llama : ggml-backend integration (#4766)

* llama : ggml-backend integration

* ggml-backend : add names to buffers

* fix unmap after loading

* batched-bench : add tensor_split param

* llama : check for null tensor_split

* ggml-backend : increase GGML_MAX_BACKENDS

* improve graph splitting, partial fix for --no-kv-offload

* cuda : add ggml-backend split buffer support

* cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available)

* ggml : fix null backend dereference (#4807)

* ggml : fix null backend dereference

* ggml : also check ggml_backend_is_cpu

* test-backend-ops : check buffer allocation failures

* llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row)

* ggml : fix mul_mat_id work size

* llama : rewrite session kv load/set without graphs

* minor

* llama : only initialize used backends, free backends on context free

* llama : abort ctx if cuda backend init fails

* llama : rewrite lora with ggml-backend and compute on CPU

ggml-ci

* llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer

* opencl : add ggml-backend buffer type

* cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf)

* llama : on Metal, by default offload the full model

ggml-ci

* metal : page align the data ptr (#4854)

* Apply suggestions from code review

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* cuda : fix split buffer free

* address review comments

* llama-bench : add split-mode parameter

* fix whitespace

* opencl : fix double initialization

* server : add --split-mode parameter

* use async copy and compute to improve multi-gpu performance

ggml-ci

* use async memcpys to copy the graph outputs to the CPU

* fix opencl

* use a host buffer for the cpu compute buffer for faster copies to the gpu

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
This commit is contained in:
slaren 2024-01-12 20:07:38 +01:00 committed by GitHub
parent 584d674be6
commit e7e4df031b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
21 changed files with 2533 additions and 2295 deletions

View File

@ -543,9 +543,8 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
invalid_param = true; invalid_param = true;
break; break;
} }
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
params.n_gpu_layers = std::stoi(argv[i]); params.n_gpu_layers = std::stoi(argv[i]);
#else #ifndef LLAMA_SUPPORTS_GPU_OFFLOAD
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n"); fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
#endif #endif
@ -554,9 +553,8 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
invalid_param = true; invalid_param = true;
break; break;
} }
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
params.n_gpu_layers_draft = std::stoi(argv[i]); params.n_gpu_layers_draft = std::stoi(argv[i]);
#else #ifndef LLAMA_SUPPORTS_GPU_OFFLOAD
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n"); fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
#endif #endif
@ -565,25 +563,44 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
invalid_param = true; invalid_param = true;
break; break;
} }
#ifdef GGML_USE_CUBLAS
params.main_gpu = std::stoi(argv[i]); params.main_gpu = std::stoi(argv[i]);
#else #ifndef GGML_USE_CUBLAS
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.\n"); fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting the main GPU has no effect.\n");
#endif #endif // GGML_USE_CUBLAS
} else if (arg == "--split-mode" || arg == "-sm") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::string arg_next = argv[i];
if (arg_next == "none") {
params.split_mode = LLAMA_SPLIT_NONE;
} else if (arg_next == "layer") {
params.split_mode = LLAMA_SPLIT_LAYER;
} else if (arg_next == "row") {
params.split_mode = LLAMA_SPLIT_ROW;
} else {
invalid_param = true;
break;
}
#ifndef GGML_USE_CUBLAS
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting the split mode has no effect.\n");
#endif // GGML_USE_CUBLAS
} else if (arg == "--tensor-split" || arg == "-ts") { } else if (arg == "--tensor-split" || arg == "-ts") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
break; break;
} }
#ifdef GGML_USE_CUBLAS
std::string arg_next = argv[i]; std::string arg_next = argv[i];
// split string by , and / // split string by , and /
const std::regex regex{R"([,/]+)"}; const std::regex regex{R"([,/]+)"};
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1}; std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
std::vector<std::string> split_arg{it, {}}; std::vector<std::string> split_arg{it, {}};
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES); if (split_arg.size() >= LLAMA_MAX_DEVICES) {
invalid_param = true;
break;
}
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) { for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
if (i < split_arg.size()) { if (i < split_arg.size()) {
params.tensor_split[i] = std::stof(split_arg[i]); params.tensor_split[i] = std::stof(split_arg[i]);
@ -591,14 +608,8 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
params.tensor_split[i] = 0.0f; params.tensor_split[i] = 0.0f;
} }
} }
#else #ifndef GGML_USE_CUBLAS
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n"); fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting a tensor split has no effect.\n");
#endif // GGML_USE_CUBLAS
} else if (arg == "--no-mul-mat-q" || arg == "-nommq") {
#ifdef GGML_USE_CUBLAS
params.mul_mat_q = false;
#else
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n");
#endif // GGML_USE_CUBLAS #endif // GGML_USE_CUBLAS
} else if (arg == "--no-mmap") { } else if (arg == "--no-mmap") {
params.use_mmap = false; params.use_mmap = false;
@ -915,14 +926,15 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" number of layers to store in VRAM\n"); printf(" number of layers to store in VRAM\n");
printf(" -ngld N, --n-gpu-layers-draft N\n"); printf(" -ngld N, --n-gpu-layers-draft N\n");
printf(" number of layers to store in VRAM for the draft model\n"); printf(" number of layers to store in VRAM for the draft model\n");
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
printf(" how to split the model across multiple GPUs, one of:\n");
printf(" - none: use one GPU only\n");
printf(" - layer (default): split layers and KV across GPUs\n");
printf(" - row: split rows across GPUs\n");
printf(" -ts SPLIT, --tensor-split SPLIT\n"); printf(" -ts SPLIT, --tensor-split SPLIT\n");
printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n"); printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
#ifdef GGML_USE_CUBLAS printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
printf(" -nommq, --no-mul-mat-q\n");
printf(" use " GGML_CUBLAS_NAME " instead of custom mul_mat_q " GGML_CUDA_NAME " kernels.\n");
printf(" Not recommended since this is both slower and uses more VRAM.\n");
#endif // GGML_USE_CUBLAS
#endif #endif
printf(" -gan N, --grp-attn-n N\n"); printf(" -gan N, --grp-attn-n N\n");
printf(" group-attention factor (default: %d)\n", params.grp_attn_n); printf(" group-attention factor (default: %d)\n", params.grp_attn_n);
@ -1041,6 +1053,7 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
mparams.n_gpu_layers = params.n_gpu_layers; mparams.n_gpu_layers = params.n_gpu_layers;
} }
mparams.main_gpu = params.main_gpu; mparams.main_gpu = params.main_gpu;
mparams.split_mode = params.split_mode;
mparams.tensor_split = params.tensor_split; mparams.tensor_split = params.tensor_split;
mparams.use_mmap = params.use_mmap; mparams.use_mmap = params.use_mmap;
mparams.use_mlock = params.use_mlock; mparams.use_mlock = params.use_mlock;

View File

@ -59,6 +59,7 @@ struct gpt_params {
float p_split = 0.1f; // speculative decoding split probability float p_split = 0.1f; // speculative decoding split probability
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default) int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default) int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
llama_split_mode split_mode = LLAMA_SPLIT_LAYER; // how to split the model across GPUs
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
int32_t n_beams = 0; // if non-zero then use beam search of given width. int32_t n_beams = 0; // if non-zero then use beam search of given width.

View File

@ -88,7 +88,10 @@ int main(int argc, char ** argv) {
llama_model_params model_params = llama_model_default_params(); llama_model_params model_params = llama_model_default_params();
const std::vector<float> t_split (LLAMA_MAX_DEVICES, 0.0f);
model_params.n_gpu_layers = n_gpu_layers; model_params.n_gpu_layers = n_gpu_layers;
model_params.tensor_split = t_split.data();
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);

View File

@ -128,6 +128,25 @@ static std::string get_gpu_info() {
// command line params // command line params
enum output_formats {CSV, JSON, MARKDOWN, SQL}; enum output_formats {CSV, JSON, MARKDOWN, SQL};
static const char * output_format_str(output_formats format) {
switch (format) {
case CSV: return "csv";
case JSON: return "json";
case MARKDOWN: return "md";
case SQL: return "sql";
default: GGML_ASSERT(!"invalid output format");
}
}
static const char * split_mode_str(llama_split_mode mode) {
switch (mode) {
case LLAMA_SPLIT_NONE: return "none";
case LLAMA_SPLIT_LAYER: return "layer";
case LLAMA_SPLIT_ROW: return "row";
default: GGML_ASSERT(!"invalid split mode");
}
}
struct cmd_params { struct cmd_params {
std::vector<std::string> model; std::vector<std::string> model;
std::vector<int> n_prompt; std::vector<int> n_prompt;
@ -137,6 +156,7 @@ struct cmd_params {
std::vector<ggml_type> type_v; std::vector<ggml_type> type_v;
std::vector<int> n_threads; std::vector<int> n_threads;
std::vector<int> n_gpu_layers; std::vector<int> n_gpu_layers;
std::vector<llama_split_mode> split_mode;
std::vector<int> main_gpu; std::vector<int> main_gpu;
std::vector<bool> no_kv_offload; std::vector<bool> no_kv_offload;
std::vector<bool> mul_mat_q; std::vector<bool> mul_mat_q;
@ -155,6 +175,7 @@ static const cmd_params cmd_params_defaults = {
/* type_v */ {GGML_TYPE_F16}, /* type_v */ {GGML_TYPE_F16},
/* n_threads */ {get_num_physical_cores()}, /* n_threads */ {get_num_physical_cores()},
/* n_gpu_layers */ {99}, /* n_gpu_layers */ {99},
/* split_mode */ {LLAMA_SPLIT_LAYER},
/* main_gpu */ {0}, /* main_gpu */ {0},
/* no_kv_offload */ {false}, /* no_kv_offload */ {false},
/* mul_mat_q */ {true}, /* mul_mat_q */ {true},
@ -177,12 +198,13 @@ static void print_usage(int /* argc */, char ** argv) {
printf(" -ctv <t>, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str()); printf(" -ctv <t>, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str()); printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str()); printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str()); printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str()); printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str()); printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
printf(" -ts, --tensor_split <ts0/ts1/..> \n"); printf(" -ts, --tensor_split <ts0/ts1/..> (default: 0)\n");
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps); printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
printf(" -o, --output <csv|json|md|sql> (default: %s)\n", cmd_params_defaults.output_format == CSV ? "csv" : cmd_params_defaults.output_format == JSON ? "json" : cmd_params_defaults.output_format == MARKDOWN ? "md" : "sql"); printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0"); printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
printf("\n"); printf("\n");
printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n"); printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
@ -306,6 +328,28 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
} }
auto p = split<int>(argv[i], split_delim); auto p = split<int>(argv[i], split_delim);
params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end()); params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
} else if (arg == "-sm" || arg == "--split-mode") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<std::string>(argv[i], split_delim);
std::vector<llama_split_mode> modes;
for (const auto & m : p) {
llama_split_mode mode;
if (m == "none") {
mode = LLAMA_SPLIT_NONE;
} else if (m == "layer") {
mode = LLAMA_SPLIT_LAYER;
} else if (m == "row") {
mode = LLAMA_SPLIT_ROW;
} else {
invalid_param = true;
break;
}
modes.push_back(mode);
}
params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
} else if (arg == "-mg" || arg == "--main-gpu") { } else if (arg == "-mg" || arg == "--main-gpu") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
@ -392,6 +436,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; } if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; } if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; } if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; } if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; } if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; } if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
@ -410,6 +455,7 @@ struct cmd_params_instance {
ggml_type type_v; ggml_type type_v;
int n_threads; int n_threads;
int n_gpu_layers; int n_gpu_layers;
llama_split_mode split_mode;
int main_gpu; int main_gpu;
bool no_kv_offload; bool no_kv_offload;
bool mul_mat_q; bool mul_mat_q;
@ -419,6 +465,7 @@ struct cmd_params_instance {
llama_model_params mparams = llama_model_default_params(); llama_model_params mparams = llama_model_default_params();
mparams.n_gpu_layers = n_gpu_layers; mparams.n_gpu_layers = n_gpu_layers;
mparams.split_mode = split_mode;
mparams.main_gpu = main_gpu; mparams.main_gpu = main_gpu;
mparams.tensor_split = tensor_split.data(); mparams.tensor_split = tensor_split.data();
@ -428,6 +475,7 @@ struct cmd_params_instance {
bool equal_mparams(const cmd_params_instance & other) const { bool equal_mparams(const cmd_params_instance & other) const {
return model == other.model && return model == other.model &&
n_gpu_layers == other.n_gpu_layers && n_gpu_layers == other.n_gpu_layers &&
split_mode == other.split_mode &&
main_gpu == other.main_gpu && main_gpu == other.main_gpu &&
tensor_split == other.tensor_split; tensor_split == other.tensor_split;
} }
@ -446,45 +494,13 @@ struct cmd_params_instance {
} }
}; };
static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_params & params, int n_gen, int n_prompt) {
std::vector<cmd_params_instance> instances;
for (const auto & m : params.model)
for (const auto & nl : params.n_gpu_layers)
for (const auto & mg : params.main_gpu)
for (const auto & ts : params.tensor_split)
for (const auto & nb : params.n_batch)
for (const auto & tk : params.type_k)
for (const auto & tv : params.type_v)
for (const auto & mmq : params.mul_mat_q)
for (const auto & nkvo : params.no_kv_offload)
for (const auto & nt : params.n_threads) {
cmd_params_instance instance = {
/* .model = */ m,
/* .n_prompt = */ n_prompt,
/* .n_gen = */ n_gen,
/* .n_batch = */ nb,
/* .type_k = */ tk,
/* .type_v = */ tv,
/* .n_threads = */ nt,
/* .n_gpu_layers = */ nl,
/* .main_gpu = */ mg,
/* .no_kv_offload= */ nkvo,
/* .mul_mat_q = */ mmq,
/* .tensor_split = */ ts,
};
instances.push_back(instance);
}
return instances;
}
static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) { static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
std::vector<cmd_params_instance> instances; std::vector<cmd_params_instance> instances;
#if 1
// this ordering minimizes the number of times that each model needs to be reloaded // this ordering minimizes the number of times that each model needs to be reloaded
for (const auto & m : params.model) for (const auto & m : params.model)
for (const auto & nl : params.n_gpu_layers) for (const auto & nl : params.n_gpu_layers)
for (const auto & sm : params.split_mode)
for (const auto & mg : params.main_gpu) for (const auto & mg : params.main_gpu)
for (const auto & ts : params.tensor_split) for (const auto & ts : params.tensor_split)
for (const auto & nb : params.n_batch) for (const auto & nb : params.n_batch)
@ -506,6 +522,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .type_v = */ tv, /* .type_v = */ tv,
/* .n_threads = */ nt, /* .n_threads = */ nt,
/* .n_gpu_layers = */ nl, /* .n_gpu_layers = */ nl,
/* .split_mode = */ sm,
/* .main_gpu = */ mg, /* .main_gpu = */ mg,
/* .no_kv_offload= */ nkvo, /* .no_kv_offload= */ nkvo,
/* .mul_mat_q = */ mmq, /* .mul_mat_q = */ mmq,
@ -527,6 +544,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .type_v = */ tv, /* .type_v = */ tv,
/* .n_threads = */ nt, /* .n_threads = */ nt,
/* .n_gpu_layers = */ nl, /* .n_gpu_layers = */ nl,
/* .split_mode = */ sm,
/* .main_gpu = */ mg, /* .main_gpu = */ mg,
/* .no_kv_offload= */ nkvo, /* .no_kv_offload= */ nkvo,
/* .mul_mat_q = */ mmq, /* .mul_mat_q = */ mmq,
@ -535,24 +553,6 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
instances.push_back(instance); instances.push_back(instance);
} }
} }
#else
// this ordering separates the prompt and generation tests
for (const auto & n_prompt : params.n_prompt) {
if (n_prompt == 0) {
continue;
}
auto instances_prompt = get_cmd_params_instances_int(params, 0, n_prompt);
instances.insert(instances.end(), instances_prompt.begin(), instances_prompt.end());
}
for (const auto & n_gen : params.n_gen) {
if (n_gen == 0) {
continue;
}
auto instances_gen = get_cmd_params_instances_int(params, n_gen, 0);
instances.insert(instances.end(), instances_gen.begin(), instances_gen.end());
}
#endif
return instances; return instances;
} }
@ -576,6 +576,7 @@ struct test {
ggml_type type_k; ggml_type type_k;
ggml_type type_v; ggml_type type_v;
int n_gpu_layers; int n_gpu_layers;
llama_split_mode split_mode;
int main_gpu; int main_gpu;
bool no_kv_offload; bool no_kv_offload;
bool mul_mat_q; bool mul_mat_q;
@ -597,6 +598,7 @@ struct test {
type_k = inst.type_k; type_k = inst.type_k;
type_v = inst.type_v; type_v = inst.type_v;
n_gpu_layers = inst.n_gpu_layers; n_gpu_layers = inst.n_gpu_layers;
split_mode = inst.split_mode;
main_gpu = inst.main_gpu; main_gpu = inst.main_gpu;
no_kv_offload = inst.no_kv_offload; no_kv_offload = inst.no_kv_offload;
mul_mat_q = inst.mul_mat_q; mul_mat_q = inst.mul_mat_q;
@ -660,7 +662,8 @@ struct test {
"cpu_info", "gpu_info", "cpu_info", "gpu_info",
"model_filename", "model_type", "model_size", "model_n_params", "model_filename", "model_type", "model_size", "model_n_params",
"n_batch", "n_threads", "type_k", "type_v", "n_batch", "n_threads", "type_k", "type_v",
"n_gpu_layers", "main_gpu", "no_kv_offload", "n_gpu_layers", "split_mode",
"main_gpu", "no_kv_offload",
"mul_mat_q", "tensor_split", "mul_mat_q", "tensor_split",
"n_prompt", "n_gen", "test_time", "n_prompt", "n_gen", "test_time",
"avg_ns", "stddev_ns", "avg_ns", "stddev_ns",
@ -711,7 +714,8 @@ struct test {
cpu_info, gpu_info, cpu_info, gpu_info,
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params), model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v), std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(no_kv_offload), std::to_string(n_gpu_layers), split_mode_str(split_mode),
std::to_string(main_gpu), std::to_string(no_kv_offload),
std::to_string(mul_mat_q), tensor_split_str, std::to_string(mul_mat_q), tensor_split_str,
std::to_string(n_prompt), std::to_string(n_gen), test_time, std::to_string(n_prompt), std::to_string(n_gen), test_time,
std::to_string(avg_ns()), std::to_string(stdev_ns()), std::to_string(avg_ns()), std::to_string(stdev_ns()),
@ -867,6 +871,9 @@ struct markdown_printer : public printer {
if (field == "n_gpu_layers") { if (field == "n_gpu_layers") {
return "ngl"; return "ngl";
} }
if (field == "split_mode") {
return "sm";
}
if (field == "n_threads") { if (field == "n_threads") {
return "threads"; return "threads";
} }
@ -907,6 +914,9 @@ struct markdown_printer : public printer {
if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) { if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
fields.push_back("main_gpu"); fields.push_back("main_gpu");
} }
if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
fields.push_back("split_mode");
}
if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) { if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
fields.push_back("mul_mat_q"); fields.push_back("mul_mat_q");
} }

View File

@ -2005,12 +2005,15 @@ static void server_print_usage(const char *argv0, const gpt_params &params,
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
printf(" -ngl N, --n-gpu-layers N\n"); printf(" -ngl N, --n-gpu-layers N\n");
printf(" number of layers to store in VRAM\n"); printf(" number of layers to store in VRAM\n");
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
printf(" how to split the model across multiple GPUs, one of:\n");
printf(" - none: use one GPU only\n");
printf(" - layer (default): split layers and KV across GPUs\n");
printf(" - row: split rows across GPUs\n");
printf(" -ts SPLIT --tensor-split SPLIT\n"); printf(" -ts SPLIT --tensor-split SPLIT\n");
printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n"); printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
printf(" -nommq, --no-mul-mat-q\n"); printf(" or for intermediate results and KV (with split-mode = row)\n");
printf(" use cuBLAS instead of custom mul_mat_q CUDA kernels.\n");
printf(" Not recommended since this is both slower and uses more VRAM.\n");
#endif #endif
printf(" -m FNAME, --model FNAME\n"); printf(" -m FNAME, --model FNAME\n");
printf(" model path (default: %s)\n", params.model.c_str()); printf(" model path (default: %s)\n", params.model.c_str());
@ -2253,6 +2256,33 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
"See main README.md for information on enabling GPU BLAS support", "See main README.md for information on enabling GPU BLAS support",
{{"n_gpu_layers", params.n_gpu_layers}}); {{"n_gpu_layers", params.n_gpu_layers}});
#endif #endif
}
else if (arg == "--split-mode" || arg == "-sm")
{
if (++i >= argc) {
invalid_param = true;
break;
}
std::string arg_next = argv[i];
if (arg_next == "none")
{
params.split_mode = LLAMA_SPLIT_NONE;
}
else if (arg_next == "layer")
{
params.split_mode = LLAMA_SPLIT_LAYER;
}
else if (arg_next == "row")
{
params.split_mode = LLAMA_SPLIT_ROW;
}
else {
invalid_param = true;
break;
}
#ifndef GGML_USE_CUBLAS
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting the split mode has no effect.\n");
#endif // GGML_USE_CUBLAS
} }
else if (arg == "--tensor-split" || arg == "-ts") else if (arg == "--tensor-split" || arg == "-ts")
{ {

View File

@ -102,8 +102,6 @@ void ggml_tallocr_alloc(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
} }
} }
AT_PRINTF("block %d\n", best_fit_block);
if (best_fit_block == -1) { if (best_fit_block == -1) {
// the last block is our last resort // the last block is our last resort
struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1]; struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
@ -117,6 +115,7 @@ void ggml_tallocr_alloc(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
return; return;
} }
} }
struct free_block * block = &alloc->free_blocks[best_fit_block]; struct free_block * block = &alloc->free_blocks[best_fit_block];
void * addr = block->addr; void * addr = block->addr;
block->addr = (char*)block->addr + size; block->addr = (char*)block->addr + size;
@ -129,6 +128,8 @@ void ggml_tallocr_alloc(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
} }
} }
AT_PRINTF("block %d, addr %p\n", best_fit_block, addr);
tensor->data = addr; tensor->data = addr;
tensor->buffer = alloc->buffer; tensor->buffer = alloc->buffer;
if (!alloc->measure) { if (!alloc->measure) {
@ -229,6 +230,7 @@ void ggml_tallocr_reset(ggml_tallocr_t alloc) {
alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows
} else { } else {
alloc->free_blocks[0].size = ggml_backend_buffer_get_size(alloc->buffer) - align_offset; alloc->free_blocks[0].size = ggml_backend_buffer_get_size(alloc->buffer) - align_offset;
ggml_backend_buffer_reset(alloc->buffer);
} }
} }
@ -263,9 +265,9 @@ ggml_tallocr_t ggml_tallocr_new_measure(size_t alignment) {
return alloc; return alloc;
} }
ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend) { ggml_tallocr_t ggml_tallocr_new_measure_from_buft(struct ggml_backend_buffer_type * buft) {
// create a backend buffer to get the correct tensor allocation sizes // create a backend buffer to get the correct tensor allocation sizes
ggml_backend_buffer_t buffer = ggml_backend_alloc_buffer(backend, 1); ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, 1);
// TODO: move alloc initialization to a common ggml_tallocr_new_impl function // TODO: move alloc initialization to a common ggml_tallocr_new_impl function
ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer); ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer);
@ -275,13 +277,22 @@ ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backe
return alloc; return alloc;
} }
ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size) { ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend) {
ggml_backend_buffer_t buffer = ggml_backend_alloc_buffer(backend, size); return ggml_tallocr_new_measure_from_buft(ggml_backend_get_default_buffer_type(backend));
}
ggml_tallocr_t ggml_tallocr_new_from_buft(struct ggml_backend_buffer_type * buft, size_t size) {
// create a backend buffer to get the correct tensor allocation sizes
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size);
ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer); ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer);
alloc->buffer_owned = true; alloc->buffer_owned = true;
return alloc; return alloc;
} }
ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size) {
return ggml_tallocr_new_from_buft(ggml_backend_get_default_buffer_type(backend), size);
}
ggml_tallocr_t ggml_tallocr_new_from_buffer(struct ggml_backend_buffer * buffer) { ggml_tallocr_t ggml_tallocr_new_from_buffer(struct ggml_backend_buffer * buffer) {
ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr)); ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr));
@ -779,10 +790,21 @@ ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_conte
if (nbytes == 0) { if (nbytes == 0) {
// all the tensors in the context are already allocated // all the tensors in the context are already allocated
#ifndef NDEBUG
fprintf(stderr, "%s: all tensors in the context are already allocated\n", __func__);
#endif
return NULL; return NULL;
} }
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, nbytes); ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, nbytes);
if (buffer == NULL) {
// failed to allocate buffer
#ifndef NDEBUG
fprintf(stderr, "%s: failed to allocate buffer\n", __func__);
#endif
return NULL;
}
ggml_tallocr_t tallocr = ggml_tallocr_new_from_buffer(buffer); ggml_tallocr_t tallocr = ggml_tallocr_new_from_buffer(buffer);
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {

View File

@ -52,8 +52,10 @@ typedef struct ggml_tallocr * ggml_tallocr_t;
GGML_API ggml_tallocr_t ggml_tallocr_new(void * data, size_t size, size_t alignment); GGML_API ggml_tallocr_t ggml_tallocr_new(void * data, size_t size, size_t alignment);
GGML_API ggml_tallocr_t ggml_tallocr_new_measure(size_t alignment); GGML_API ggml_tallocr_t ggml_tallocr_new_measure(size_t alignment);
GGML_API ggml_tallocr_t ggml_tallocr_new_from_buffer(struct ggml_backend_buffer * buffer); GGML_API ggml_tallocr_t ggml_tallocr_new_from_buft(struct ggml_backend_buffer_type * buft, size_t size);
GGML_API ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size); // allocates an owned buffer GGML_API ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size); // allocates an owned buffer
GGML_API ggml_tallocr_t ggml_tallocr_new_from_buffer(struct ggml_backend_buffer * buffer);
GGML_API ggml_tallocr_t ggml_tallocr_new_measure_from_buft(struct ggml_backend_buffer_type * buft);
GGML_API ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend); GGML_API ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend);
GGML_API struct ggml_backend_buffer * ggml_tallocr_get_buffer(ggml_tallocr_t talloc); GGML_API struct ggml_backend_buffer * ggml_tallocr_get_buffer(ggml_tallocr_t talloc);

View File

@ -16,9 +16,10 @@ extern "C" {
typedef void * ggml_backend_buffer_type_context_t; typedef void * ggml_backend_buffer_type_context_t;
struct ggml_backend_buffer_type_i { struct ggml_backend_buffer_type_i {
const char * (*get_name) (ggml_backend_buffer_type_t buft);
ggml_backend_buffer_t (*alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size); ggml_backend_buffer_t (*alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size);
size_t (*get_alignment) (ggml_backend_buffer_type_t buft); // tensor alignment size_t (*get_alignment) (ggml_backend_buffer_type_t buft); // tensor alignment
size_t (*get_alloc_size) (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding size_t (*get_alloc_size) (ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding
bool (*supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend bool (*supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend
// check if tensor data is in host memory // check if tensor data is in host memory
// should be equivalent to supports_backend(buft, ggml_backend_cpu_init()) // should be equivalent to supports_backend(buft, ggml_backend_cpu_init())
@ -34,16 +35,15 @@ extern "C" {
typedef void * ggml_backend_buffer_context_t; typedef void * ggml_backend_buffer_context_t;
struct ggml_backend_buffer_i { struct ggml_backend_buffer_i {
const char * (*get_name) (ggml_backend_buffer_t buffer);
void (*free_buffer)(ggml_backend_buffer_t buffer); void (*free_buffer)(ggml_backend_buffer_t buffer);
//void (*reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
void * (*get_base) (ggml_backend_buffer_t buffer); void * (*get_base) (ggml_backend_buffer_t buffer);
void (*init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); void (*init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
void (*set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); void (*set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); void (*get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
// (optional) copy tensor between different buffer-type, allow for single-copy tranfers bool (*cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst); // dst is in the buffer, src may be in any buffer
void (*cpy_tensor_from)(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst);
void (*cpy_tensor_to) (ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst);
void (*clear) (ggml_backend_buffer_t buffer, uint8_t value); void (*clear) (ggml_backend_buffer_t buffer, uint8_t value);
void (*reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
}; };
struct ggml_backend_buffer { struct ggml_backend_buffer {
@ -51,6 +51,7 @@ extern "C" {
ggml_backend_buffer_type_t buft; ggml_backend_buffer_type_t buft;
ggml_backend_buffer_context_t context; ggml_backend_buffer_context_t context;
size_t size; size_t size;
enum ggml_backend_buffer_usage usage;
}; };
ggml_backend_buffer_t ggml_backend_buffer_init( ggml_backend_buffer_t ggml_backend_buffer_init(
@ -59,6 +60,8 @@ extern "C" {
ggml_backend_buffer_context_t context, ggml_backend_buffer_context_t context,
size_t size); size_t size);
// do not use directly, use ggml_backend_tensor_copy instead
bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst);
// //
// Backend // Backend
@ -74,22 +77,20 @@ extern "C" {
// buffer allocation // buffer allocation
ggml_backend_buffer_type_t (*get_default_buffer_type)(ggml_backend_t backend); ggml_backend_buffer_type_t (*get_default_buffer_type)(ggml_backend_t backend);
// (optional) asynchroneous tensor data access // (optional) asynchronous tensor data access
void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
bool (*cpy_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * src, struct ggml_tensor * dst);
// (optional) asynchroneous tensor copy // (optional) complete all pending operations
void (*cpy_tensor_from_async)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
void (*cpy_tensor_to_async) (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
void (*synchronize)(ggml_backend_t backend); void (*synchronize)(ggml_backend_t backend);
// compute graph with a plan // compute graph with a plan
ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, struct ggml_cgraph * cgraph); ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph);
void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan); void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
void (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan); void (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
// compute graph without a plan // compute graph without a plan (async)
bool (*graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph); bool (*graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph);
// check if the backend supports an operation // check if the backend supports an operation
@ -102,7 +103,6 @@ extern "C" {
ggml_backend_context_t context; ggml_backend_context_t context;
}; };
// //
// Backend registry // Backend registry
// //

File diff suppressed because it is too large Load Diff

View File

@ -17,6 +17,7 @@ extern "C" {
// //
// buffer type // buffer type
GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft);
GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size); GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size);
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft); GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
GGML_API size_t ggml_backend_buft_get_alloc_size (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor); GGML_API size_t ggml_backend_buft_get_alloc_size (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
@ -24,6 +25,12 @@ extern "C" {
GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft); GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
// buffer // buffer
enum ggml_backend_buffer_usage {
GGML_BACKEND_BUFFER_USAGE_ANY = 0,
GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1,
};
GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer);
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer); GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer); GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer); GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
@ -32,7 +39,9 @@ extern "C" {
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value); GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer); GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_type(ggml_backend_buffer_t buffer); GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer);
GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer);
// //
// Backend // Backend
@ -140,23 +149,24 @@ extern "C" {
typedef struct ggml_backend_sched * ggml_backend_sched_t; typedef struct ggml_backend_sched * ggml_backend_sched_t;
// Initialize a backend scheduler // Initialize a backend scheduler
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends); GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size);
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched); GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
// Initialize backend buffers from a measure graph // Initialize backend buffers from a measure graph
GGML_API void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph); GGML_API void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
// Get the number of splits of the last graph
GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched);
GGML_API ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend); GGML_API ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API ggml_backend_buffer_t ggml_backend_sched_get_buffer (ggml_backend_sched_t sched, ggml_backend_t backend); GGML_API ggml_backend_buffer_t ggml_backend_sched_get_buffer (ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend); GGML_API void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
GGML_API ggml_backend_t ggml_backend_sched_get_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);
// Allocate a graph on the backend scheduler // Allocate and compute graph on the backend scheduler
GGML_API void ggml_backend_sched_graph_compute( GGML_API void ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
ggml_backend_sched_t sched,
struct ggml_cgraph * graph);
// Reset all assignments and allocators - must be called before using the sched allocators to allocate inputs
GGML_API void ggml_backend_sched_reset(ggml_backend_sched_t sched);
// //
// Utils // Utils
@ -176,7 +186,7 @@ extern "C" {
typedef bool (*ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data); typedef bool (*ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);
// Compare the output of two backends // Compare the output of two backends
GGML_API void ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data); GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data);
// Tensor initialization // Tensor initialization
GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr); GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);

File diff suppressed because it is too large Load Diff

View File

@ -27,22 +27,6 @@ GGML_API void * ggml_cuda_host_malloc(size_t size);
GGML_API void ggml_cuda_host_free(void * ptr); GGML_API void ggml_cuda_host_free(void * ptr);
GGML_API bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); GGML_API bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
GGML_API void ggml_cuda_set_tensor_split(const float * tensor_split);
GGML_API void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor);
GGML_API void ggml_cuda_free_data(struct ggml_tensor * tensor);
GGML_API void ggml_cuda_assign_buffers(struct ggml_tensor * tensor);
GGML_API void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor);
GGML_API void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor);
GGML_API void ggml_cuda_assign_buffers_no_alloc(struct ggml_tensor * tensor);
GGML_API void ggml_cuda_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset);
GGML_API void ggml_cuda_copy_to_device(struct ggml_tensor * tensor);
GGML_API void ggml_cuda_set_main_device(int main_device);
GGML_API void ggml_cuda_set_mul_mat_q(bool mul_mat_q);
GGML_API void ggml_cuda_set_scratch_size(size_t scratch_size);
GGML_API void ggml_cuda_free_scratch(void);
GGML_API bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor); GGML_API bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
GGML_API int ggml_cuda_get_device_count(void); GGML_API int ggml_cuda_get_device_count(void);
@ -52,13 +36,17 @@ GGML_API void ggml_cuda_get_device_description(int device, char * description,
GGML_API ggml_backend_t ggml_backend_cuda_init(int device); GGML_API ggml_backend_t ggml_backend_cuda_init(int device);
GGML_API bool ggml_backend_is_cuda(ggml_backend_t backend); GGML_API bool ggml_backend_is_cuda(ggml_backend_t backend);
GGML_API int ggml_backend_cuda_get_device(ggml_backend_t backend);
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device); GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
// split tensor buffer that splits matrices by rows across multiple devices
// pinned host buffer for use with CPU backend for faster copies between CPU and GPU GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split);
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void); GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
GGML_API int ggml_backend_cuda_get_device_count(void);
GGML_API void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
GGML_API void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif

View File

@ -228,6 +228,8 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
#define GGML_HASHTABLE_FULL ((size_t)-1) #define GGML_HASHTABLE_FULL ((size_t)-1)
#define GGML_HASHTABLE_ALREADY_EXISTS ((size_t)-2) #define GGML_HASHTABLE_ALREADY_EXISTS ((size_t)-2)
struct ggml_hash_set ggml_hash_set_new(size_t size);
bool ggml_hash_contains (const struct ggml_hash_set hash_set, struct ggml_tensor * key); bool ggml_hash_contains (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
// returns GGML_HASHTABLE_FULL if table is full, otherwise the current index of the key or where it should be inserted // returns GGML_HASHTABLE_FULL if table is full, otherwise the current index of the key or where it should be inserted

View File

@ -2520,10 +2520,10 @@ static void ggml_backend_metal_free_device(void) {
} }
} }
static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) { static const char * ggml_backend_metal_buffer_get_name(ggml_backend_buffer_t buffer) {
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context; return "Metal";
return ctx->all_data; UNUSED(buffer);
} }
static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) { static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) {
@ -2541,6 +2541,12 @@ static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer)
free(ctx); free(ctx);
} }
static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
return ctx->all_data;
}
static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
memcpy((char *)tensor->data + offset, data, size); memcpy((char *)tensor->data + offset, data, size);
@ -2553,14 +2559,12 @@ static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, c
UNUSED(buffer); UNUSED(buffer);
} }
static void ggml_backend_metal_buffer_cpy_tensor_from(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) { static bool ggml_backend_metal_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src)); if (ggml_backend_buffer_is_host(src->buffer)) {
memcpy(dst->data, src->data, ggml_nbytes(src));
UNUSED(buffer); return true;
} }
return false;
static void ggml_backend_metal_buffer_cpy_tensor_to(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) {
ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
UNUSED(buffer); UNUSED(buffer);
} }
@ -2572,18 +2576,25 @@ static void ggml_backend_metal_buffer_clear(ggml_backend_buffer_t buffer, uint8_
} }
static struct ggml_backend_buffer_i ggml_backend_metal_buffer_i = { static struct ggml_backend_buffer_i ggml_backend_metal_buffer_i = {
/* .get_name = */ ggml_backend_metal_buffer_get_name,
/* .free_buffer = */ ggml_backend_metal_buffer_free_buffer, /* .free_buffer = */ ggml_backend_metal_buffer_free_buffer,
/* .get_base = */ ggml_backend_metal_buffer_get_base, /* .get_base = */ ggml_backend_metal_buffer_get_base,
/* .init_tensor = */ NULL, /* .init_tensor = */ NULL,
/* .set_tensor = */ ggml_backend_metal_buffer_set_tensor, /* .set_tensor = */ ggml_backend_metal_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_metal_buffer_get_tensor, /* .get_tensor = */ ggml_backend_metal_buffer_get_tensor,
/* .cpy_tensor_from = */ ggml_backend_metal_buffer_cpy_tensor_from, /* .cpy_tensor = */ ggml_backend_metal_buffer_cpy_tensor,
/* .cpy_tensor_to = */ ggml_backend_metal_buffer_cpy_tensor_to,
/* .clear = */ ggml_backend_metal_buffer_clear, /* .clear = */ ggml_backend_metal_buffer_clear,
/* .reset = */ NULL,
}; };
// default buffer type // default buffer type
static const char * ggml_backend_metal_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
return "Metal";
UNUSED(buft);
}
static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context)); struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context));
@ -2656,6 +2667,7 @@ static bool ggml_backend_metal_buffer_type_is_host(ggml_backend_buffer_type_t bu
ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) { ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
static struct ggml_backend_buffer_type ggml_backend_buffer_type_metal = { static struct ggml_backend_buffer_type ggml_backend_buffer_type_metal = {
/* .iface = */ { /* .iface = */ {
/* .get_name = */ ggml_backend_metal_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_alloc_buffer, /* .alloc_buffer = */ ggml_backend_metal_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_metal_buffer_type_get_alignment, /* .get_alignment = */ ggml_backend_metal_buffer_type_get_alignment,
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
@ -2679,6 +2691,14 @@ ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t siz
ctx->n_buffers = 0; ctx->n_buffers = 0;
const size_t size_page = sysconf(_SC_PAGESIZE); const size_t size_page = sysconf(_SC_PAGESIZE);
// page-align the data ptr
{
const uintptr_t offs = (uintptr_t) data % size_page;
data = (void *) ((char *) data - offs);
size += offs;
}
size_t size_aligned = size; size_t size_aligned = size;
if ((size_aligned % size_page) != 0) { if ((size_aligned % size_page) != 0) {
size_aligned += (size_page - (size_aligned % size_page)); size_aligned += (size_page - (size_aligned % size_page));
@ -2779,14 +2799,13 @@ static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct
UNUSED(backend); UNUSED(backend);
} }
static struct ggml_backend_i metal_backend_i = { static struct ggml_backend_i ggml_backend_metal_i = {
/* .get_name = */ ggml_backend_metal_name, /* .get_name = */ ggml_backend_metal_name,
/* .free = */ ggml_backend_metal_free, /* .free = */ ggml_backend_metal_free,
/* .get_default_buffer_type = */ ggml_backend_metal_get_default_buffer_type, /* .get_default_buffer_type = */ ggml_backend_metal_get_default_buffer_type,
/* .set_tensor_async = */ NULL, /* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL, /* .get_tensor_async = */ NULL,
/* .cpy_tensor_from_async = */ NULL, /* .cpy_tensor_async = */ NULL,
/* .cpy_tensor_to_async = */ NULL,
/* .synchronize = */ NULL, /* .synchronize = */ NULL,
/* .graph_plan_create = */ NULL, /* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL, /* .graph_plan_free = */ NULL,
@ -2805,7 +2824,7 @@ ggml_backend_t ggml_backend_metal_init(void) {
ggml_backend_t metal_backend = malloc(sizeof(struct ggml_backend)); ggml_backend_t metal_backend = malloc(sizeof(struct ggml_backend));
*metal_backend = (struct ggml_backend) { *metal_backend = (struct ggml_backend) {
/* .interface = */ metal_backend_i, /* .interface = */ ggml_backend_metal_i,
/* .context = */ ctx, /* .context = */ ctx,
}; };
@ -2813,7 +2832,7 @@ ggml_backend_t ggml_backend_metal_init(void) {
} }
bool ggml_backend_is_metal(ggml_backend_t backend) { bool ggml_backend_is_metal(ggml_backend_t backend) {
return backend->iface.get_name == ggml_backend_metal_name; return backend && backend->iface.get_name == ggml_backend_metal_name;
} }
void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) { void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) {

View File

@ -1,5 +1,6 @@
#include "ggml.h" #include "ggml.h"
#include "ggml-opencl.h" #include "ggml-opencl.h"
#include "ggml-backend-impl.h"
#include <array> #include <array>
#include <atomic> #include <atomic>
@ -10,7 +11,7 @@
#include <sstream> #include <sstream>
#include <vector> #include <vector>
#define CL_TARGET_OPENCL_VERSION 110 #define CL_TARGET_OPENCL_VERSION 120
#include <clblast.h> #include <clblast.h>
#if defined(_MSC_VER) #if defined(_MSC_VER)
@ -929,6 +930,12 @@ static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, co
} }
void ggml_cl_init(void) { void ggml_cl_init(void) {
static bool initialized = false;
if (initialized) {
return;
}
initialized = true;
cl_int err; cl_int err;
struct cl_device; struct cl_device;
@ -1483,8 +1490,8 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
} else { } else {
d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size); d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
} }
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size); cl_mem d_Y = src1->backend == GGML_BACKEND_GPU ? (cl_mem) src1->extra : ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size); cl_mem d_D = dst->backend == GGML_BACKEND_GPU ? (cl_mem) dst->extra : ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
size_t x_offset = 0; size_t x_offset = 0;
@ -1501,7 +1508,9 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) { for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
// copy src1 to device // copy src1 to device
if (src1->backend == GGML_BACKEND_CPU) {
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL)); CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
}
CL_CHECK(clFinish(queue)); CL_CHECK(clFinish(queue));
@ -1522,19 +1531,25 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
} }
// copy dst to host // copy dst to host
if (dst->backend == GGML_BACKEND_CPU) {
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3); float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL)); CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
} }
} }
} }
} }
}
if (src0->backend != GGML_BACKEND_GPU) { if (src0->backend != GGML_BACKEND_GPU) {
ggml_cl_pool_free(d_X, x_size); ggml_cl_pool_free(d_X, x_size);
} }
if (src1->backend != GGML_BACKEND_GPU) {
ggml_cl_pool_free(d_Y, y_size); ggml_cl_pool_free(d_Y, y_size);
}
if (dst->backend != GGML_BACKEND_GPU) {
ggml_cl_pool_free(d_D, d_size); ggml_cl_pool_free(d_D, d_size);
} }
}
static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) { static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) {
GGML_ASSERT(fp16_support); GGML_ASSERT(fp16_support);
@ -1598,6 +1613,8 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL)); CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
} }
// FIXME: convert on device
for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) { for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
// convert src1 to fp16 // convert src1 to fp16
// TODO: use multiple threads // TODO: use multiple threads
@ -1643,11 +1660,13 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
} }
// copy dst to host, then convert to float // copy dst to host, then convert to float
if (dst->backend == GGML_BACKEND_CPU) {
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL)); CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3); float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
ggml_fp16_to_fp32_row(tmp, d, d_ne); ggml_fp16_to_fp32_row(tmp, d, d_ne);
} else {
// FIXME: convert dst to fp32 on device
}
} }
} }
} }
@ -1801,7 +1820,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
} }
bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, const struct ggml_tensor * dst) {
const int64_t ne10 = src1->ne[0]; const int64_t ne10 = src1->ne[0];
const int64_t ne0 = dst->ne[0]; const int64_t ne0 = dst->ne[0];
@ -1895,3 +1914,291 @@ void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) {
tensor->extra = dst; tensor->extra = dst;
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
} }
// ggml-backend
// buffer
struct ggml_backend_opencl_buffer_context {
~ggml_backend_opencl_buffer_context() {
if (buffer) {
clReleaseMemObject(buffer);
}
for (auto * sub_buffer : sub_buffers) {
clReleaseMemObject(sub_buffer);
}
}
cl_mem buffer;
std::vector<cl_mem> sub_buffers;
};
static void * const cl_ptr_base = (void *)(uintptr_t) 0x1000;
static const char * ggml_backend_opencl_buffer_get_name(ggml_backend_buffer_t buffer) {
return "OpenCL";
GGML_UNUSED(buffer);
}
static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
delete ctx;
}
static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
return cl_ptr_base;
GGML_UNUSED(buffer);
}
static void ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
if (tensor->view_src != NULL && tensor->view_offs == 0) {
tensor->extra = tensor->view_src->extra;
} else {
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
cl_buffer_region region = {(size_t)((char *)tensor->data - (char *)cl_ptr_base), ggml_nbytes(tensor)};
cl_int err;
cl_mem sub_buffer = clCreateSubBuffer(ctx->buffer, CL_MEM_READ_WRITE, CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
CL_CHECK(err);
ctx->sub_buffers.push_back(sub_buffer);
tensor->extra = sub_buffer;
}
tensor->backend = GGML_BACKEND_GPU;
}
static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
cl_mem tensor_buffer = (cl_mem) tensor->extra;
CL_CHECK(clEnqueueWriteBuffer(queue, tensor_buffer, true, offset, size, data, 0, NULL, NULL));
CL_CHECK(clFinish(queue));
GGML_UNUSED(buffer);
}
static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
cl_mem tensor_buffer = (cl_mem) tensor->extra;
CL_CHECK(clEnqueueReadBuffer(queue, tensor_buffer, true, offset, size, data, 0, NULL, NULL));
CL_CHECK(clFinish(queue));
GGML_UNUSED(buffer);
}
static void ggml_backend_opencl_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
CL_CHECK(clEnqueueFillBuffer(queue, ctx->buffer, &value, sizeof(value), 0, buffer->size, 0, NULL, NULL));
CL_CHECK(clFinish(queue));
}
static void ggml_backend_opencl_buffer_reset(ggml_backend_buffer_t buffer) {
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
for (auto * sub_buffer : ctx->sub_buffers) {
clReleaseMemObject(sub_buffer);
}
ctx->sub_buffers.clear();
}
static ggml_backend_buffer_i ggml_backend_opencl_buffer_interface = {
/* .get_name = */ ggml_backend_opencl_buffer_get_name,
/* .free_buffer = */ ggml_backend_opencl_buffer_free_buffer,
/* .get_base = */ ggml_backend_opencl_buffer_get_base,
/* .init_tensor = */ ggml_backend_opencl_buffer_init_tensor,
/* .set_tensor = */ ggml_backend_opencl_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_opencl_buffer_get_tensor,
/* .cpy_tensor = */ NULL,
/* .clear = */ ggml_backend_opencl_buffer_clear,
/* .reset = */ ggml_backend_opencl_buffer_reset,
};
// buffer type
static const char * ggml_backend_opencl_buffer_type_name(ggml_backend_buffer_type_t buffer_type) {
return "OpenCL";
GGML_UNUSED(buffer_type);
}
static ggml_backend_buffer_t ggml_backend_opencl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buffer_type, size_t size) {
ggml_cl_init();
cl_int err;
cl_mem mem = clCreateBuffer(context, CL_MEM_READ_WRITE, size, NULL, &err);
if (err != CL_SUCCESS) {
fprintf(stderr, "%s: failed to allocate %.2f MiB\n", __func__, size / 1024.0 / 1024.0);
return nullptr;
}
ggml_backend_opencl_buffer_context * ctx = new ggml_backend_opencl_buffer_context{mem, {}};
return ggml_backend_buffer_init(buffer_type, ggml_backend_opencl_buffer_interface, ctx, size);
}
static size_t ggml_backend_opencl_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) {
// FIXME: not thread safe, device may not be initialized yet
static cl_uint alignment = -1;
if (alignment == (cl_uint)-1) {
ggml_cl_init();
clGetDeviceInfo(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint), &alignment, NULL);
}
return alignment;
GGML_UNUSED(buffer_type);
}
static bool ggml_backend_opencl_buffer_type_supports_backend(ggml_backend_buffer_type_t buffer_type, ggml_backend_t backend) {
//return ggml_backend_is_opencl(backend); // opencl must be used through the cpu backend
return ggml_backend_is_cpu(backend);
GGML_UNUSED(buffer_type);
}
static ggml_backend_buffer_type_i ggml_backend_opencl_buffer_type_interface = {
/* .get_name = */ ggml_backend_opencl_buffer_type_name,
/* .alloc_buffer = */ ggml_backend_opencl_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_opencl_buffer_type_get_alignment,
/* .get_alloc_size = */ NULL,
/* .supports_backend = */ ggml_backend_opencl_buffer_type_supports_backend,
/* .is_host = */ NULL,
};
ggml_backend_buffer_type_t ggml_backend_opencl_buffer_type() {
static ggml_backend_buffer_type buffer_type = {
/* .iface = */ ggml_backend_opencl_buffer_type_interface,
/* .context = */ nullptr,
};
return &buffer_type;
}
#if 0
// host buffer type
static const char * ggml_backend_opencl_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
return "CL_Host";
GGML_UNUSED(buft);
}
static const char * ggml_backend_opencl_host_buffer_name(ggml_backend_buffer_t buffer) {
return "CL_Host";
GGML_UNUSED(buffer);
}
static void ggml_backend_opencl_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_cl_host_free(buffer->context);
}
static ggml_backend_buffer_t ggml_backend_opencl_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
void * ptr = ggml_cl_host_malloc(size);
if (ptr == nullptr) {
// fallback to cpu buffer
return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
}
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
buffer->buft = buft;
buffer->iface.get_name = ggml_backend_opencl_host_buffer_name;
buffer->iface.free_buffer = ggml_backend_opencl_host_buffer_free_buffer;
return buffer;
}
ggml_backend_buffer_type_t ggml_backend_opencl_host_buffer_type() {
static struct ggml_backend_buffer_type ggml_backend_opencl_buffer_type_host = {
/* .iface = */ {
/* .get_name = */ ggml_backend_opencl_host_buffer_type_name,
/* .alloc_buffer = */ ggml_backend_opencl_host_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
/* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
},
/* .context = */ nullptr,
};
return &ggml_backend_opencl_buffer_type_host;
}
// backend
static const char * ggml_backend_opencl_name(ggml_backend_t backend) {
return "OpenCL";
GGML_UNUSED(backend);
}
static void ggml_backend_opencl_free(ggml_backend_t backend) {
GGML_UNUSED(backend);
}
static ggml_backend_buffer_type_t ggml_backend_opencl_get_default_buffer_type(ggml_backend_t backend) {
return ggml_backend_opencl_buffer_type();
GGML_UNUSED(backend);
}
static bool ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * graph) {
for (int i = 0; i < graph->n_nodes; ++i) {
ggml_tensor * node = graph->nodes[i];
switch (node->op) {
case GGML_OP_MUL_MAT:
ggml_cl_mul_mat(node->src[0], node->src[1], node, nullptr, 0);
break;
case GGML_OP_MUL:
ggml_cl_mul(node->src[0], node->src[1], node);
break;
default:
GGML_ASSERT(false);
}
}
return true;
GGML_UNUSED(backend);
}
static bool ggml_backend_opencl_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
switch (op->op) {
case GGML_OP_MUL_MAT:
return ggml_cl_can_mul_mat(op->src[0], op->src[1], op);
case GGML_OP_MUL:
// return ggml_can_repeat_rows(op->src[1], op->src[0]);
return true;
default:
return false;
}
GGML_UNUSED(backend);
}
static ggml_backend_i opencl_backend_i = {
/* .get_name = */ ggml_backend_opencl_name,
/* .free = */ ggml_backend_opencl_free,
/* .get_default_buffer_type = */ ggml_backend_opencl_get_default_buffer_type,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_from_async = */ NULL,
/* .cpy_tensor_to_async = */ NULL,
/* .synchronize = */ NULL,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_opencl_graph_compute,
/* .supports_op = */ ggml_backend_opencl_supports_op,
};
ggml_backend_t ggml_backend_opencl_init() {
ggml_backend_t backend = new ggml_backend {
/* .interface = */ opencl_backend_i,
/* .context = */ nullptr
};
return backend;
}
bool ggml_backend_is_opencl(ggml_backend_t backend) {
return backend && backend->iface.get_name == ggml_backend_opencl_name;
}
#endif

View File

@ -1,6 +1,7 @@
#pragma once #pragma once
#include "ggml.h" #include "ggml.h"
#include "ggml-backend.h"
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
@ -9,17 +10,26 @@ extern "C" {
GGML_API void ggml_cl_init(void); GGML_API void ggml_cl_init(void);
GGML_API void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); GGML_API void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
GGML_API bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); GGML_API bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, const struct ggml_tensor * dst);
GGML_API size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); GGML_API size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
GGML_API void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize); GGML_API void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
GGML_API void * ggml_cl_host_malloc(size_t size); // GGML_API void * ggml_cl_host_malloc(size_t size);
GGML_API void ggml_cl_host_free(void * ptr); // GGML_API void ggml_cl_host_free(void * ptr);
GGML_API void ggml_cl_free_data(const struct ggml_tensor* tensor); GGML_API void ggml_cl_free_data(const struct ggml_tensor* tensor);
GGML_API void ggml_cl_transform_tensor(void * data, struct ggml_tensor * tensor); GGML_API void ggml_cl_transform_tensor(void * data, struct ggml_tensor * tensor);
// backend API
// GGML_API ggml_backend_t ggml_backend_opencl_init(void);
// GGML_API bool ggml_backend_is_opencl(ggml_backend_t backend);
GGML_API ggml_backend_buffer_type_t ggml_backend_opencl_buffer_type(void);
// GGML_API ggml_backend_buffer_type_t ggml_backend_opencl_host_buffer_type(void);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif

30
ggml.c
View File

@ -2354,6 +2354,10 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
} }
void ggml_free(struct ggml_context * ctx) { void ggml_free(struct ggml_context * ctx) {
if (ctx == NULL) {
return;
}
// make this function thread safe // make this function thread safe
ggml_critical_section_start(); ggml_critical_section_start();
@ -4362,6 +4366,23 @@ struct ggml_tensor * ggml_cpy(
return ggml_cpy_impl(ctx, a, b); return ggml_cpy_impl(ctx, a, b);
} }
struct ggml_tensor * ggml_cast(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_type type) {
bool is_node = false;
struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
ggml_format_name(result, "%s (copy)", a->name);
result->op = GGML_OP_CPY;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = result;
return result;
}
// ggml_cont // ggml_cont
static struct ggml_tensor * ggml_cont_impl( static struct ggml_tensor * ggml_cont_impl(
@ -14871,7 +14892,7 @@ size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tenso
return i; return i;
} }
static struct ggml_hash_set ggml_hash_set_new(size_t size) { struct ggml_hash_set ggml_hash_set_new(size_t size) {
size = ggml_hash_size(size); size = ggml_hash_size(size);
struct ggml_hash_set result; struct ggml_hash_set result;
result.size = size; result.size = size;
@ -16620,7 +16641,7 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
return GGML_EXIT_SUCCESS; return GGML_EXIT_SUCCESS;
} }
struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) { struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
if (n_threads <= 0) { if (n_threads <= 0) {
n_threads = GGML_DEFAULT_N_THREADS; n_threads = GGML_DEFAULT_N_THREADS;
} }
@ -16682,14 +16703,15 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
} break; } break;
case GGML_OP_MUL_MAT_ID: case GGML_OP_MUL_MAT_ID:
{ {
cur = 0;
const struct ggml_tensor * src0 = node->src[2]; const struct ggml_tensor * src0 = node->src[2];
const struct ggml_tensor * src1 = node->src[1]; const struct ggml_tensor * src1 = node->src[1];
const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type; const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
if (src1->type != vec_dot_type) { if (src1->type != vec_dot_type) {
cur = ggml_row_size(vec_dot_type, ggml_nelements(src1)); cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
} }
const int n_as = ggml_get_op_params_i32(node, 1); const int n_as = ggml_get_op_params_i32(node, 1);
cur = GGML_PAD(cur, sizeof(int64_t)); // align cur += GGML_PAD(cur, sizeof(int64_t)); // align
cur += n_as * sizeof(int64_t); // matrix_row_counts cur += n_as * sizeof(int64_t); // matrix_row_counts
cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
} break; } break;

7
ggml.h
View File

@ -1165,6 +1165,11 @@ extern "C" {
struct ggml_tensor * a, struct ggml_tensor * a,
struct ggml_tensor * b); struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_cast(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_type type);
// make contiguous // make contiguous
GGML_API struct ggml_tensor * ggml_cont( GGML_API struct ggml_tensor * ggml_cont(
struct ggml_context * ctx, struct ggml_context * ctx,
@ -1842,7 +1847,7 @@ extern "C" {
// ggml_graph_plan() has to be called before ggml_graph_compute() // ggml_graph_plan() has to be called before ggml_graph_compute()
// when plan.work_size > 0, caller must allocate memory for plan.work_data // when plan.work_size > 0, caller must allocate memory for plan.work_data
GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/); GGML_API struct ggml_cplan ggml_graph_plan (const struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
GGML_API int ggml_graph_compute( struct ggml_cgraph * cgraph, struct ggml_cplan * cplan); GGML_API int ggml_graph_compute( struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
// same as ggml_graph_compute() but the work data is allocated as a part of the context // same as ggml_graph_compute() but the work data is allocated as a part of the context

2226
llama.cpp

File diff suppressed because it is too large Load Diff

18
llama.h
View File

@ -118,6 +118,12 @@ extern "C" {
LLAMA_ROPE_SCALING_MAX_VALUE = LLAMA_ROPE_SCALING_YARN, LLAMA_ROPE_SCALING_MAX_VALUE = LLAMA_ROPE_SCALING_YARN,
}; };
enum llama_split_mode {
LLAMA_SPLIT_NONE = 0, // single GPU
LLAMA_SPLIT_LAYER = 1, // split layers and KV across GPUs
LLAMA_SPLIT_ROW = 2, // split rows across GPUs
};
typedef struct llama_token_data { typedef struct llama_token_data {
llama_token id; // token id llama_token id; // token id
float logit; // log-odds of the token float logit; // log-odds of the token
@ -180,8 +186,16 @@ extern "C" {
struct llama_model_params { struct llama_model_params {
int32_t n_gpu_layers; // number of layers to store in VRAM int32_t n_gpu_layers; // number of layers to store in VRAM
int32_t main_gpu; // the GPU that is used for scratch and small tensors enum llama_split_mode split_mode; // how to split the model across multiple GPUs
const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
// main_gpu interpretation depends on split_mode:
// LLAMA_SPLIT_NONE: the GPU that is used for the entire model
// LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
// LLAMA_SPLIT_LAYER: ignored
int32_t main_gpu;
// proportion of the model (layers or rows) to offload to each GPU, size: LLAMA_MAX_DEVICES
const float * tensor_split;
// Called with a progress value between 0.0 and 1.0. Pass NULL to disable. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
// If the provided progress_callback returns true, model loading continues. // If the provided progress_callback returns true, model loading continues.

View File

@ -376,6 +376,11 @@ struct test_case {
// allocate // allocate
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1); ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
if (buf == NULL) {
printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
ggml_free(ctx);
return false;
}
// build graph // build graph
ggml_build_forward_expand(gf, out); ggml_build_forward_expand(gf, out);
@ -463,19 +468,23 @@ struct test_case {
GGML_UNUSED(index); GGML_UNUSED(index);
}; };
ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud); const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
if (ud.ok) { if (!cmp_ok) {
printf("\033[1;32mOK\033[0m\n"); printf("compare failed ");
} else {
printf("\033[1;31mFAIL\033[0m\n");
} }
ggml_backend_buffer_free(buf); ggml_backend_buffer_free(buf);
ggml_free(ctx); ggml_free(ctx);
return ud.ok; if (ud.ok && cmp_ok) {
printf("\033[1;32mOK\033[0m\n");
return true;
}
printf("\033[1;31mFAIL\033[0m\n");
return false;
} }
bool eval_perf(ggml_backend_t backend, const char * op_name) { bool eval_perf(ggml_backend_t backend, const char * op_name) {
@ -519,6 +528,11 @@ struct test_case {
// allocate // allocate
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend); ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend);
if (buf == NULL) {
printf("failed to allocate tensors\n");
ggml_free(ctx);
return false;
}
// randomize tensors // randomize tensors
initialize_tensors(ctx); initialize_tensors(ctx);