
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
std::default_random_engine rng(params.seed);
std::uniform_real_distribution<> u_dist;
#ifndef LOG_DISABLE_LOGS #ifndef LOG_DISABLE_LOGS
log_set_target(log_filename_generator("speculative", "log")); log_set_target(log_filename_generator("speculative", "log"));
LOG_TEE("Log start\n"); LOG_TEE("Log start\n");
@ -166,7 +171,9 @@ int main(int argc, char ** argv) {
std::vector<seq_draft> drafts(n_seq_dft); std::vector<seq_draft> drafts(n_seq_dft);
params.sparams.grammar.clear(); // the draft samplers will copy the target sampler's grammar params.sparams.grammar.clear(); // the draft samplers will copy the target sampler's grammar
if (params.sparams.temp == 0) {
params.sparams.temp = -1.0f; // force greedy sampling with probs for the draft model params.sparams.temp = -1.0f; // force greedy sampling with probs for the draft model
}
for (int s = 0; s < n_seq_dft; ++s) { for (int s = 0; s < n_seq_dft; ++s) {
drafts[s].ctx_sampling = llama_sampling_init(params.sparams); drafts[s].ctx_sampling = llama_sampling_init(params.sparams);
@ -182,12 +189,15 @@ int main(int argc, char ** argv) {
drafts[0].i_batch_tgt[0] = 0; drafts[0].i_batch_tgt[0] = 0;
while (true) { while (true) {
std::set<int> active_seqs = {};
// print current draft sequences // print current draft sequences
for (int s = 0; s < n_seq_dft; ++s) { for (int s = 0; s < n_seq_dft; ++s) {
if (!drafts[s].active) { if (!drafts[s].active) {
continue; continue;
} }
active_seqs.insert(s);
const auto & tokens = drafts[s].tokens; const auto & tokens = drafts[s].tokens;
LOG("draft %d: %s\n", s, LOG_TOKENS_TOSTR_PRETTY(ctx_dft, tokens).c_str()); LOG("draft %d: %s\n", s, LOG_TOKENS_TOSTR_PRETTY(ctx_dft, tokens).c_str());
@ -196,48 +206,156 @@ int main(int argc, char ** argv) {
int i_dft = 0; int i_dft = 0;
int s_keep = 0; int s_keep = 0;
llama_token token_id;
std::string token_str;
// loop until we fail to accept a drafted token or we run out of drafted tokens
while (true) { while (true) {
LOG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
// check if the target token matches any of the drafts
// for stochastic sampling, attempt to match the token with the drafted tokens
{
bool accept = false;
if (params.sparams.temp > 0) {
// stochastic verification
llama_token_data_array dist_tgt = llama_sampling_probability_distribution(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft]);
float p_tgt = 0, p_dft = 0;
// GGML_ASSERT(dist_tgt.size() == dist_dft.size());
while (active_seqs.size() > 0) {
// randomly select a sequence to verify from active sequences
std::uniform_int_distribution<u_int> u_int_dist(0, active_seqs.size() - 1);
int s = *std::next(active_seqs.begin(), u_int_dist(rng));
if (i_dft >= (int) drafts[s].tokens.size()) {
drafts[s].active = false;
active_seqs.erase(s);
continue;
}
if (accept) {
// if we already accepted a token, we can skip the rest
if (drafts[s].tokens[i_dft] != drafts[s_keep].tokens[i_dft]) {
drafts[s].active = false;
active_seqs.erase(s);
}
continue;
}
LOG("verifying sequence #%d at pos #%d from %d active sequence(s)\n", s, i_dft, (int) active_seqs.size());
float r = u_dist(rng);
llama_token_data_array dist_dft = { drafts[s].dists[i_dft].data() , drafts[s].dists[i_dft].size(), true };
// acquire the token probabilities assigned by the draft and target models
for (size_t i = 0; i < dist_tgt.size; i++) {
if (dist_tgt.data[i].id == drafts[s].tokens[i_dft]) {
p_tgt = dist_tgt.data[i].p;
}
if (dist_dft.data[i].id == drafts[s].tokens[i_dft]) {
p_dft = dist_dft.data[i].p;
}
if (p_tgt && p_dft) {
break;
}
}
LOG("r = %f, p_dft = %f, p_tgt = %f\n", r, p_dft, p_tgt);
if (r <= p_tgt / p_dft) {
s_keep = s;
accept = true;
token_id = drafts[s].tokens[i_dft];
token_str = llama_token_to_piece(ctx_tgt, token_id);
llama_sampling_accept(ctx_sampling, ctx_tgt, token_id, true);
LOG("draft token %d of sequence %d (%d, '%s') accepted\n", i_dft, s, token_id, token_str.c_str());
break;
} else {
LOG("draft token %d of sequence %d (%d, '%s') rejected\n", i_dft, s, drafts[s].tokens[i_dft], llama_token_to_piece(ctx_tgt, drafts[s].tokens[i_dft]).c_str());
drafts[s].active = false;
// calculate residual probability
GGML_ASSERT(dist_tgt.sorted);
GGML_ASSERT(dist_dft.sorted);
float sum_probs = 0.0f;
// sort dist by id
std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) {
return a.id < b.id;
});
std::sort(dist_dft.data, dist_dft.data + dist_dft.size, [](const llama_token_data &a, const llama_token_data &b) {
return a.id < b.id;
});
for (size_t i = 0; i < dist_tgt.size; i++) {
dist_tgt.data[i].p = std::max(0.0f, dist_tgt.data[i].p - dist_dft.data[i].p);
sum_probs += dist_tgt.data[i].p;
}
for (size_t i = 0; i < dist_tgt.size; i++) {
dist_tgt.data[i].p /= sum_probs;
}
// sort dist_tgt by p desc
std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) {
return a.p > b.p;
});
}
active_seqs.erase(s);
for(int i = 0; i < n_seq_dft; i++) {
if (i == s) {
continue;
}
if (drafts[i].tokens[i_dft] == drafts[s].tokens[i_dft]) {
// synchronize active status for sequences with the same drafted token
drafts[i].active = drafts[i].active && accept;
if (!drafts[i].active) {
active_seqs.erase(s);
}
}
}
}
if (!accept) {
// all drafted tokens were rejected
// sample from the target model
LOG("all drafted tokens were rejected, sampling from residual distribution\n");
token_id = llama_sample_token(ctx_tgt, &dist_tgt);
llama_sampling_accept(ctx_sampling, ctx_tgt, token_id, true);
token_str = llama_token_to_piece(ctx_tgt, token_id);
}
} else {
// greedy verification
// sample from the target model // sample from the target model
llama_token id = llama_sampling_sample(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft]); LOG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
token_id = llama_sampling_sample(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft]);
llama_sampling_accept(ctx_sampling, ctx_tgt, id, true); llama_sampling_accept(ctx_sampling, ctx_tgt, token_id, true);
//LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, ctx_sampling->prev).c_str()); //LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, ctx_sampling->prev).c_str());
const std::string token_str = llama_token_to_piece(ctx_tgt, id); token_str = llama_token_to_piece(ctx_tgt, token_id);
if (!params.use_color) {
printf("%s", token_str.c_str());
}
if (id == llama_token_eos(model_tgt)) {
has_eos = true;
}
++n_predict;
// check if the target token matches any of the drafts
{
bool matches = false;
for (int s = 0; s < n_seq_dft; ++s) { for (int s = 0; s < n_seq_dft; ++s) {
if (!drafts[s].active) { if (!drafts[s].active) {
continue; continue;
} }
if (i_dft < (int) drafts[s].tokens.size() && id == drafts[s].tokens[i_dft]) { if (i_dft < (int) drafts[s].tokens.size() && token_id == drafts[s].tokens[i_dft]) {
LOG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, id, token_str.c_str()); LOG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, token_id, token_str.c_str());
s_keep = s; s_keep = s;
matches = true; accept = true;
} else { } else {
drafts[s].active = false; drafts[s].active = false;
} }
} }
}
if (matches) { if (token_id == llama_token_eos(model_tgt)) {
has_eos = true;
}
++n_predict;
if (accept) {
++n_accept; ++n_accept;
++n_past_tgt; ++n_past_tgt;
++n_past_dft; ++n_past_dft;
@ -245,17 +363,21 @@ int main(int argc, char ** argv) {
if (params.use_color) { if (params.use_color) {
// Color token according to its origin sequence // Color token according to its origin sequence
printf("\u001b[%dm%s\u001b[37m", (36 - s_keep % 6), token_str.c_str()); printf("\u001b[%dm%s\u001b[37m", (36 - s_keep % 6), token_str.c_str());
fflush(stdout); } else {
}
continue;
}
}
if (params.use_color) {
printf("%s", token_str.c_str()); printf("%s", token_str.c_str());
} }
fflush(stdout); fflush(stdout);
continue;
} else {
printf("%s", token_str.c_str());
fflush(stdout);
break;
}
}
}
LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str()); {
LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", token_id, token_str.c_str());
// TODO: simplify // TODO: simplify
{ {
@ -275,21 +397,21 @@ int main(int argc, char ** argv) {
drafts[s].active = false; drafts[s].active = false;
drafts[s].tokens.clear(); drafts[s].tokens.clear();
drafts[s].i_batch_tgt.clear(); drafts[s].i_batch_tgt.clear();
drafts[s].dists.clear();
} }
// note: will be erased after the speculation phase // note: will be erased after the speculation phase
drafts[0].tokens.push_back(id); drafts[0].tokens.push_back(token_id);
drafts[0].dists.push_back(std::vector<llama_token_data>());
drafts[0].i_batch_tgt.push_back(0); drafts[0].i_batch_tgt.push_back(0);
llama_batch_clear(batch_dft); llama_batch_clear(batch_dft);
llama_batch_add (batch_dft, id, n_past_dft, { 0 }, true); llama_batch_add (batch_dft, token_id, n_past_dft, { 0 }, true);
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1); llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
// LOG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str()); // LOG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
llama_decode(ctx_dft, batch_dft); llama_decode(ctx_dft, batch_dft);
++n_past_dft; ++n_past_dft;
break;
} }
if (n_predict > params.n_predict || has_eos) { if (n_predict > params.n_predict || has_eos) {
@ -334,12 +456,6 @@ int main(int argc, char ** argv) {
k, s, i, cur_p[k].id, cur_p[k].p, llama_token_to_piece(ctx_dft, cur_p[k].id).c_str()); k, s, i, cur_p[k].id, cur_p[k].p, llama_token_to_piece(ctx_dft, cur_p[k].id).c_str());
} }
if (cur_p[0].p < p_accept) {
LOG("stopping drafting for seq %3d, probability too low: %.3f < %.3f\n", s, cur_p[0].p, p_accept);
drafts[s].drafting = false;
continue;
}
std::vector<int> sa(1, s); std::vector<int> sa(1, s);
// attempt to split the branch if the probability is high enough // attempt to split the branch if the probability is high enough
@ -367,6 +483,7 @@ int main(int argc, char ** argv) {
drafts[n_seq_cur].skip = true; drafts[n_seq_cur].skip = true;
drafts[n_seq_cur].tokens = drafts[s].tokens; drafts[n_seq_cur].tokens = drafts[s].tokens;
drafts[n_seq_cur].dists = drafts[s].dists;
drafts[n_seq_cur].i_batch_dft = drafts[s].i_batch_dft; drafts[n_seq_cur].i_batch_dft = drafts[s].i_batch_dft;
drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt; drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt;
@ -389,6 +506,8 @@ int main(int argc, char ** argv) {
llama_sampling_accept(drafts[s].ctx_sampling, ctx_dft, id, true); llama_sampling_accept(drafts[s].ctx_sampling, ctx_dft, id, true);
drafts[s].tokens.push_back(id); drafts[s].tokens.push_back(id);
// save cur_p.data into drafts[s].dists
drafts[s].dists.push_back(cur_p);
// add unique drafted tokens to the target batch // add unique drafted tokens to the target batch
drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens); drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens);
@ -440,6 +559,7 @@ int main(int argc, char ** argv) {
} }
drafts[s].tokens.erase(drafts[s].tokens.begin()); drafts[s].tokens.erase(drafts[s].tokens.begin());
drafts[s].dists.erase(drafts[s].dists.begin());
} }
} }

View File

@ -617,6 +617,8 @@ static_assert(sizeof(block_iq4_xs) == sizeof(ggml_fp16_t) + sizeof(uint16_t) + Q
#define CUDA_UPSCALE_BLOCK_SIZE 256 #define CUDA_UPSCALE_BLOCK_SIZE 256
#define CUDA_CONCAT_BLOCK_SIZE 256 #define CUDA_CONCAT_BLOCK_SIZE 256
#define CUDA_PAD_BLOCK_SIZE 256 #define CUDA_PAD_BLOCK_SIZE 256
#define CUDA_ARANGE_BLOCK_SIZE 256
#define CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE 256
#define CUDA_ACC_BLOCK_SIZE 256 #define CUDA_ACC_BLOCK_SIZE 256
#define CUDA_IM2COL_BLOCK_SIZE 256 #define CUDA_IM2COL_BLOCK_SIZE 256
#define CUDA_POOL2D_BLOCK_SIZE 256 #define CUDA_POOL2D_BLOCK_SIZE 256
@ -1024,7 +1026,11 @@ static __global__ void concat_f32(const float * x,const float * y, float * dst,
} }
} }
static __global__ void upscale_f32(const float * x, float * dst, const int ne00, const int nb02, const int scale_factor) { static __global__ void upscale_f32(const float * x, float * dst, const int ne00, const int ne00xne01, const int scale_factor) {
// blockIdx.z: idx of ne02*ne03
// blockIdx.y: idx of ne01*scale_factor aka ne1
// blockIDx.x: idx of ne00*scale_factor / BLOCK_SIZE
// ne00xne01: ne00 * ne01
int ne0 = ne00 * scale_factor; int ne0 = ne00 * scale_factor;
int nidx = threadIdx.x + blockIdx.x * blockDim.x; int nidx = threadIdx.x + blockIdx.x * blockDim.x;
if (nidx >= ne0) { if (nidx >= ne0) {
@ -1036,7 +1042,7 @@ static __global__ void upscale_f32(const float * x, float * dst, const int ne00,
int offset_src = int offset_src =
i00 + i00 +
i01 * ne00 + i01 * ne00 +
blockIdx.z * nb02; blockIdx.z * ne00xne01;
int offset_dst = int offset_dst =
nidx + nidx +
blockIdx.y * ne0 + blockIdx.y * ne0 +
@ -1044,7 +1050,10 @@ static __global__ void upscale_f32(const float * x, float * dst, const int ne00,
dst[offset_dst] = x[offset_src]; dst[offset_dst] = x[offset_src];
} }
static __global__ void pad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02) { static __global__ void pad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
// blockIdx.z: idx of ne2*ne3, aka ne02*ne03
// blockIdx.y: idx of ne1
// blockIDx.x: idx of ne0 / BLOCK_SIZE
int nidx = threadIdx.x + blockIdx.x * blockDim.x; int nidx = threadIdx.x + blockIdx.x * blockDim.x;
if (nidx >= ne0) { if (nidx >= ne0) {
return; return;
@ -1055,7 +1064,7 @@ static __global__ void pad_f32(const float * x, float * dst, const int ne0, cons
nidx + nidx +
blockIdx.y * ne0 + blockIdx.y * ne0 +
blockIdx.z * ne0 * gridDim.y; blockIdx.z * ne0 * gridDim.y;
if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02) { if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) {
int offset_src = int offset_src =
nidx + nidx +
blockIdx.y * ne00 + blockIdx.y * ne00 +
@ -1066,8 +1075,42 @@ static __global__ void pad_f32(const float * x, float * dst, const int ne0, cons
} }
} }
static __global__ void arange_f32(float * dst, const int ne0, const float start, const float step) {
// blockIDx.x: idx of ne0 / BLOCK_SIZE
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
if (nidx >= ne0) {
return;
}
dst[nidx] = start + step * nidx;
}
static __global__ void timestep_embedding_f32(const float * timesteps, float * dst, const int nb1, const int dim, const int max_period) {
// blockIDx.y: idx of timesteps->ne[0]
// blockIDx.x: idx of ((dim + 1) / 2) / BLOCK_SIZE
int i = blockIdx.y;
int j = threadIdx.x + blockIdx.x * blockDim.x;
float * embed_data = (float *)((char *)dst + i*nb1);
if (dim % 2 != 0 && j == ((dim + 1) / 2)) {
embed_data[dim] = 0.f;
}
int half = dim / 2;
if (j >= half) {
return;
}
float timestep = timesteps[i];
float freq = (float)expf(-logf(max_period) * j / half);
float arg = timestep * freq;
embed_data[j] = cosf(arg);
embed_data[j + half] = sinf(arg);
}
template <int block_size> template <int block_size>
static __global__ void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps) { static __global__ void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps) {
// blockIdx.x: num_groups idx
// threadIdx.x: block_size idx
int start = blockIdx.x * group_size; int start = blockIdx.x * group_size;
int end = start + group_size; int end = start + group_size;
@ -6473,7 +6516,7 @@ static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13) { const int nb12, const int nb13) {
const int i = blockDim.x*blockIdx.x + threadIdx.x; const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= ne) { if (i >= ne) {
return; return;
@ -6481,17 +6524,17 @@ static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
// determine indices i03/i13, i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor // determine indices i03/i13, i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
// then combine those indices with the corresponding byte offsets to get the total offsets // then combine those indices with the corresponding byte offsets to get the total offsets
const int i03 = i/(ne00 * ne01 * ne02); const int64_t i03 = i/(ne00 * ne01 * ne02);
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01); const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00; const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00; const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03; const int64_t x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
const int i13 = i/(ne10 * ne11 * ne12); const int64_t i13 = i/(ne10 * ne11 * ne12);
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11); const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10; const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10; const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13; const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
cpy_1(cx + x_offset, cdst + dst_offset); cpy_1(cx + x_offset, cdst + dst_offset);
} }
@ -6929,6 +6972,7 @@ static __global__ void soft_max_f32(const float * x, const half * mask, const ha
// find the sum of exps in the block // find the sum of exps in the block
tmp = warp_reduce_sum(tmp); tmp = warp_reduce_sum(tmp);
if (block_size > WARP_SIZE) { if (block_size > WARP_SIZE) {
__syncthreads();
if (warp_id == 0) { if (warp_id == 0) {
buf_iw[lane_id] = 0.0f; buf_iw[lane_id] = 0.0f;
} }
@ -6980,23 +7024,23 @@ static __global__ void clamp_f32(const float * x, float * dst, const float min,
template <typename T> template <typename T>
static __global__ void im2col_kernel( static __global__ void im2col_kernel(
const float * x, T * dst, int batch_offset, const float * x, T * dst, int64_t batch_offset,
int offset_delta, int IC, int IW, int IH, int OH, int OW, int KW, int KH, int pelements, int CHW, int64_t offset_delta, int64_t IC, int64_t IW, int64_t IH, int64_t OH, int64_t OW, int64_t KW, int64_t KH, int64_t pelements, int64_t CHW,
int s0, int s1, int p0, int p1, int d0, int d1) { int s0, int s1, int p0, int p1, int d0, int d1) {
const int i = threadIdx.x + blockIdx.x * blockDim.x; const int64_t i = threadIdx.x + blockIdx.x * blockDim.x;
if (i >= pelements) { if (i >= pelements) {
return; return;
} }
const int ksize = OW * (KH > 1 ? KW : 1); const int64_t ksize = OW * (KH > 1 ? KW : 1);
const int kx = i / ksize; const int64_t kx = i / ksize;
const int kd = kx * ksize; const int64_t kd = kx * ksize;
const int ky = (i - kd) / OW; const int64_t ky = (i - kd) / OW;
const int ix = i % OW; const int64_t ix = i % OW;
const int oh = blockIdx.y; const int64_t oh = blockIdx.y;
const int batch = blockIdx.z / IC; const int64_t batch = blockIdx.z / IC;
const int ic = blockIdx.z % IC; const int64_t ic = blockIdx.z % IC;
const int64_t iiw = ix * s0 + kx * d0 - p0; const int64_t iiw = ix * s0 + kx * d0 - p0;
const int64_t iih = oh * s1 + ky * d1 - p1; const int64_t iih = oh * s1 + ky * d1 - p1;
@ -7852,19 +7896,33 @@ static void concat_f32_cuda(const float * x, const float * y, float * dst, const
concat_f32<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02); concat_f32<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
} }
static void upscale_f32_cuda(const float * x, float * dst, const int ne00, const int ne01, const int ne02, const int scale_factor, cudaStream_t stream) { static void upscale_f32_cuda(const float * x, float * dst, const int ne00, const int ne01, const int ne02, const int ne03,
const int scale_factor, cudaStream_t stream) {
int ne0 = (ne00 * scale_factor); int ne0 = (ne00 * scale_factor);
int num_blocks = (ne0 + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE; int num_blocks = (ne0 + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE;
dim3 gridDim(num_blocks, (ne01 * scale_factor), ne02); dim3 gridDim(num_blocks, (ne01 * scale_factor), ne02*ne03);
upscale_f32<<<gridDim, CUDA_UPSCALE_BLOCK_SIZE, 0, stream>>>(x, dst, ne00, ne00 * ne01, scale_factor); upscale_f32<<<gridDim, CUDA_UPSCALE_BLOCK_SIZE, 0, stream>>>(x, dst, ne00, ne00 * ne01, scale_factor);
} }
static void pad_f32_cuda(const float * x, float * dst, static void pad_f32_cuda(const float * x, float * dst,
const int ne00, const int ne01, const int ne02, const int ne00, const int ne01, const int ne02, const int ne03,
const int ne0, const int ne1, const int ne2, cudaStream_t stream) { const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE; int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
dim3 gridDim(num_blocks, ne1, ne2); dim3 gridDim(num_blocks, ne1, ne2*ne3);
pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02); pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
}
static void arange_f32_cuda(float * dst, const int ne0, const float start, const float step, cudaStream_t stream) {
int num_blocks = (ne0 + CUDA_ARANGE_BLOCK_SIZE - 1) / CUDA_ARANGE_BLOCK_SIZE;
arange_f32<<<num_blocks, CUDA_ARANGE_BLOCK_SIZE, 0, stream>>>(dst, ne0, start, step);
}
static void timestep_embedding_f32_cuda(const float * x, float * dst, const int ne00, const int nb1,
const int dim, const int max_period, cudaStream_t stream) {
int half_ceil = (dim + 1) / 2;
int num_blocks = (half_ceil + CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE - 1) / CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE;
dim3 gridDim(num_blocks, ne00, 1);
timestep_embedding_f32<<<gridDim, CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE, 0, stream>>>(x, dst, nb1, dim, max_period);
} }
static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) { static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
@ -8997,8 +9055,8 @@ static void soft_max_f32_cuda(const float * x, const half * mask, const half * p
template <typename T> template <typename T>
static void im2col_cuda(const float* x, T* dst, static void im2col_cuda(const float* x, T* dst,
int IW, int IH, int OW, int OH, int KW, int KH, int IC, int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
int batch, int batch_offset, int offset_delta, int64_t batch, int64_t batch_offset, int64_t offset_delta,
int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) { int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
const int parallel_elements = OW * KW * KH; const int parallel_elements = OW * KW * KH;
const int num_blocks = (parallel_elements + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE; const int num_blocks = (parallel_elements + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE;
@ -9684,7 +9742,7 @@ static void ggml_cuda_op_group_norm(
int num_groups = dst->op_params[0]; int num_groups = dst->op_params[0];
int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups); int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
group_norm_f32_cuda(src0_dd, dst_dd, num_groups, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream); group_norm_f32_cuda(src0_dd, dst_dd, num_groups * src0->ne[3], group_size, ggml_nelements(src0), main_stream);
(void) src1; (void) src1;
(void) dst; (void) dst;
@ -9717,7 +9775,7 @@ static void ggml_cuda_op_upscale(
const int scale_factor = dst->op_params[0]; const int scale_factor = dst->op_params[0];
upscale_f32_cuda(src0_dd, dst_dd, src0->ne[0], src0->ne[1], src0->ne[2], scale_factor, main_stream); upscale_f32_cuda(src0_dd, dst_dd, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], scale_factor, main_stream);
(void) src1; (void) src1;
(void) dst; (void) dst;
@ -9733,8 +9791,49 @@ static void ggml_cuda_op_pad(
GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
pad_f32_cuda(src0_dd, dst_dd, pad_f32_cuda(src0_dd, dst_dd,
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
dst->ne[0], dst->ne[1], dst->ne[2], main_stream); dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
}
static void ggml_cuda_op_arange(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
GGML_ASSERT(dst->type == GGML_TYPE_F32);
float start;
float stop;
float step;
memcpy(&start, (float *)dst->op_params + 0, sizeof(float));
memcpy(&stop, (float *)dst->op_params + 1, sizeof(float));
memcpy(&step, (float *)dst->op_params + 2, sizeof(float));
int64_t steps = (int64_t)ceil((stop - start) / step);
GGML_ASSERT(ggml_nelements(dst) == steps);
arange_f32_cuda(dst_dd, dst->ne[0], start, step, main_stream);
(void) src0;
(void) src1;
(void) src0_dd;
(void) src1_dd;
}
static void ggml_cuda_op_timestep_embedding(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const int dim = dst->op_params[0];
const int max_period = dst->op_params[1];
timestep_embedding_f32_cuda(src0_dd, dst_dd, src0->ne[0], dst->nb[1], dim, max_period, main_stream);
(void) src1; (void) src1;
(void) dst; (void) dst;
@ -11019,6 +11118,45 @@ static void ggml_cuda_pad(const ggml_tensor * src0, const ggml_tensor * src1, gg
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_pad); ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_pad);
} }
static void ggml_cuda_arange(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU;
// dd = data device
float * src0_ddf = nullptr;
float * src1_ddf = nullptr;
float * dst_ddf = nullptr;
cuda_pool_alloc<float> dst_f;
ggml_cuda_set_device(g_main_device);
cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
if (dst_on_device) {
dst_ddf = (float *) dst_extra->data_device[g_main_device];
} else {
dst_ddf = dst_f.alloc(ggml_nelements(dst));
}
// do the computation
ggml_cuda_op_arange(src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
CUDA_CHECK(cudaGetLastError());
// copy dst to host if necessary
if (!dst_on_device) {
CUDA_CHECK(cudaMemcpyAsync(dst->data, dst_ddf, ggml_nbytes(dst), cudaMemcpyDeviceToHost, main_stream));
}
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
CUDA_CHECK(cudaDeviceSynchronize());
}
}
static void ggml_cuda_timestep_embedding(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_timestep_embedding);
}
static void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rms_norm); ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rms_norm);
} }
@ -12124,6 +12262,12 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st
case GGML_OP_PAD: case GGML_OP_PAD:
func = ggml_cuda_pad; func = ggml_cuda_pad;
break; break;
case GGML_OP_ARANGE:
func = ggml_cuda_arange;
break;
case GGML_OP_TIMESTEP_EMBEDDING:
func = ggml_cuda_timestep_embedding;
break;
case GGML_OP_LEAKY_RELU: case GGML_OP_LEAKY_RELU:
func = ggml_cuda_leaky_relu; func = ggml_cuda_leaky_relu;
break; break;
@ -13029,6 +13173,8 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
case GGML_OP_GROUP_NORM: case GGML_OP_GROUP_NORM:
case GGML_OP_UPSCALE: case GGML_OP_UPSCALE:
case GGML_OP_PAD: case GGML_OP_PAD:
case GGML_OP_ARANGE:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_LEAKY_RELU: case GGML_OP_LEAKY_RELU:
case GGML_OP_FLASH_ATTN_EXT: case GGML_OP_FLASH_ATTN_EXT:
return true; return true;

View File

@ -163,6 +163,8 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_IM2COL_F32, GGML_METAL_KERNEL_TYPE_IM2COL_F32,
GGML_METAL_KERNEL_TYPE_UPSCALE_F32, GGML_METAL_KERNEL_TYPE_UPSCALE_F32,
GGML_METAL_KERNEL_TYPE_PAD_F32, GGML_METAL_KERNEL_TYPE_PAD_F32,
GGML_METAL_KERNEL_TYPE_ARANGE_F32,
GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32,
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC,
GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32,
@ -578,6 +580,8 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32, im2col_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32, im2col_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32, timestep_embedding_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARANGE_F32, arange_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, argsort_f32_i32_desc, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, argsort_f32_i32_desc, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, leaky_relu_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, leaky_relu_f32, true);
@ -712,6 +716,8 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
return false; return false;
case GGML_OP_UPSCALE: case GGML_OP_UPSCALE:
case GGML_OP_PAD: case GGML_OP_PAD:
case GGML_OP_ARANGE:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_ARGSORT: case GGML_OP_ARGSORT:
case GGML_OP_LEAKY_RELU: case GGML_OP_LEAKY_RELU:
case GGML_OP_FLASH_ATTN_EXT: case GGML_OP_FLASH_ATTN_EXT:
@ -1107,7 +1113,8 @@ static bool ggml_metal_graph_compute(
{ {
GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(src0));
const float scale = *(const float *) dst->op_params; float scale;
memcpy(&scale, dst->op_params, sizeof(scale));
int64_t n = ggml_nelements(dst); int64_t n = ggml_nelements(dst);
@ -1268,11 +1275,15 @@ static bool ggml_metal_graph_compute(
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX].pipeline; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX].pipeline;
} }
const float scale = ((float *) dst->op_params)[0]; float scale;
const float max_bias = ((float *) dst->op_params)[1]; float max_bias;
memcpy(&scale, ((int32_t *) dst->op_params) + 0, sizeof(scale));
memcpy(&max_bias, ((int32_t *) dst->op_params) + 1, sizeof(max_bias));
const int64_t nrows_x = ggml_nrows(src0); const int64_t nrows_x = ggml_nrows(src0);
const int64_t nrows_y = src0->ne[1]; const int64_t nrows_y = src0->ne[1];
const uint32_t n_head_kv = nrows_x/nrows_y; const uint32_t n_head_kv = nrows_x/nrows_y;
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv)); const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
@ -2104,6 +2115,7 @@ static bool ggml_metal_graph_compute(
//const int n_past = ((int32_t *) dst->op_params)[0]; //const int n_past = ((int32_t *) dst->op_params)[0];
const int n_head = ((int32_t *) dst->op_params)[1]; const int n_head = ((int32_t *) dst->op_params)[1];
float max_bias; float max_bias;
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
@ -2318,6 +2330,50 @@ static bool ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break; } break;
case GGML_OP_ARANGE:
{
GGML_ASSERT(dst->type == GGML_TYPE_F32);
float start;
float step;
memcpy(&start, ((int32_t *) dst->op_params) + 0, sizeof(float));
memcpy(&step, ((int32_t *) dst->op_params) + 2, sizeof(float));
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARANGE_F32].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_dst offset:offs_dst atIndex:0];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:1];
[encoder setBytes:&start length:sizeof(start) atIndex:2];
[encoder setBytes:&step length:sizeof(step) atIndex:3];
const int nth = MIN(1024, ne0);
[encoder dispatchThreadgroups:MTLSizeMake(1, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_TIMESTEP_EMBEDDING:
{
GGML_ASSERT(src0->type == GGML_TYPE_F32);
const int dim = dst->op_params[0];
const int max_period = dst->op_params[1];
const int half = dim / 2;
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:2];
[encoder setBytes:&dim length:sizeof(dim) atIndex:3];
[encoder setBytes:&max_period length:sizeof(max_period) atIndex:4];
const int nth = MIN(1024, half);
[encoder dispatchThreadgroups:MTLSizeMake(ne00, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_ARGSORT: case GGML_OP_ARGSORT:
{ {
GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src0->type == GGML_TYPE_F32);

View File

@ -1959,6 +1959,49 @@ kernel void kernel_pad_f32(
} }
} }
kernel void kernel_arange_f32(
device char * dst,
constant int64_t & ne0,
constant float & start,
constant float & step,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
device float * dst_ptr = (device float *) dst;
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
dst_ptr[i0] = start + step * i0;
}
}
kernel void kernel_timestep_embedding_f32(
device const char * src0,
device char * dst,
constant uint64_t & nb1,
constant int & dim,
constant int & max_period,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
int i = tgpig.x;
device float * embed_data = (device float *)(dst + i*nb1);
int half_ = dim / 2;
for (int j = tpitg.x; j < half_; j += ntg.x) {
float timestep = ((device float *)src0)[i];
float freq = (float)exp(-log((float)max_period) * j / half_);
float arg = timestep * freq;
embed_data[j ] = cos(arg);
embed_data[j + half_] = sin(arg);
}
if (dim % 2 != 0 && tpitg.x == 0) {
embed_data[dim] = 0.f;
}
}
// bitonic sort implementation following the CUDA kernels as reference // bitonic sort implementation following the CUDA kernels as reference
typedef void (argsort_t)( typedef void (argsort_t)(
device const float * x, device const float * x,

209
ggml.c
View File

@ -1882,6 +1882,8 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"POOL_2D", "POOL_2D",
"UPSCALE", "UPSCALE",
"PAD", "PAD",
"ARANGE",
"TIMESTEP_EMBEDDING",
"ARGSORT", "ARGSORT",
"LEAKY_RELU", "LEAKY_RELU",
@ -1911,7 +1913,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"CROSS_ENTROPY_LOSS_BACK", "CROSS_ENTROPY_LOSS_BACK",
}; };
static_assert(GGML_OP_COUNT == 73, "GGML_OP_COUNT != 73"); static_assert(GGML_OP_COUNT == 75, "GGML_OP_COUNT != 75");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none", "none",
@ -1969,6 +1971,8 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"pool_2d(x)", "pool_2d(x)",
"upscale(x)", "upscale(x)",
"pad(x)", "pad(x)",
"arange(start, stop, step)",
"timestep_embedding(timesteps, dim, max_period)",
"argsort(x)", "argsort(x)",
"leaky_relu(x)", "leaky_relu(x)",
@ -1998,7 +2002,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"cross_entropy_loss_back(x,y)", "cross_entropy_loss_back(x,y)",
}; };
static_assert(GGML_OP_COUNT == 73, "GGML_OP_COUNT != 73"); static_assert(GGML_OP_COUNT == 75, "GGML_OP_COUNT != 75");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2"); static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
@ -2957,11 +2961,21 @@ static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_
return ((const int32_t *)(tensor->op_params))[i]; return ((const int32_t *)(tensor->op_params))[i];
} }
static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
return ((const float *)(tensor->op_params))[i];
}
static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) { static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t)); assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
((int32_t *)(tensor->op_params))[i] = value; ((int32_t *)(tensor->op_params))[i] = value;
} }
static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
((float *)(tensor->op_params))[i] = value;
}
struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) { struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
memset(tensor->data, 0, ggml_nbytes(tensor)); memset(tensor->data, 0, ggml_nbytes(tensor));
return tensor; return tensor;
@ -5963,6 +5977,55 @@ struct ggml_tensor * ggml_upscale(
return ggml_upscale_impl(ctx, a, scale_factor); return ggml_upscale_impl(ctx, a, scale_factor);
} }
struct ggml_tensor * ggml_arange(
struct ggml_context * ctx,
float start,
float stop,
float step) {
GGML_ASSERT(stop > start);
const int64_t steps = (int64_t) ceilf((stop - start) / step);
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
result->op = GGML_OP_ARANGE;
ggml_set_op_params_f32(result, 0, start);
ggml_set_op_params_f32(result, 1, stop);
ggml_set_op_params_f32(result, 2, step);
return result;
}
struct ggml_tensor * ggml_timestep_embedding(
struct ggml_context * ctx,
struct ggml_tensor * timesteps,
int dim,
int max_period) {
bool is_node = false;
if (timesteps->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
int actual_dim = dim;
if (dim % 2 != 0) {
actual_dim = dim + 1;
}
struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
result->op = GGML_OP_TIMESTEP_EMBEDDING;
ggml_set_op_params_i32(result, 0, dim);
ggml_set_op_params_i32(result, 1, max_period);
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = timesteps;
return result;
}
// ggml_argsort // ggml_argsort
struct ggml_tensor * ggml_argsort( struct ggml_tensor * ggml_argsort(
@ -10363,28 +10426,32 @@ static void ggml_compute_forward_group_norm_f32(
for (int64_t i01 = 0; i01 < ne01; i01++) { for (int64_t i01 = 0; i01 < ne01; i01++) {
const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03); const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
ggml_float sumr = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) { for (int64_t i00 = 0; i00 < ne00; i00++) {
sum += (ggml_float)x[i00]; sumr += (ggml_float)x[i00];
}
sum += sumr;
} }
} }
} const float mean = sum / (ne00 * ne01 * step);
float mean = sum / (ne00 * ne01 * step);
ggml_float sum2 = 0.0;
ggml_float sum2 = 0.0;
for (int64_t i02 = start; i02 < end; i02++) { for (int64_t i02 = start; i02 < end; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) { for (int64_t i01 = 0; i01 < ne01; i01++) {
const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03); const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3); float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
ggml_float sumr = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) { for (int64_t i00 = 0; i00 < ne00; i00++) {
float v = x[i00] - mean; float v = x[i00] - mean;
y[i00] = v; y[i00] = v;
sum2 += (ggml_float)(v * v); sumr += (ggml_float)(v * v);
}
sum2 += sumr;
} }
} }
} const float variance = sum2 / (ne00 * ne01 * step);
float variance = sum2 / (ne00 * ne01 * step);
const float scale = 1.0f / sqrtf(variance + eps); const float scale = 1.0f / sqrtf(variance + eps);
for (int64_t i02 = start; i02 < end; i02++) { for (int64_t i02 = start; i02 < end; i02++) {
@ -13667,6 +13734,106 @@ static void ggml_compute_forward_pad(
} }
} }
// ggml_compute_forward_arange
static void ggml_compute_forward_arange_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
GGML_ASSERT(dst->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
const float start = ggml_get_op_params_f32(dst, 0);
const float stop = ggml_get_op_params_f32(dst, 1);
const float step = ggml_get_op_params_f32(dst, 2);
const int64_t steps = (int64_t) ceilf((stop - start) / step);
GGML_ASSERT(ggml_nelements(dst) == steps);
for (int64_t i = ith; i < steps; i+= nth) {
float value = start + step * i;
((float *)dst->data)[i] = value;
}
}
static void ggml_compute_forward_arange(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
switch (dst->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_arange_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
static void ggml_compute_forward_timestep_embedding_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
const int dim = ggml_get_op_params_i32(dst, 0);
const int max_period = ggml_get_op_params_i32(dst, 1);
int half = dim / 2;
for (int64_t i = 0; i < ne00; i++) {
float * embed_data = (float *)((char *) dst->data + i*nb1);
for (int64_t j = ith; j < half; j += nth) {
float timestep = ((float *)src0->data)[i];
float freq = (float)expf(-logf(max_period) * j / half);
float arg = timestep * freq;
embed_data[j] = cosf(arg);
embed_data[j + half] = sinf(arg);
}
if (dim % 2 != 0 && ith == 0) {
embed_data[dim] = 0.f;
}
}
}
static void ggml_compute_forward_timestep_embedding(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_timestep_embedding_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_argsort // ggml_compute_forward_argsort
static void ggml_compute_forward_argsort_f32( static void ggml_compute_forward_argsort_f32(
@ -15926,6 +16093,14 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{ {
ggml_compute_forward_pad(params, tensor); ggml_compute_forward_pad(params, tensor);
} break; } break;
case GGML_OP_ARANGE:
{
ggml_compute_forward_arange(params, tensor);
} break;
case GGML_OP_TIMESTEP_EMBEDDING:
{
ggml_compute_forward_timestep_embedding(params, tensor);
} break;
case GGML_OP_ARGSORT: case GGML_OP_ARGSORT:
{ {
ggml_compute_forward_argsort(params, tensor); ggml_compute_forward_argsort(params, tensor);
@ -16932,6 +17107,14 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
{ {
GGML_ASSERT(false); // TODO: not implemented GGML_ASSERT(false); // TODO: not implemented
} break; } break;
case GGML_OP_ARANGE:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_TIMESTEP_EMBEDDING:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_ARGSORT: case GGML_OP_ARGSORT:
{ {
GGML_ASSERT(false); // TODO: not implemented GGML_ASSERT(false); // TODO: not implemented
@ -17684,6 +17867,14 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
{ {
n_tasks = n_threads; n_tasks = n_threads;
} break; } break;
case GGML_OP_ARANGE:
{
n_tasks = n_threads;
} break;
case GGML_OP_TIMESTEP_EMBEDDING:
{
n_tasks = n_threads;
} break;
case GGML_OP_ARGSORT: case GGML_OP_ARGSORT:
{ {
n_tasks = n_threads; n_tasks = n_threads;

17
ggml.h
View File

@ -454,6 +454,8 @@ extern "C" {
GGML_OP_POOL_2D, GGML_OP_POOL_2D,
GGML_OP_UPSCALE, // nearest interpolate GGML_OP_UPSCALE, // nearest interpolate
GGML_OP_PAD, GGML_OP_PAD,
GGML_OP_ARANGE,
GGML_OP_TIMESTEP_EMBEDDING,
GGML_OP_ARGSORT, GGML_OP_ARGSORT,
GGML_OP_LEAKY_RELU, GGML_OP_LEAKY_RELU,
@ -1662,6 +1664,15 @@ extern "C" {
int p2, int p2,
int p3); int p3);
// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
// timesteps: [N,]
// return: [N, dim]
GGML_API struct ggml_tensor * ggml_timestep_embedding(
struct ggml_context * ctx,
struct ggml_tensor * timesteps,
int dim,
int max_period);
// sort rows // sort rows
enum ggml_sort_order { enum ggml_sort_order {
GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_ASC,
@ -1673,6 +1684,12 @@ extern "C" {
struct ggml_tensor * a, struct ggml_tensor * a,
enum ggml_sort_order order); enum ggml_sort_order order);
GGML_API struct ggml_tensor * ggml_arange(
struct ggml_context * ctx,
float start,
float stop,
float step);
// top k elements per row // top k elements per row
GGML_API struct ggml_tensor * ggml_top_k( GGML_API struct ggml_tensor * ggml_top_k(
struct ggml_context * ctx, struct ggml_context * ctx,

View File

@ -13330,7 +13330,7 @@ static int32_t llama_chat_apply_template_internal(
std::string & dest, bool add_ass) { std::string & dest, bool add_ass) {
// Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527 // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
std::stringstream ss; std::stringstream ss;
if (tmpl.find("<|im_start|>") != std::string::npos) { if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
// chatml template // chatml template
for (auto message : chat) { for (auto message : chat) {
ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n"; ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
@ -13338,7 +13338,7 @@ static int32_t llama_chat_apply_template_internal(
if (add_ass) { if (add_ass) {
ss << "<|im_start|>assistant\n"; ss << "<|im_start|>assistant\n";
} }
} else if (tmpl.find("[INST]") != std::string::npos) { } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
// llama2 template and its variants // llama2 template and its variants
// [variant] support system message // [variant] support system message
bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos; bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
@ -13373,7 +13373,7 @@ static int32_t llama_chat_apply_template_internal(
} }
} }
// llama2 templates seem to not care about "add_generation_prompt" // llama2 templates seem to not care about "add_generation_prompt"
} else if (tmpl.find("<|user|>") != std::string::npos) { } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
// zephyr template // zephyr template
for (auto message : chat) { for (auto message : chat) {
ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n"; ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
@ -13381,7 +13381,7 @@ static int32_t llama_chat_apply_template_internal(
if (add_ass) { if (add_ass) {
ss << "<|assistant|>\n"; ss << "<|assistant|>\n";
} }
} else if (tmpl.find("bos_token + message['role']") != std::string::npos) { } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
// mlabonne/AlphaMonarch-7B template (the <s> is included inside history) // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
for (auto message : chat) { for (auto message : chat) {
std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
@ -13390,7 +13390,7 @@ static int32_t llama_chat_apply_template_internal(
if (add_ass) { if (add_ass) {
ss << "<s>assistant\n"; ss << "<s>assistant\n";
} }
} else if (tmpl.find("<start_of_turn>") != std::string::npos) { } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
// google/gemma-7b-it // google/gemma-7b-it
std::string system_prompt = ""; std::string system_prompt = "";
for (auto message : chat) { for (auto message : chat) {
@ -13437,7 +13437,7 @@ LLAMA_API int32_t llama_chat_apply_template(
int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size()); int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
if (res < 0) { if (res < 0) {
// worst case: there is no information about template, we will use chatml by default // worst case: there is no information about template, we will use chatml by default
curr_tmpl = "<|im_start|>"; // see llama_chat_apply_template_internal curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
} else { } else {
curr_tmpl = std::string(model_template.data(), model_template.size()); curr_tmpl = std::string(model_template.data(), model_template.size());
} }

View File

@ -1 +1 @@
b458250b736a7473f7ff3560d47c93f1644f3290 274680868e12427373bab4bec87554431b954704

View File

@ -1422,6 +1422,50 @@ struct test_pad : public test_case {
} }
}; };
// GGML_OP_ARANGE
struct test_arange : public test_case {
const ggml_type type;
const float start;
const float stop;
const float step;
std::string vars() override {
return VARS_TO_STR4(type, start, stop, step);
}
test_arange(ggml_type type = GGML_TYPE_F32,
float start = 0.f, float stop = 10.f, float step = 1.f)
: type(type), start(start), stop(stop), step(step) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * out = ggml_arange(ctx, start, stop, step);
return out;
}
};
// GGML_OP_TIMESTEP_EMBEDDING
struct test_timestep_embedding : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne_a;
const int dim;
const int max_period;
std::string vars() override {
return VARS_TO_STR4(type, ne_a, dim, max_period);
}
test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
int dim = 320, int max_period=10000)
: type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
return out;
}
};
// GGML_OP_LEAKY_RELU // GGML_OP_LEAKY_RELU
struct test_leaky_relu : public test_case { struct test_leaky_relu : public test_case {
const ggml_type type; const ggml_type type;
@ -2206,6 +2250,8 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
test_cases.emplace_back(new test_group_norm()); test_cases.emplace_back(new test_group_norm());
test_cases.emplace_back(new test_acc()); test_cases.emplace_back(new test_acc());
test_cases.emplace_back(new test_pad()); test_cases.emplace_back(new test_pad());
test_cases.emplace_back(new test_arange());
test_cases.emplace_back(new test_timestep_embedding());
test_cases.emplace_back(new test_leaky_relu()); test_cases.emplace_back(new test_leaky_relu());
#if 1 #if 1