convert-gptneox-h5-to-gguf.py : load model in parts to save memory

This commit is contained in:
klosax 2023-08-13 12:18:34 +02:00 committed by GitHub
parent 9bf5a7efcb
commit e3d1f07eb1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,4 +1,4 @@
# Quick and dirty HF gptneox--> gguf conversion
# HF gptneox--> gguf conversion
import gguf
import gguf_tensor_map as tmap
@ -9,7 +9,8 @@ import json
import numpy as np
from typing import Any, List
from pathlib import Path
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from transformers import AutoTokenizer
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
def bytes_to_unicode():
@ -33,6 +34,15 @@ def bytes_to_unicode():
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def count_model_parts(dir_model: str) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("pytorch_model-"):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
if len(sys.argv) < 3:
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
@ -70,9 +80,8 @@ if hparams["architectures"][0] != "GPTNeoXForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0] )
sys.exit()
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
list_vars = model.state_dict()
# get number of model parts
num_parts = count_model_parts(dir_model)
gguf_writer = gguf.GGUFWriter.open(fname_out)
@ -183,37 +192,58 @@ tensor_map = tmap.get_tensor_map(block_count)
# tensor info
print("gguf: get tensor metadata")
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
if num_parts == 0:
part_names = ("pytorch_model.bin",)
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
# we don't need these
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
continue
for part_name in part_names:
print("gguf: loading model part '"+ part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
# map tensor names
if name.endswith(".weight") and name[:-7] in tensor_map:
name = tensor_map[name[:-7]] + ".weight"
elif name.endswith(".bias") and name[:-5] in tensor_map:
name = tensor_map[name[:-5]] + ".bias"
else:
print( "Can not map tensor '" + name + "'" )
sys.exit()
for name in model_part.keys():
data = model_part[name]
n_dims = len(data.shape)
data_dtype = data.dtype
# we don't need these
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
continue
# print( name + " dims " + str(n_dims) + " dtype " + str(data.dtype) )
if data.dtype != np.float16 and data.dtype != np.float32:
# convert any unsupported data types to float32
data_dtype = np.float32
elif ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
# map tensor names
if name.endswith(".weight") and name[:-7] in tensor_map:
name = tensor_map[name[:-7]] + ".weight"
elif name.endswith(".bias") and name[:-5] in tensor_map:
name = tensor_map[name[:-5]] + ".bias"
else:
print( "Can not map tensor '" + name + "'" )
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data.dtype == np.float16:
data_dtype = np.float32
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data.dtype == np.float16 and n_dims == 1:
data_dtype = np.float32
# if f16 desired, convert any float32 2-dim weight tensors to float16
data_dtype = np.float16
if ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data_dtype = np.float16
data_nbytes = data.size * 2 if data_dtype == np.float16 else data.size * 4
data_nbytes = data.size * 2 if data_dtype == np.float16 else data.size * 4
gguf_writer.add_tensor_info(name, data.shape, data_dtype, data_nbytes)
gguf_writer.add_tensor_info(name, data.shape, data_dtype, data_nbytes)
print("gguf: write header")
gguf_writer.write_header_to_file()
@ -225,24 +255,59 @@ gguf_writer.write_ti_data_to_file()
# tensor data
print("gguf: convert and write tensor data")
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
if num_parts == 0:
part_names = ("pytorch_model.bin",)
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
# we don't need these
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
continue
for part_name in part_names:
print("gguf: loading model part '"+ part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
n_dims = len(data.shape)
data_dtype = data.dtype
for name in model_part.keys():
data = model_part[name]
old_dtype = data.dtype
# we don't need these
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
continue
if data_dtype != np.float16 and data_dtype != np.float32:
# convert any unsupported data types to float32
data = data.astype(np.float32)
elif ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
# if f16 desired, convert any float32 2-dim weight tensors to float16
data = data.astype(np.float16)
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
gguf_writer.write_tensor_to_file(data)
data = data.squeeze().numpy()
# map tensor names
if name.endswith(".weight") and name[:-7] in tensor_map:
name = tensor_map[name[:-7]] + ".weight"
elif name.endswith(".bias") and name[:-5] in tensor_map:
name = tensor_map[name[:-5]] + ".bias"
else:
print( "Can not map tensor '" + name + "'" )
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data.dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print( name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.write_tensor_to_file(data)
gguf_writer.close()