mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-13 14:29:52 +00:00
build : on Mac OS enable Metal by default (#2901)
* build : on Mac OS enable Metal by default * make : try to fix build on Linux * make : move targets back to the top * make : fix target clean * llama : enable GPU inference by default with Metal * llama : fix vocab_only logic when GPU is enabled * common : better `n_gpu_layers` assignment * readme : update Metal instructions * make : fix merge conflict remnants * gitignore : metal
This commit is contained in:
parent
bd33e5ab92
commit
e36ecdccc8
29
.gitignore
vendored
29
.gitignore
vendored
@ -31,28 +31,29 @@ tmp/
|
|||||||
models/*
|
models/*
|
||||||
models-mnt
|
models-mnt
|
||||||
|
|
||||||
/main
|
|
||||||
/quantize
|
|
||||||
/quantize-stats
|
|
||||||
/result
|
|
||||||
/perplexity
|
|
||||||
/embedding
|
|
||||||
/train-text-from-scratch
|
|
||||||
/convert-llama2c-to-ggml
|
|
||||||
/simple
|
|
||||||
/benchmark-matmult
|
|
||||||
/vdot
|
|
||||||
/server
|
|
||||||
/Pipfile
|
/Pipfile
|
||||||
|
/baby-llama
|
||||||
|
/beam-search
|
||||||
|
/benchmark-matmult
|
||||||
|
/convert-llama2c-to-ggml
|
||||||
/embd-input-test
|
/embd-input-test
|
||||||
|
/embedding
|
||||||
/gguf
|
/gguf
|
||||||
/gguf-llama-simple
|
/gguf-llama-simple
|
||||||
/libllama.so
|
/libllama.so
|
||||||
/llama-bench
|
/llama-bench
|
||||||
/baby-llama
|
/main
|
||||||
/beam-search
|
/metal
|
||||||
|
/perplexity
|
||||||
|
/quantize
|
||||||
|
/quantize-stats
|
||||||
|
/result
|
||||||
/save-load-state
|
/save-load-state
|
||||||
|
/server
|
||||||
|
/simple
|
||||||
/speculative
|
/speculative
|
||||||
|
/train-text-from-scratch
|
||||||
|
/vdot
|
||||||
build-info.h
|
build-info.h
|
||||||
arm_neon.h
|
arm_neon.h
|
||||||
compile_commands.json
|
compile_commands.json
|
||||||
|
@ -36,6 +36,12 @@ endif()
|
|||||||
# Option list
|
# Option list
|
||||||
#
|
#
|
||||||
|
|
||||||
|
if (APPLE)
|
||||||
|
set(LLAMA_METAL_DEFAULT ON)
|
||||||
|
else()
|
||||||
|
set(LLAMA_METAL_DEFAULT OFF)
|
||||||
|
endif()
|
||||||
|
|
||||||
# general
|
# general
|
||||||
option(LLAMA_STATIC "llama: static link libraries" OFF)
|
option(LLAMA_STATIC "llama: static link libraries" OFF)
|
||||||
option(LLAMA_NATIVE "llama: enable -march=native flag" OFF)
|
option(LLAMA_NATIVE "llama: enable -march=native flag" OFF)
|
||||||
@ -76,7 +82,7 @@ option(LLAMA_CUDA_F16 "llama: use 16 bit floats for some
|
|||||||
set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for Q2_K/Q6_K")
|
set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for Q2_K/Q6_K")
|
||||||
option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF)
|
option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF)
|
||||||
option(LLAMA_CLBLAST "llama: use CLBlast" OFF)
|
option(LLAMA_CLBLAST "llama: use CLBlast" OFF)
|
||||||
option(LLAMA_METAL "llama: use Metal" OFF)
|
option(LLAMA_METAL "llama: use Metal" ${LLAMA_METAL_DEFAULT})
|
||||||
option(LLAMA_MPI "llama: use MPI" OFF)
|
option(LLAMA_MPI "llama: use MPI" OFF)
|
||||||
option(LLAMA_K_QUANTS "llama: use k-quants" ON)
|
option(LLAMA_K_QUANTS "llama: use k-quants" ON)
|
||||||
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
|
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
|
||||||
@ -158,6 +164,31 @@ if (APPLE AND LLAMA_ACCELERATE)
|
|||||||
endif()
|
endif()
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
|
if (LLAMA_METAL)
|
||||||
|
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||||
|
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||||
|
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||||
|
|
||||||
|
message(STATUS "Metal framework found")
|
||||||
|
|
||||||
|
set(GGML_SOURCES_METAL ggml-metal.m ggml-metal.h)
|
||||||
|
|
||||||
|
add_compile_definitions(GGML_USE_METAL)
|
||||||
|
#add_compile_definitions(GGML_METAL_NDEBUG)
|
||||||
|
|
||||||
|
# get full path to the file
|
||||||
|
#add_compile_definitions(GGML_METAL_DIR_KERNELS="${CMAKE_CURRENT_SOURCE_DIR}/")
|
||||||
|
|
||||||
|
# copy ggml-metal.metal to bin directory
|
||||||
|
configure_file(ggml-metal.metal bin/ggml-metal.metal COPYONLY)
|
||||||
|
|
||||||
|
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS}
|
||||||
|
${FOUNDATION_LIBRARY}
|
||||||
|
${METAL_FRAMEWORK}
|
||||||
|
${METALKIT_FRAMEWORK}
|
||||||
|
)
|
||||||
|
endif()
|
||||||
|
|
||||||
if (LLAMA_BLAS)
|
if (LLAMA_BLAS)
|
||||||
if (LLAMA_STATIC)
|
if (LLAMA_STATIC)
|
||||||
set(BLA_STATIC ON)
|
set(BLA_STATIC ON)
|
||||||
@ -293,29 +324,6 @@ if (LLAMA_CUBLAS)
|
|||||||
endif()
|
endif()
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
if (LLAMA_METAL)
|
|
||||||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
|
||||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
|
||||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
|
||||||
|
|
||||||
set(GGML_SOURCES_METAL ggml-metal.m ggml-metal.h)
|
|
||||||
|
|
||||||
add_compile_definitions(GGML_USE_METAL)
|
|
||||||
#add_compile_definitions(GGML_METAL_NDEBUG)
|
|
||||||
|
|
||||||
# get full path to the file
|
|
||||||
#add_compile_definitions(GGML_METAL_DIR_KERNELS="${CMAKE_CURRENT_SOURCE_DIR}/")
|
|
||||||
|
|
||||||
# copy ggml-metal.metal to bin directory
|
|
||||||
configure_file(ggml-metal.metal bin/ggml-metal.metal COPYONLY)
|
|
||||||
|
|
||||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS}
|
|
||||||
${FOUNDATION_LIBRARY}
|
|
||||||
${METAL_FRAMEWORK}
|
|
||||||
${METALKIT_FRAMEWORK}
|
|
||||||
)
|
|
||||||
endif()
|
|
||||||
|
|
||||||
if (LLAMA_MPI)
|
if (LLAMA_MPI)
|
||||||
cmake_minimum_required(VERSION 3.10)
|
cmake_minimum_required(VERSION 3.10)
|
||||||
find_package(MPI)
|
find_package(MPI)
|
||||||
|
76
Makefile
76
Makefile
@ -7,6 +7,39 @@ TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-dou
|
|||||||
# Code coverage output files
|
# Code coverage output files
|
||||||
COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report
|
COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report
|
||||||
|
|
||||||
|
ifndef UNAME_S
|
||||||
|
UNAME_S := $(shell uname -s)
|
||||||
|
endif
|
||||||
|
|
||||||
|
ifndef UNAME_P
|
||||||
|
UNAME_P := $(shell uname -p)
|
||||||
|
endif
|
||||||
|
|
||||||
|
ifndef UNAME_M
|
||||||
|
UNAME_M := $(shell uname -m)
|
||||||
|
endif
|
||||||
|
|
||||||
|
# Mac OS + Arm can report x86_64
|
||||||
|
# ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789
|
||||||
|
ifeq ($(UNAME_S),Darwin)
|
||||||
|
ifndef LLAMA_NO_METAL
|
||||||
|
LLAMA_METAL := 1
|
||||||
|
endif
|
||||||
|
|
||||||
|
ifneq ($(UNAME_P),arm)
|
||||||
|
SYSCTL_M := $(shell sysctl -n hw.optional.arm64 2>/dev/null)
|
||||||
|
ifeq ($(SYSCTL_M),1)
|
||||||
|
# UNAME_P := arm
|
||||||
|
# UNAME_M := arm64
|
||||||
|
warn := $(warning Your arch is announced as x86_64, but it seems to actually be ARM64. Not fixing that can lead to bad performance. For more info see: https://github.com/ggerganov/whisper.cpp/issues/66\#issuecomment-1282546789)
|
||||||
|
endif
|
||||||
|
endif
|
||||||
|
endif
|
||||||
|
|
||||||
|
ifneq '' '$(or $(filter clean,$(MAKECMDGOALS)),$(LLAMA_METAL))'
|
||||||
|
BUILD_TARGETS += metal
|
||||||
|
endif
|
||||||
|
|
||||||
default: $(BUILD_TARGETS)
|
default: $(BUILD_TARGETS)
|
||||||
|
|
||||||
test:
|
test:
|
||||||
@ -38,18 +71,6 @@ gcovr-report: coverage ## Generate gcovr report
|
|||||||
mkdir -p gcovr-report
|
mkdir -p gcovr-report
|
||||||
gcovr --root . --html --html-details --output gcovr-report/coverage.html
|
gcovr --root . --html --html-details --output gcovr-report/coverage.html
|
||||||
|
|
||||||
ifndef UNAME_S
|
|
||||||
UNAME_S := $(shell uname -s)
|
|
||||||
endif
|
|
||||||
|
|
||||||
ifndef UNAME_P
|
|
||||||
UNAME_P := $(shell uname -p)
|
|
||||||
endif
|
|
||||||
|
|
||||||
ifndef UNAME_M
|
|
||||||
UNAME_M := $(shell uname -m)
|
|
||||||
endif
|
|
||||||
|
|
||||||
ifdef RISCV_CROSS_COMPILE
|
ifdef RISCV_CROSS_COMPILE
|
||||||
CC := riscv64-unknown-linux-gnu-gcc
|
CC := riscv64-unknown-linux-gnu-gcc
|
||||||
CXX := riscv64-unknown-linux-gnu-g++
|
CXX := riscv64-unknown-linux-gnu-g++
|
||||||
@ -58,19 +79,6 @@ endif
|
|||||||
CCV := $(shell $(CC) --version | head -n 1)
|
CCV := $(shell $(CC) --version | head -n 1)
|
||||||
CXXV := $(shell $(CXX) --version | head -n 1)
|
CXXV := $(shell $(CXX) --version | head -n 1)
|
||||||
|
|
||||||
# Mac OS + Arm can report x86_64
|
|
||||||
# ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789
|
|
||||||
ifeq ($(UNAME_S),Darwin)
|
|
||||||
ifneq ($(UNAME_P),arm)
|
|
||||||
SYSCTL_M := $(shell sysctl -n hw.optional.arm64 2>/dev/null)
|
|
||||||
ifeq ($(SYSCTL_M),1)
|
|
||||||
# UNAME_P := arm
|
|
||||||
# UNAME_M := arm64
|
|
||||||
warn := $(warning Your arch is announced as x86_64, but it seems to actually be ARM64. Not fixing that can lead to bad performance. For more info see: https://github.com/ggerganov/whisper.cpp/issues/66\#issuecomment-1282546789)
|
|
||||||
endif
|
|
||||||
endif
|
|
||||||
endif
|
|
||||||
|
|
||||||
#
|
#
|
||||||
# Compile flags
|
# Compile flags
|
||||||
#
|
#
|
||||||
@ -231,14 +239,24 @@ endif
|
|||||||
endif
|
endif
|
||||||
|
|
||||||
ifndef LLAMA_NO_ACCELERATE
|
ifndef LLAMA_NO_ACCELERATE
|
||||||
# Mac M1 - include Accelerate framework.
|
# Mac OS - include Accelerate framework.
|
||||||
# `-framework Accelerate` works on Mac Intel as well, with negliable performance boost (as of the predict time).
|
# `-framework Accelerate` works both with Apple Silicon and Mac Intel
|
||||||
ifeq ($(UNAME_S),Darwin)
|
ifeq ($(UNAME_S),Darwin)
|
||||||
MK_CPPFLAGS += -DGGML_USE_ACCELERATE
|
MK_CPPFLAGS += -DGGML_USE_ACCELERATE
|
||||||
MK_LDFLAGS += -framework Accelerate
|
MK_LDFLAGS += -framework Accelerate
|
||||||
endif
|
endif
|
||||||
endif # LLAMA_NO_ACCELERATE
|
endif # LLAMA_NO_ACCELERATE
|
||||||
|
|
||||||
|
ifdef LLAMA_METAL
|
||||||
|
# By default - use GPU acceleration on Mac OS
|
||||||
|
ifeq ($(UNAME_S),Darwin)
|
||||||
|
CFLAGS += -DGGML_USE_METAL #-DGGML_METAL_NDEBUG
|
||||||
|
CXXFLAGS += -DGGML_USE_METAL
|
||||||
|
LDFLAGS += -framework Foundation -framework Metal -framework MetalKit
|
||||||
|
OBJS += ggml-metal.o
|
||||||
|
endif
|
||||||
|
endif # LLAMA_METAL
|
||||||
|
|
||||||
ifdef LLAMA_MPI
|
ifdef LLAMA_MPI
|
||||||
MK_CPPFLAGS += -DGGML_USE_MPI
|
MK_CPPFLAGS += -DGGML_USE_MPI
|
||||||
MK_CFLAGS += -Wno-cast-qual
|
MK_CFLAGS += -Wno-cast-qual
|
||||||
@ -480,10 +498,6 @@ beam-search: examples/beam-search/beam-search.cpp build-info.h ggml.o llama.o co
|
|||||||
speculative: examples/speculative/speculative.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
speculative: examples/speculative/speculative.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
ifneq '' '$(or $(filter clean,$(MAKECMDGOALS)),$(LLAMA_METAL))'
|
|
||||||
BUILD_TARGETS += metal
|
|
||||||
endif
|
|
||||||
|
|
||||||
ifdef LLAMA_METAL
|
ifdef LLAMA_METAL
|
||||||
metal: examples/metal/metal.cpp ggml.o $(OBJS)
|
metal: examples/metal/metal.cpp ggml.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||||
|
26
README.md
26
README.md
@ -280,29 +280,11 @@ In order to build llama.cpp you have three different options.
|
|||||||
|
|
||||||
### Metal Build
|
### Metal Build
|
||||||
|
|
||||||
Using Metal allows the computation to be executed on the GPU for Apple devices:
|
On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU.
|
||||||
|
To disable the Metal build at compile time use the `LLAMA_NO_METAL=1` flag or the `LLAMA_METAL=OFF` cmake option.
|
||||||
|
|
||||||
- Using `make`:
|
When built with Metal support, you can explicitly disable GPU inference with the `--gpu-layers|-ngl 0` command-line
|
||||||
|
argument.
|
||||||
```bash
|
|
||||||
LLAMA_METAL=1 make
|
|
||||||
```
|
|
||||||
|
|
||||||
- Using `CMake`:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
mkdir build-metal
|
|
||||||
cd build-metal
|
|
||||||
cmake -DLLAMA_METAL=ON ..
|
|
||||||
cmake --build . --config Release
|
|
||||||
```
|
|
||||||
|
|
||||||
When built with Metal support, you can enable GPU inference with the `--gpu-layers|-ngl` command-line argument.
|
|
||||||
Any value larger than 0 will offload the computation to the GPU. For example:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
./main -m ./models/7B/ggml-model-q4_0.gguf -n 128 -ngl 1
|
|
||||||
```
|
|
||||||
|
|
||||||
### MPI Build
|
### MPI Build
|
||||||
|
|
||||||
|
@ -717,7 +717,9 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
|
|||||||
|
|
||||||
lparams.n_ctx = params.n_ctx;
|
lparams.n_ctx = params.n_ctx;
|
||||||
lparams.n_batch = params.n_batch;
|
lparams.n_batch = params.n_batch;
|
||||||
lparams.n_gpu_layers = params.n_gpu_layers;
|
if (params.n_gpu_layers != -1) {
|
||||||
|
lparams.n_gpu_layers = params.n_gpu_layers;
|
||||||
|
}
|
||||||
lparams.main_gpu = params.main_gpu;
|
lparams.main_gpu = params.main_gpu;
|
||||||
lparams.tensor_split = params.tensor_split;
|
lparams.tensor_split = params.tensor_split;
|
||||||
lparams.low_vram = params.low_vram;
|
lparams.low_vram = params.low_vram;
|
||||||
@ -1212,7 +1214,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
|||||||
fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
|
fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
|
||||||
fprintf(stream, "mtest: %s # default: false\n", params.mem_test ? "true" : "false");
|
fprintf(stream, "mtest: %s # default: false\n", params.mem_test ? "true" : "false");
|
||||||
fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
|
fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
|
||||||
fprintf(stream, "n_gpu_layers: %d # default: 0\n", params.n_gpu_layers);
|
fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
|
||||||
fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
|
fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
|
||||||
fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", params.n_probs);
|
fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", params.n_probs);
|
||||||
fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
|
fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
|
||||||
|
@ -34,7 +34,7 @@ struct gpt_params {
|
|||||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||||
int32_t n_draft = 16; // number of tokens to draft during speculative decoding
|
int32_t n_draft = 16; // number of tokens to draft during speculative decoding
|
||||||
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
||||||
int32_t n_gpu_layers = 0; // number of layers to store in VRAM
|
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
||||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||||
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
|
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
|
||||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||||
|
@ -151,14 +151,6 @@ int main(int argc, char ** argv) {
|
|||||||
LOG_TEE("%s: warning: scaling RoPE frequency by %g (default 1.0)\n", __func__, params.rope_freq_scale);
|
LOG_TEE("%s: warning: scaling RoPE frequency by %g (default 1.0)\n", __func__, params.rope_freq_scale);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (params.n_ctx > 2048) {
|
|
||||||
// TODO: determine the actual max context of the model (e.g. 4096 for LLaMA v2) and use that instead of 2048
|
|
||||||
LOG_TEE("%s: warning: base model only supports context sizes no greater than 2048 tokens (%d specified)\n", __func__, params.n_ctx);
|
|
||||||
} else if (params.n_ctx < 8) {
|
|
||||||
LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
|
|
||||||
params.n_ctx = 8;
|
|
||||||
}
|
|
||||||
|
|
||||||
LOG_TEE("%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
LOG_TEE("%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||||
|
|
||||||
if (params.seed == LLAMA_DEFAULT_SEED) {
|
if (params.seed == LLAMA_DEFAULT_SEED) {
|
||||||
@ -194,6 +186,13 @@ int main(int argc, char ** argv) {
|
|||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (params.n_ctx > llama_n_ctx(ctx)) {
|
||||||
|
LOG_TEE("%s: warning: base model only supports context sizes no greater than %d tokens (%d specified)\n", __func__, llama_n_ctx(ctx), params.n_ctx);
|
||||||
|
} else if (params.n_ctx < 8) {
|
||||||
|
LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
|
||||||
|
params.n_ctx = 8;
|
||||||
|
}
|
||||||
|
|
||||||
// print system information
|
// print system information
|
||||||
{
|
{
|
||||||
LOG_TEE("\n");
|
LOG_TEE("\n");
|
||||||
|
@ -368,7 +368,7 @@ results_perplexity perplexity(llama_context * ctx, const gpt_params & params) {
|
|||||||
// Example, we have a context window of 512, we will compute perplexity for each of the
|
// Example, we have a context window of 512, we will compute perplexity for each of the
|
||||||
// last 256 tokens. Then, we split the input up into context window size chunks to
|
// last 256 tokens. Then, we split the input up into context window size chunks to
|
||||||
// process the entire prompt.
|
// process the entire prompt.
|
||||||
const int first = std::min(512, params.n_ctx/2);
|
const int first = params.n_ctx/2;
|
||||||
process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, params.n_ctx - 1 - first,
|
process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, params.n_ctx - 1 - first,
|
||||||
workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
|
workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
|
||||||
count += params.n_ctx - first - 1;
|
count += params.n_ctx - first - 1;
|
||||||
@ -668,11 +668,6 @@ int main(int argc, char ** argv) {
|
|||||||
params.n_ctx += params.ppl_stride/2;
|
params.n_ctx += params.ppl_stride/2;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (params.n_ctx > 2048) {
|
|
||||||
fprintf(stderr, "%s: warning: model might not support context sizes greater than 2048 tokens (%d specified);"
|
|
||||||
"expect poor results\n", __func__, params.n_ctx);
|
|
||||||
}
|
|
||||||
|
|
||||||
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||||
|
|
||||||
if (params.seed == LLAMA_DEFAULT_SEED) {
|
if (params.seed == LLAMA_DEFAULT_SEED) {
|
||||||
@ -698,6 +693,11 @@ int main(int argc, char ** argv) {
|
|||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (params.n_ctx > llama_n_ctx(ctx)) {
|
||||||
|
fprintf(stderr, "%s: warning: model might not support context sizes greater than %d tokens (%d specified);"
|
||||||
|
"expect poor results\n", __func__, llama_n_ctx(ctx), params.n_ctx);
|
||||||
|
}
|
||||||
|
|
||||||
// print system information
|
// print system information
|
||||||
{
|
{
|
||||||
fprintf(stderr, "\n");
|
fprintf(stderr, "\n");
|
||||||
|
54
llama.cpp
54
llama.cpp
@ -5340,7 +5340,7 @@ struct llama_context_params llama_context_default_params() {
|
|||||||
/*.seed =*/ LLAMA_DEFAULT_SEED,
|
/*.seed =*/ LLAMA_DEFAULT_SEED,
|
||||||
/*.n_ctx =*/ 512,
|
/*.n_ctx =*/ 512,
|
||||||
/*.n_batch =*/ 512,
|
/*.n_batch =*/ 512,
|
||||||
/*.gpu_layers =*/ 0,
|
/*.n_gpu_layers =*/ 0,
|
||||||
/*.main_gpu =*/ 0,
|
/*.main_gpu =*/ 0,
|
||||||
/*.tensor_split =*/ nullptr,
|
/*.tensor_split =*/ nullptr,
|
||||||
/*.rope_freq_base =*/ 10000.0f,
|
/*.rope_freq_base =*/ 10000.0f,
|
||||||
@ -5357,6 +5357,10 @@ struct llama_context_params llama_context_default_params() {
|
|||||||
/*.embedding =*/ false,
|
/*.embedding =*/ false,
|
||||||
};
|
};
|
||||||
|
|
||||||
|
#ifdef GGML_USE_METAL
|
||||||
|
result.n_gpu_layers = 1;
|
||||||
|
#endif
|
||||||
|
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -5549,43 +5553,43 @@ struct llama_context * llama_new_context_with_model(
|
|||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
#ifdef GGML_USE_METAL
|
#ifdef GGML_USE_METAL
|
||||||
if (params.n_gpu_layers > 0) {
|
if (params.n_gpu_layers > 0) {
|
||||||
// this allocates all Metal resources and memory buffers
|
// this allocates all Metal resources and memory buffers
|
||||||
|
|
||||||
void * data_ptr = NULL;
|
void * data_ptr = NULL;
|
||||||
size_t data_size = 0;
|
size_t data_size = 0;
|
||||||
|
|
||||||
if (params.use_mmap) {
|
if (params.use_mmap) {
|
||||||
data_ptr = ctx->model.mapping->addr;
|
data_ptr = ctx->model.mapping->addr;
|
||||||
data_size = ctx->model.mapping->size;
|
data_size = ctx->model.mapping->size;
|
||||||
} else {
|
} else {
|
||||||
data_ptr = ggml_get_mem_buffer(ctx->model.ctx);
|
data_ptr = ggml_get_mem_buffer(ctx->model.ctx);
|
||||||
data_size = ggml_get_mem_size (ctx->model.ctx);
|
data_size = ggml_get_mem_size (ctx->model.ctx);
|
||||||
}
|
}
|
||||||
|
|
||||||
const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
|
const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
|
||||||
|
|
||||||
LLAMA_LOG_INFO("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
|
LLAMA_LOG_INFO("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
|
||||||
|
|
||||||
#define LLAMA_METAL_CHECK_BUF(result) \
|
#define LLAMA_METAL_CHECK_BUF(result) \
|
||||||
if (!(result)) { \
|
if (!(result)) { \
|
||||||
LLAMA_LOG_ERROR("%s: failed to add buffer\n", __func__); \
|
LLAMA_LOG_ERROR("%s: failed to add buffer\n", __func__); \
|
||||||
llama_free(ctx); \
|
llama_free(ctx); \
|
||||||
return NULL; \
|
return NULL; \
|
||||||
}
|
}
|
||||||
|
|
||||||
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size));
|
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size));
|
||||||
|
|
||||||
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.data, ctx->buf_compute.size, 0));
|
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.data, ctx->buf_compute.size, 0));
|
||||||
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.data, ctx->kv_self.buf.size, 0));
|
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.data, ctx->kv_self.buf.size, 0));
|
||||||
|
|
||||||
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "alloc", ctx->buf_alloc.data, ctx->buf_alloc.size, 0));
|
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "alloc", ctx->buf_alloc.data, ctx->buf_alloc.size, 0));
|
||||||
#undef LLAMA_METAL_CHECK_BUF
|
#undef LLAMA_METAL_CHECK_BUF
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
#ifdef GGML_USE_MPI
|
#ifdef GGML_USE_MPI
|
||||||
ctx->ctx_mpi = ggml_mpi_init();
|
ctx->ctx_mpi = ggml_mpi_init();
|
||||||
|
Loading…
Reference in New Issue
Block a user