mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 02:44:36 +00:00
[SYCL] Add support for soft_max ALiBi (#5639)
* Add support for bias * Update pre-processor * rm commented code * fix format * fix CI --------- Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
This commit is contained in:
parent
67fd33132f
commit
e849078c6e
248
ggml-sycl.cpp
248
ggml-sycl.cpp
@ -8126,23 +8126,51 @@ static void diag_mask_inf_f32(const float * x, float * dst, const int ncols, con
|
||||
dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
|
||||
}
|
||||
|
||||
static void soft_max_f32(const float * x, const float * y, float * dst, const int ncols, const int nrows_y, const float scale,
|
||||
const sycl::nd_item<3> &item_ct1, float *buf) {
|
||||
|
||||
template <bool vals_smem, int ncols_template, int block_size_template>
|
||||
static void soft_max_f32(const float * x, const float * mask, const float *pos, float * dst, const int ncols_par,
|
||||
const int nrows_y, const float scale, const float max_bias, const float m0,
|
||||
const float m1, uint32_t n_head_log2, const sycl::nd_item<3> &item_ct1, float *buf) {
|
||||
const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
|
||||
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
const int rowx = item_ct1.get_group(2);
|
||||
const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
|
||||
|
||||
const int block_size = item_ct1.get_local_range(2);
|
||||
const int block_size = block_size_template == 0 ? item_ct1.get_local_range(2) : block_size_template;
|
||||
|
||||
const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
|
||||
const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
|
||||
|
||||
float slope = 0.0f;
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
const uint32_t h = rowx/nrows_y; // head index
|
||||
|
||||
const float base = h < n_head_log2 ? m0 : m1;
|
||||
const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
slope = sycl::pow(base, float(exp));
|
||||
}
|
||||
|
||||
float * vals = vals_smem ? buf + WARP_SIZE : dst + rowx*ncols;
|
||||
float max_val = -INFINITY;
|
||||
|
||||
for (int col = tid; col < ncols; col += block_size) {
|
||||
for (int col0 = 0; col0 < ncols; col0 += block_size) {
|
||||
const int col = col0 + tid;
|
||||
|
||||
if (ncols_template == 0 && col >= ncols) {
|
||||
break;
|
||||
}
|
||||
|
||||
const int ix = rowx*ncols + col;
|
||||
const int iy = rowy*ncols + col;
|
||||
max_val = sycl::max(max_val, x[ix] * scale + (y ? y[iy] : 0.0f));
|
||||
|
||||
const float val = x[ix]*scale + (mask ? mask[iy] : 0.0f) + (pos ? slope*pos[col] : 0.0f);
|
||||
|
||||
vals[col] = val;
|
||||
max_val = sycl::max(max_val, val);
|
||||
}
|
||||
|
||||
// find the max value in the block
|
||||
@ -8151,30 +8179,12 @@ static void soft_max_f32(const float * x, const float * y, float * dst, const in
|
||||
if (warp_id == 0) {
|
||||
buf[lane_id] = -INFINITY;
|
||||
}
|
||||
/*
|
||||
DPCT1118:12: SYCL group functions and algorithms must be encountered in
|
||||
converged control flow. You may need to adjust the code.
|
||||
*/
|
||||
/*
|
||||
DPCT1065:60: Consider replacing sycl::nd_item::barrier() with
|
||||
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
|
||||
better performance if there is no access to global memory.
|
||||
*/
|
||||
item_ct1.barrier();
|
||||
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||||
|
||||
if (lane_id == 0) {
|
||||
buf[warp_id] = max_val;
|
||||
}
|
||||
/*
|
||||
DPCT1118:13: SYCL group functions and algorithms must be encountered in
|
||||
converged control flow. You may need to adjust the code.
|
||||
*/
|
||||
/*
|
||||
DPCT1065:61: Consider replacing sycl::nd_item::barrier() with
|
||||
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
|
||||
better performance if there is no access to global memory.
|
||||
*/
|
||||
item_ct1.barrier();
|
||||
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||||
|
||||
max_val = buf[lane_id];
|
||||
max_val = warp_reduce_max(max_val, item_ct1);
|
||||
@ -8182,13 +8192,16 @@ static void soft_max_f32(const float * x, const float * y, float * dst, const in
|
||||
|
||||
float tmp = 0.f;
|
||||
|
||||
for (int col = tid; col < ncols; col += block_size) {
|
||||
const int ix = rowx*ncols + col;
|
||||
const int iy = rowy*ncols + col;
|
||||
const float val =
|
||||
sycl::native::exp((x[ix] * scale + (y ? y[iy] : 0.0f)) - max_val);
|
||||
#pragma unroll
|
||||
for (int col0 = 0; col0 < ncols; col0 += block_size) {
|
||||
const int col = col0 + tid;
|
||||
if (ncols_template == 0 && col >= ncols) {
|
||||
break;
|
||||
}
|
||||
|
||||
const float val = sycl::native::exp(vals[col] - max_val);
|
||||
tmp += val;
|
||||
dst[ix] = val;
|
||||
vals[col] = val;
|
||||
}
|
||||
|
||||
// find the sum of exps in the block
|
||||
@ -8197,40 +8210,29 @@ static void soft_max_f32(const float * x, const float * y, float * dst, const in
|
||||
if (warp_id == 0) {
|
||||
buf[lane_id] = 0.f;
|
||||
}
|
||||
/*
|
||||
DPCT1118:14: SYCL group functions and algorithms must be encountered in
|
||||
converged control flow. You may need to adjust the code.
|
||||
*/
|
||||
/*
|
||||
DPCT1065:62: Consider replacing sycl::nd_item::barrier() with
|
||||
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
|
||||
better performance if there is no access to global memory.
|
||||
*/
|
||||
item_ct1.barrier();
|
||||
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||||
|
||||
if (lane_id == 0) {
|
||||
buf[warp_id] = tmp;
|
||||
}
|
||||
/*
|
||||
DPCT1118:15: SYCL group functions and algorithms must be encountered in
|
||||
converged control flow. You may need to adjust the code.
|
||||
*/
|
||||
/*
|
||||
DPCT1065:63: Consider replacing sycl::nd_item::barrier() with
|
||||
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
|
||||
better performance if there is no access to global memory.
|
||||
*/
|
||||
item_ct1.barrier();
|
||||
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||||
|
||||
tmp = buf[lane_id];
|
||||
tmp = warp_reduce_sum(tmp, item_ct1);
|
||||
}
|
||||
|
||||
const float inv_tmp = 1.f / tmp;
|
||||
const float inv_sum = 1.f / tmp;
|
||||
|
||||
for (int col = tid; col < ncols; col += block_size) {
|
||||
const int i = rowx*ncols + col;
|
||||
dst[i] *= inv_tmp;
|
||||
#pragma unroll
|
||||
for (int col0 = 0; col0 < ncols; col0 += block_size) {
|
||||
const int col = col0 + tid;
|
||||
|
||||
if (ncols_template == 0 && col >= ncols) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int idst = rowx*ncols + col;
|
||||
dst[idst] = vals[col] * inv_sum;
|
||||
}
|
||||
}
|
||||
|
||||
@ -10867,35 +10869,96 @@ static void diag_mask_inf_f32_sycl(const float *x, float *dst,
|
||||
});
|
||||
}
|
||||
|
||||
static void soft_max_f32_sycl(const float *x, const float *y, float *dst,
|
||||
const int ncols_x, const int nrows_x,
|
||||
const int nrows_y, const float scale,
|
||||
template <bool vals_smem, int ncols_template, int block_size_template>
|
||||
static void soft_max_f32_submitter(const float * x, const float * mask, const float *pos, float * dst, const int ncols_par,
|
||||
const int nrows_y, const float scale, const float max_bias, const float m0,
|
||||
const float m1, uint32_t n_head_log2, sycl::range<3> block_nums, sycl::range<3> block_dims,
|
||||
const size_t n_local_scratch, dpct::queue_ptr stream) {
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
sycl::local_accessor<float, 1> local_buf_acc(n_local_scratch, cgh);
|
||||
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
||||
soft_max_f32<vals_smem, ncols_template, block_size_template>(x, mask, pos, dst, ncols_par,
|
||||
nrows_y, scale, max_bias, m0,
|
||||
m1, n_head_log2, item_ct1,
|
||||
local_buf_acc.get_pointer());
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
static void soft_max_f32_sycl(const float * x, const float * mask, const float * pos,
|
||||
float * dst, const int ncols_x, const int nrows_x,
|
||||
const int nrows_y, const float scale, const float max_bias,
|
||||
dpct::queue_ptr stream) {
|
||||
int nth = WARP_SIZE;
|
||||
while (nth < ncols_x && nth < SYCL_SOFT_MAX_BLOCK_SIZE) nth *= 2;
|
||||
const sycl::range<3> block_dims(1, 1, nth);
|
||||
const sycl::range<3> block_nums(1, 1, nrows_x);
|
||||
/*
|
||||
DPCT1049:46: The work-group size passed to the SYCL kernel may exceed the
|
||||
limit. To get the device limit, query info::device::max_work_group_size.
|
||||
Adjust the work-group size if needed.
|
||||
*/
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
/*
|
||||
DPCT1101:96: 'SYCL_SOFT_MAX_BLOCK_SIZE/WARP_SIZE' expression was
|
||||
replaced with a value. Modify the code to use the original expression,
|
||||
provided in comments, if it is correct.
|
||||
*/
|
||||
sycl::local_accessor<float, 1> buf_acc_ct1(
|
||||
sycl::range<1>(32 /*SYCL_SOFT_MAX_BLOCK_SIZE/WARP_SIZE*/), cgh);
|
||||
const size_t n_local_scratch = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE);
|
||||
static_assert(SYCL_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted.");
|
||||
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
||||
soft_max_f32(x, y, dst, ncols_x, nrows_y, scale, item_ct1,
|
||||
buf_acc_ct1.get_pointer());
|
||||
});
|
||||
});
|
||||
const uint32_t n_head_kv = nrows_x/nrows_y;
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
|
||||
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
const size_t local_mem_size = stream->get_device().get_info<sycl::info::device::local_mem_size>();
|
||||
if (n_local_scratch*sizeof(float) < local_mem_size) {
|
||||
switch (ncols_x) {
|
||||
case 32:
|
||||
soft_max_f32_submitter<true, 32, 32>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
||||
max_bias, m0, m1, n_head_log2, block_nums,
|
||||
block_dims, n_local_scratch, stream);
|
||||
break;
|
||||
case 64:
|
||||
soft_max_f32_submitter<true, 64, 64>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
||||
max_bias, m0, m1, n_head_log2, block_nums,
|
||||
block_dims, n_local_scratch, stream);
|
||||
break;
|
||||
case 128:
|
||||
soft_max_f32_submitter<true, 128, 128>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
||||
max_bias, m0, m1, n_head_log2, block_nums,
|
||||
block_dims, n_local_scratch, stream);
|
||||
break;
|
||||
case 256:
|
||||
soft_max_f32_submitter<true, 256, 256>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
||||
max_bias, m0, m1, n_head_log2, block_nums,
|
||||
block_dims, n_local_scratch, stream);
|
||||
break;
|
||||
case 512:
|
||||
soft_max_f32_submitter<true, 512, 512>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
||||
max_bias, m0, m1, n_head_log2, block_nums,
|
||||
block_dims, n_local_scratch, stream);
|
||||
break;
|
||||
case 1024:
|
||||
soft_max_f32_submitter<true, 1024, 1024>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
||||
max_bias, m0, m1, n_head_log2, block_nums,
|
||||
block_dims, n_local_scratch, stream);
|
||||
break;
|
||||
case 2048:
|
||||
soft_max_f32_submitter<true, 2048, 1024>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
||||
max_bias, m0, m1, n_head_log2, block_nums,
|
||||
block_dims, n_local_scratch, stream);
|
||||
break;
|
||||
case 4096:
|
||||
soft_max_f32_submitter<true, 4096, 1024>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
||||
max_bias, m0, m1, n_head_log2, block_nums,
|
||||
block_dims, n_local_scratch, stream);
|
||||
break;
|
||||
default:
|
||||
soft_max_f32_submitter<true, 0, 0>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
||||
max_bias, m0, m1, n_head_log2, block_nums,
|
||||
block_dims, n_local_scratch, stream);
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
soft_max_f32_submitter<false, 0, 0>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
||||
max_bias, m0, m1, n_head_log2, block_nums,
|
||||
block_dims, WARP_SIZE, stream);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
@ -12435,14 +12498,35 @@ inline void ggml_sycl_op_soft_max(const ggml_tensor *src0,
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t nrows_x = ggml_nrows(src0);
|
||||
const int64_t nrows_y = src1 ? ggml_nrows(src1) : 1;
|
||||
const int64_t nrows_y = src0->ne[1];
|
||||
|
||||
float scale = 1.0f;
|
||||
memcpy(&scale, dst->op_params, sizeof(float));
|
||||
float max_bias = 0.0f;
|
||||
|
||||
soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00, nrows_x, nrows_y, scale, main_stream);
|
||||
memcpy(&scale, dst->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, dst->op_params + 1, sizeof(float));
|
||||
|
||||
(void) dst;
|
||||
// positions tensor
|
||||
float * src2_dd = nullptr;
|
||||
sycl_pool_alloc<float> src2_f;
|
||||
|
||||
ggml_tensor * src2 = dst->src[2];
|
||||
const bool use_src2 = src2 != nullptr;
|
||||
|
||||
if (use_src2) {
|
||||
const bool src2_on_device = src2->backend == GGML_BACKEND_TYPE_GPU;
|
||||
|
||||
if (src2_on_device) {
|
||||
ggml_tensor_extra_gpu * src2_extra = (ggml_tensor_extra_gpu *) src2->extra;
|
||||
src2_dd = (float *) src2_extra->data_device[g_main_device];
|
||||
} else {
|
||||
src2_dd = src2_f.alloc(ggml_nelements(src2));
|
||||
SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src2_dd, src2, 0, 0, 0, 1, main_stream));
|
||||
}
|
||||
}
|
||||
|
||||
soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, src2_dd, dst_dd, ne00,
|
||||
nrows_x, nrows_y, scale, max_bias, main_stream);
|
||||
}
|
||||
|
||||
inline void ggml_sycl_op_scale(const ggml_tensor *src0, const ggml_tensor *src1,
|
||||
|
@ -4894,8 +4894,8 @@ static struct ggml_tensor * llm_build_kqv(
|
||||
ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
|
||||
}
|
||||
|
||||
#if defined(GGML_USE_VULKAN) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_SYCL)
|
||||
#pragma message("TODO: ALiBi support in ggml_soft_max_ext is not implemented for Vulkan, Kompute, and SYCL")
|
||||
#if defined(GGML_USE_VULKAN) || defined(GGML_USE_KOMPUTE)
|
||||
#pragma message("TODO: ALiBi support in ggml_soft_max_ext is not implemented for Vulkan, and Kompute")
|
||||
#pragma message(" Falling back to ggml_alibi(). Will become an error in Mar 2024")
|
||||
#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5488")
|
||||
if (hparams.f_max_alibi_bias > 0.0f) {
|
||||
|
Loading…
Reference in New Issue
Block a user