mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-27 03:44:35 +00:00
convert-gptneox-h5-to-gguf.py : load model in parts to save memory
This commit is contained in:
parent
9bf5a7efcb
commit
e3d1f07eb1
@ -1,4 +1,4 @@
|
||||
# Quick and dirty HF gptneox--> gguf conversion
|
||||
# HF gptneox--> gguf conversion
|
||||
|
||||
import gguf
|
||||
import gguf_tensor_map as tmap
|
||||
@ -9,7 +9,8 @@ import json
|
||||
import numpy as np
|
||||
from typing import Any, List
|
||||
from pathlib import Path
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
import torch
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
||||
def bytes_to_unicode():
|
||||
@ -33,6 +34,15 @@ def bytes_to_unicode():
|
||||
cs = [chr(n) for n in cs]
|
||||
return dict(zip(bs, cs))
|
||||
|
||||
def count_model_parts(dir_model: str) -> int:
|
||||
num_parts = 0
|
||||
for filename in os.listdir(dir_model):
|
||||
if filename.startswith("pytorch_model-"):
|
||||
num_parts += 1
|
||||
|
||||
if num_parts > 0:
|
||||
print("gguf: found " + str(num_parts) + " model parts")
|
||||
return num_parts
|
||||
|
||||
if len(sys.argv) < 3:
|
||||
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
|
||||
@ -70,9 +80,8 @@ if hparams["architectures"][0] != "GPTNeoXForCausalLM":
|
||||
print("Model architecture not supported: " + hparams["architectures"][0] )
|
||||
sys.exit()
|
||||
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
|
||||
list_vars = model.state_dict()
|
||||
# get number of model parts
|
||||
num_parts = count_model_parts(dir_model)
|
||||
|
||||
gguf_writer = gguf.GGUFWriter.open(fname_out)
|
||||
|
||||
@ -183,37 +192,58 @@ tensor_map = tmap.get_tensor_map(block_count)
|
||||
# tensor info
|
||||
print("gguf: get tensor metadata")
|
||||
|
||||
for name in list_vars.keys():
|
||||
data = list_vars[name].squeeze().numpy()
|
||||
if num_parts == 0:
|
||||
part_names = ("pytorch_model.bin",)
|
||||
else:
|
||||
part_names = (
|
||||
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
||||
)
|
||||
|
||||
# we don't need these
|
||||
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
|
||||
continue
|
||||
for part_name in part_names:
|
||||
print("gguf: loading model part '"+ part_name + "'")
|
||||
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
||||
|
||||
# map tensor names
|
||||
if name.endswith(".weight") and name[:-7] in tensor_map:
|
||||
name = tensor_map[name[:-7]] + ".weight"
|
||||
elif name.endswith(".bias") and name[:-5] in tensor_map:
|
||||
name = tensor_map[name[:-5]] + ".bias"
|
||||
else:
|
||||
print( "Can not map tensor '" + name + "'" )
|
||||
sys.exit()
|
||||
for name in model_part.keys():
|
||||
data = model_part[name]
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
# we don't need these
|
||||
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
|
||||
continue
|
||||
|
||||
# print( name + " dims " + str(n_dims) + " dtype " + str(data.dtype) )
|
||||
|
||||
if data.dtype != np.float16 and data.dtype != np.float32:
|
||||
# convert any unsupported data types to float32
|
||||
data_dtype = np.float32
|
||||
elif ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
||||
data = data.to(torch.float32)
|
||||
|
||||
data = data.squeeze().numpy()
|
||||
|
||||
# map tensor names
|
||||
if name.endswith(".weight") and name[:-7] in tensor_map:
|
||||
name = tensor_map[name[:-7]] + ".weight"
|
||||
elif name.endswith(".bias") and name[:-5] in tensor_map:
|
||||
name = tensor_map[name[:-5]] + ".bias"
|
||||
else:
|
||||
print( "Can not map tensor '" + name + "'" )
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if ftype == 0 and data.dtype == np.float16:
|
||||
data_dtype = np.float32
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if ftype == 1 and data.dtype == np.float16 and n_dims == 1:
|
||||
data_dtype = np.float32
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
data_dtype = np.float16
|
||||
if ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data_dtype = np.float16
|
||||
|
||||
data_nbytes = data.size * 2 if data_dtype == np.float16 else data.size * 4
|
||||
data_nbytes = data.size * 2 if data_dtype == np.float16 else data.size * 4
|
||||
|
||||
gguf_writer.add_tensor_info(name, data.shape, data_dtype, data_nbytes)
|
||||
|
||||
gguf_writer.add_tensor_info(name, data.shape, data_dtype, data_nbytes)
|
||||
|
||||
print("gguf: write header")
|
||||
gguf_writer.write_header_to_file()
|
||||
@ -225,24 +255,59 @@ gguf_writer.write_ti_data_to_file()
|
||||
# tensor data
|
||||
print("gguf: convert and write tensor data")
|
||||
|
||||
for name in list_vars.keys():
|
||||
data = list_vars[name].squeeze().numpy()
|
||||
if num_parts == 0:
|
||||
part_names = ("pytorch_model.bin",)
|
||||
else:
|
||||
part_names = (
|
||||
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
||||
)
|
||||
|
||||
# we don't need these
|
||||
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
|
||||
continue
|
||||
for part_name in part_names:
|
||||
print("gguf: loading model part '"+ part_name + "'")
|
||||
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
for name in model_part.keys():
|
||||
data = model_part[name]
|
||||
|
||||
old_dtype = data.dtype
|
||||
|
||||
# we don't need these
|
||||
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
|
||||
continue
|
||||
|
||||
if data_dtype != np.float16 and data_dtype != np.float32:
|
||||
# convert any unsupported data types to float32
|
||||
data = data.astype(np.float32)
|
||||
elif ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
data = data.astype(np.float16)
|
||||
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
||||
data = data.to(torch.float32)
|
||||
|
||||
gguf_writer.write_tensor_to_file(data)
|
||||
data = data.squeeze().numpy()
|
||||
|
||||
# map tensor names
|
||||
if name.endswith(".weight") and name[:-7] in tensor_map:
|
||||
name = tensor_map[name[:-7]] + ".weight"
|
||||
elif name.endswith(".bias") and name[:-5] in tensor_map:
|
||||
name = tensor_map[name[:-5]] + ".bias"
|
||||
else:
|
||||
print( "Can not map tensor '" + name + "'" )
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if ftype == 0 and data.dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print( name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||||
|
||||
gguf_writer.write_tensor_to_file(data)
|
||||
|
||||
gguf_writer.close()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user